Saulson ゼミ Chapter 15 GRAVITATIONAL WAVE ASTRONOMY

理学系研究科 物理学専攻 坪野研究室 修士課程1年 道村唯太 2010年6月8日

15.1 Gravitational Wave Source Positions

時間差で三角測量。4 つの観測で方向が1 つに特定できる。波形を利用すると4 つも要らない。

15.1.1 Network figure of merit

2つの検出器を結ぶ線 (baseline) は長い方がいい。直交している方がいい。

15.1.2 Why measure positions?

整合性のチェックのため。他の天文学と結びつけるため。重力波源の分布。

15.1.3 Inferences from precise positions

数 arcminute の方角精度で電磁波の天文学と。月に検出器? (cf. Apollo 17 の Lunar Surface Gravimeter(Weber, 1972))

15.1.4 Temporal coincidence with non-gravitational observations

II 型超新星。光で見て、重力波で聴く。cf. SN1987A とニュートリノ。光で見えない爆発。

15.2 Interpretation of Gravitational Waveforms

重力波でしか見えないもの。超新星の内部とか。もし高 SNR で波形がわかったとしたら......

15.2.1 Core collapse

free fall と bounce。軸対称だと直線偏光 → どの検出器も同じ波形。

15.2.2 Binary coalescences

高い精度で計算可能。波形は $\operatorname{chirp}(21)$ 。 $\operatorname{chirp\ mass}\mathcal{M}=(m_1m_2)^{3/5}(m_1+m_2)^{-1/5}$ がわかる。合体の最後の最後の計算は簡単じゃない。

15.2.3 A gravitational standard candle

 ${\cal M}$ から重力波強度を計算可能 \to 源までの距離がわかる。数 $100{
m Mpc}$ 程度までいける? $({
m cf.}$ ケフェイド変光星の光度周期関係で $20{
m Mpc})$

15.2.4 Recognizing signals from black holes

BH は得意。BH の合体、形成時の崩壊による振動で重力波が出る。波形は一般相対論で直接計算可能。

15.3 Previous Gravitational Wave Searches

数十年やってて1度も見つかってない。天空の連続観測の時代はまだ始まったばかり。

15.3.1 Room temperature bars

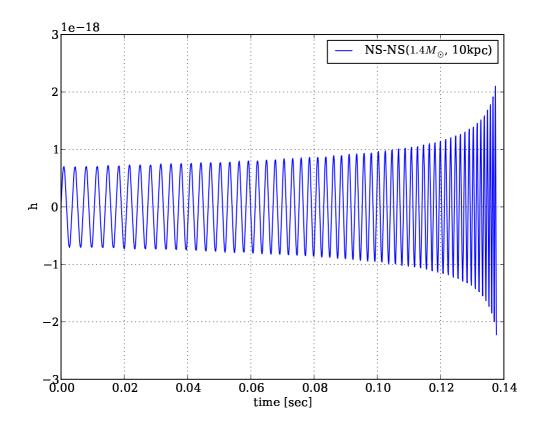
1960s Joseph Weber。間違いの確実な説明は今でもされてない。この時代の最も厳しい上限は kHz 帯で、Fig15.5の MPI 76。

15.3.2 Cryogenic bars

液体ヘリウム (4K) で冷やした共振型 (Stanford~81)。同時観測 (Rome-Stanford~86、LSU-Rome 91)。さらに 3 He- 4 He 希釈冷凍機 (50mK) へ......

15.3.3 The Strange case of Supernova 1987A

 ${
m SN1987A}$ のとき、世界的な重力波検出器はどれも動いていなかった。 ${
m Rome}$ と ${
m Maryland}$ の常温は動いてて、重力波を検出した ??


15.3.4 Gravitational wave searches with interferometers

プロトタイプは共振型ほど感度が高くない。でもいろいろ試み。1989 年には MPI Garching の 30m と Glasgow 10m で 100 時間の同時観測。

15.3.5 Other observational upper limits

ドップラートラッキング: 地球と人工衛星間で電波を往復。屈折率の揺らぎが最大のノイズ源。低周波 (1-10mHz)。 地球や太陽の四重極振動。

パルサータイミング: パルスの到達時刻が重力波によって変動する。背景重力波などの超低周波。 CMB: 長波長の重力波によって CMB の等方性が乱される。

☑ 1: chirp signal