巨視的量子力学の検証に向けた 光輻射圧による浮上手法の開発

東京大学理学系研究科 物理学専攻安東研究室 和田祥太郎

今回の発表の概要

- mgスケールでの量子力学の検証のために
 光学浮上の実現を目指す。
- ・光学浮上の一つの方式である、
 サンドイッチ型の水平方向の安定性検証のために
 ねじれ振り子を用いる。
- ・今回は安定性の検証に必要な、
 - ねじれ振り子の共振周波数測定
 - ねじれ振り子をリリースした状態での共振器制御
 に成功し、実際に安定性を検証した。

サンドイッチ型

発表の流れ

1. 研究背景 サンドイッチ型光学浮上の原理 3.水平方向の安定性検証実験 4. 実験装置 5. 実験結果

6. まとめと今後の展望

1. 研究背景

背景

観測されない理由

2つの考えられる説

- ・重い物体にも重ね合わせ状態は存在する
 →単純に古典雑音に埋もれてる?
- ・重い物体には重ね合わせ状態は存在しない

→質量スケールで境界線が存在?

様々な質量スケールで実験することが必要

機械光学系実験(光を振動子に当てることに よる位置測定)が有力な手法である

機械光学系を用いた先行研究

fg	pg	ng	ug	mg	g
	文字 2 µm 薄膜 48 pg 48 pg Teufel+(2011)	薄膜 7 ng Peterson	0.25mm h+(2016) シリコン円盤振動 20 ug Bawaj+(2015)) 範架鏡 1 g Neben+(2012)

懸架鏡 40 kg GW detector (LIGO, VIRGO, KAGRA)

kg

質量スケール

巨視的量子力学の検証のための条件

量子力学の不確定性原理から生じる測定限界のこと

同相モードと差動モードの重ね合わせ状態を観測

ナノ機械振動子 311 fg Chan+(2011)

薄膜 48 pg Teufel+(2011)

薄膜 7 ng Peterson+(2016)

懸架鏡 5 mg Matsumoto+(2014)

懸架鏡 1 g Neben+(2012)

懸架鏡 40 kg GW detector (LIGO, VIRGO, KAGRA)

fg	pg	ng	ug	mg	g	kg 質量スケ	ール

シリコン円盤振動子

Bawaj+(2015)

20 ug

ナノ機械振動子 311 fg Chan+(2011) SQL到達

fg

ナノ機械振動子 311 fg Chan+(2011) SQL到達

fg

mgスケールでのSQL到達への障壁~熱雑音~

懸架鏡 5 mg Matsumoto+(2014)

mgスケールでのSQL到達への障壁~熱雑音~

mgスケールでのSQL到達への障壁~熱雑音~

16

検討されている光学浮上 三脚型 サンドイッチ型

17

検討されている光学浮上

18

サンドイッチ型光学浮上研究の流れ

③光学浮上の実現、SQLの到達、巨視的量子力学の検証

サンドイッチ型光学浮上研究の流れ

(1)実験装置の設計、評価→桑原氏(2)安定性の検証→本研究

③光学浮上の実現、SQLの到達、巨視的量子力学の検証

2. サンドイッチ型光学浮上の 原理

①安定性 ②感度

2. サンドイッチ型光学浮上の 原理

①安定性
 ②感度

鉛直方向(z方向)

2. サンドイッチ型光学浮上の 原理

①安定性

原理計算2~感度

原理計算2~感度

サンドイッチ型光学浮上研究の流れ

サンドイッチ型光学浮上研究の流れ

③光学浮上の実現、SQLの到達、巨視的量子力学の検証
3. 水平方向の安定性検証実験

安定性検証実験

安定性検証実験

- ・実験装置の設計・構築
- 実験装置の部分的な動作確認
 がなされた。

しかし... 安定性検証はまだされていない

先行研究までの状況

フォトセンサとコイルで
 ねじれ振り子を制御

制御した状態で 共振周波数測定は できていない

・ねじれ振り子を固定した状態で 共振器制御 ねじれ振り子を

リリースした状態での 光共振器制御はできていない

先行研究までの状況

フォトセンサとコイルで
 ねじれ振り子を固定した状態で
 ねじれ振り子を制御
 共振器制御

制御した状態で 共振周波数測定は できていない

ねじれ振り子を リリースした状態での 光共振器制御はできていない

△ 他自由度とのカップリングが大きい
 △ センサによる静電気力が生じる

・測定ごとに共振周波数が変化
 →再現性が見られない

先行研究までの状況

フォトセンサとコイルで
 ねじれ振り子を制御

制御した状態で 共振周波数測定は できていない

ねじれ振り子を固定した状態で 共振器制御 ねじれ振り子を

リリースした状態での 光共振器制御はできていない

取り組む必要があること ①ねじれ振り子を制御した状態で共振周波数測定 →(ねじれ振り子の共振周波数)<42 mHz(光で固くなった共振周波数) ②ねじれ振り子をリリースした状態で光共振器制御 →安定した制御(ゲインが1のとき位相が-180°回らない) ____ この二つを達成したのちに ③サンドイッチ型共振器の水平方向の安定性検証

サンドイッチ型光学浮上研究の流れ

③光学浮上の実現、SQLの到達、巨視的量子力学の検証

サンドイッチ型光学浮上研究の流れ

③光学浮上の実現、SQLの到達、巨視的量子力学の検証

4. 実験装置

180 mm

ねじれ振り子

実際の実験装置の様子

実際の実験装置の様子

5. 実験結果

今回行ったこと

①ねじれ振り子を制御した状態で共振周波数測定

→(ねじれ振り子の共振周波数)<42 mHz(光で固くなった共振周波数)

②ねじれ振り子をリリースした状態での共振器制御

→安定した制御(ゲインが1のとき位相が-180°回らない)

____ この二つを達成したのちに

③サンドイッチ型共振器の水平方向の安定性検証

今回行ったこと

①ねじれ振り子を制御した状態で共振周波数測定

→(ねじれ振り子の共振周波数)<42 mHz(光で固くなった共振周波数)

②ねじれ振り子をリリースした状態での共振器制御 →安定した制御(ゲインが1のとき位相が-180°回らない)

この二つを達成したのちに

③サンドイッチ型共振器の水平方向の安定性検証

ねじれ振り子の制御

- ①ねじれ振り子を制御して揺れを抑える
 →(YAW方向のRMS) < 10 µm(ビーム径×0.1)
 →(ROLL方向のRMS) < 9 µm(共振器長制御ピェゾのレンジ)
- ②ねじれ振り子のYAW方向の共振周波数測定
 →(ねじれ振り子の共振周波数)<42 mHz(光で固くなった共振周波数)
 →(測定誤差)<±4 mHz(共振周波数変化を見るのに十分な精度)

ねじれ振り子の制御

ねじれ振り子の制御

真空槽に入れた

YAW方向共振周波数測定

共振周波数を 17±2 mHzの精度で 測定することに成功

YAW方向共振周波数測定

今回行ったこと

①ねじれ振り子を制御した状態で共振周波数測定

→(ねじれ振り子の共振周波数)<42 mHz(光で固くなった共振周波数)

②ねじれ振り子をリリースした状態での共振器制御

→安定した制御(ゲインが1のとき位相が-180°回らない)

この二つを達成したのちに

③サンドイッチ型共振器の水平方向の安定性検証

共振器の制御法

共振器長制御

共振器長制御

ピエゾ素子(電流に応じて 長さが変動する素子)を 鏡に取り付け、 共振器長を変動

動かせるレンジが広い \bigcirc 4 kHz付近に共振があり、高周波で制御できない $\boldsymbol{\wedge}$ →ねじれ振り子をフリーにした状態で 単独で共振器制御はできない

周波数制御

レーザー内のピエゾ素子 (電流に応じて長さが変動 する素子)に電流を流し、 レーザーの周波数を変動

- 〇 共振が非常に高く、高周波でも制御がかかる
- △ 動かせるレンジが狭い

→ねじれ振り子をフリーにした状態で 単独で共振器制御はできない

共振器長十周波数制御

共振器長制御

共振器長十周波数制御

ンレンジが広い(共振器長制御)

高周波でも制御がかかる(周波数制御)

二つの長所をいいとこ取り

共振器制御がかかる様子

制御のブロックダイアグラム

共振器制御のオープンループ伝達関数

共振器制御のオープンループ伝達関数

共振器制御のオープンループ伝達関数

安定した 制御に成功

今回行ったこと

①ねじれ振り子を制御した状態で共振周波数測定

→(ねじれ振り子の共振周波数)<42 mHz(光で固くなった共振周波数)

②ねじれ振り子をリリースした状態での共振器制御 →安定した制御(ゲインが1のとき位相が-180°回らない)

この二つを達成したのちに

③サンドイッチ型共振器の水平方向の安定性検証

光を当てたときの共振周波数測定

安定性検証に向けた評価

$$k^{hor} = \frac{2}{c} \frac{P_{circ}}{a}$$

水平方向のバネ定数

入射光パワーの評価

Output Power [mW]

フィネスの評価

	${\cal F}$
今回の測定値	720 ± 30
設計値	1100

100

モードマッチング率の評価

ピークが分かれる問題

Output [a.u.]

R.Priestley(2001) より

曲率中心間距離の評価

Output [a.u.]

まとめ

 YAW方向の共振周波数を17±2 mHzと測定、安定性を検証するうえで 十分な精度で測定することに成功した。

ねじれ振り子をリリースした状態での光共振器制御に成功し、水平
 方向の安定性を検証に向けた準備が整った。

 安定性検証に向けた評価をおこない、 k^{hor}=6.7×10⁻⁶ N/m(現状) < 14×10⁻⁵ N/m(要求値)
 となり、バネ定数はあと21倍上げる必要がある。
 共振器内パワーさえあがれば安定性検証できる見通しがたった。

今後の展望

- ・共振器内パワーをためるためには...
 - 入射光パワーの問題
 ファイバーアンプの周りのファイバーで大きく減衰

collimator

- ・ 偏光の問題
 ファラデーアイソレータを用いる
 共振器内パワーをためさえすれば
- ・水平方向の安定性を検証
- 下側共振器との同時制御

おまけ

背景

重ね合わせ状態

→量子力学特有の性質

 $|\psi\rangle >= c_1 |\psi_1\rangle + c_2 |\psi_2\rangle$ と表せる

光学浮上の全体像

原理実証のためのセットアップ

1.6 mgの鏡 波長1064 nm

上側共振器 入射パワー2.6W フィネス700

下側共振器 入射パワー8.5W フィネス700

実験セットアップ

ねじれ振り子拡大図

真空槽には入れず、 まずは大気中で実験

反射光とPDH信号

Fabry Perot 共振器

phase [rad]

鉛直方向の安定性

光バネのバネ定数とダンピング率

KAGRA

gスケール

square or rectangular ears, glue loss angle = 0.035

SQLへの到達値(1)

表 3.1: SQL 到達への設計値(1)

浮上鏡の質量	m = 0.2 mg	
浮上鏡の半径	r = 0.35 mm	
浮上鏡の曲率半径	R = 30 mm	
コーティングの厚さ	$d_{\rm Ta} = 91 {\rm nm} \times 7 {\rm layers}$	
	$d_{\rm Si} = 237 {\rm nm} \times 6 {\rm layers}$	
ヤング率	$Y_s = 73~\mathrm{GPa}$, $(Y_\mathrm{Ta} = 140~\mathrm{GPa},Y_\mathrm{Si} = 73~\mathrm{GPa})$	
ポアソン比	$\nu_s = 0.17, (\nu_{\rm Ta} = 0.28, \nu_{\rm Si} = 0.17)$	
損失角	$\phi_s = 1 \times 10^{-6}, (\phi_{\text{Ta}} = 2 \times 10^{-4}, \phi_{\text{Si}} = 5 \times 10^{-5})$	
鏡基材の屈折率	$n_s = 1.45(n_{Ta} = 2.07, n_{Si} = 1.45)$	
温度	T = 300 K	
レーザーの波長	$\lambda = 1064 \text{ nm}$	
レーザーの周波数雑音	$\delta f_a = 0.1 \mathrm{mHz/Hz^{1/2}}$	
気圧	$P = 10^{-5}$ Pa	

SQLへの到達値(2)

表 3.2: SQL 到達への設計値 (2)

	下側の共振器	上側の共振器
共振器長	$L_1 = 95 \text{ mm}$	$L_2 = 50 \mathrm{mm}$
曲率半径	$R_1 = 120$ mm	$R_2 = 30$ mm
曲率中心間距離	$a_1 = 5.0 {\rm mm}$	$a_2 = 1.4$ mm
フィネス	$\mathcal{F}_1 = 100$	$\mathcal{F}_2 = 100$
(Normalized) Detuning	$\Delta_1/\kappa_1 = 0.005$	$\Delta_2/\kappa_2 = -0.015$
ビーム半径	$w_1 = 0.14$ mm	$w_2 = 0.19$ mm
入射パワー	$P_1 = 13W$	$P_2 = 4W$
共振器内パワー	$P_{circ,1} = 420 W$	$P_{circ,2} = 130 W$

光てこ制御の全体図

鏡の厚さ	t = 6.35 mm
鏡の 直径	d = 12.7 mm
鏡基材 (SiO ₂) の屈折率	n = 1.444 @1550 nm
浮上鏡の反射率	$r^2 > 99.95\%$
浮上鏡の AR 面の反射率	$l^2 < 0.2\%$
下側の鏡の反射率	$r_1^2 > 99.9\%$
上側の鏡の反射率	$r_2^2 > 99.9\%$
浮上鏡の曲率半径	$R = 75 \mathrm{mm}$ \square
浮上鏡の基材側から見た曲率半径	R' = R/n = 53mm 💾
下側の鏡の曲率半径	$R_1 = 100 \text{ mm} \blacksquare$
上側の鏡の曲率半径	$R_2 = 75 \text{mm}$ \square

表 4.1: 鏡の設計値

共振器の設計値

	下側の共振器	上側の共振器
共振器長	$L_1 = 55 \text{ mm}$	$L_2 = 127 \mathrm{mm}$
曲率中心間距離	$a_1 = 30$ mm	$a_2 = 1$ mm
フィネス	$\mathcal{F}_1 = 4200$	$\mathcal{F}_2 = 1100$
(Normalized) Detuning	$\Delta_1/\kappa_1 = 1/\sqrt{3}$	$\Delta_2/\kappa_2 = 0$
入射パワー	$P_1 = 0.2 W$	$P_2 = 1.4 \mathrm{W}$
共振器内パワー	$P_{circ,1} = 360 W$	$P_{circ,2} = 170 W$
鉛直方向のバネ定数	$K_1^{opt} = 8.4 \times 10^4 \text{ N/m}$	$K_2^{opt} = 0$
水平方向のバネ定数	$F_1/a_1 = -0.08 \times 10^{-3} \mathrm{N/m}$	$F_2/a_2 = 1.1 \times 10^{-3} \mathrm{N/m}$

表 4.2: 共振器の設計値

共振周波数一覧

表 4.4: ねじれ振り子の共振周波数一覧

	共振周波数(計算値)	共振周波数(測定値)
YAW 方向	$f_{YAW} = 20 \text{ mHz} < 42 \text{ mHz} (\ensuremath{\mathbb{g}} \ensuremath{\mathbb{x}} \ensuremath{\mathbb{d}} \ensuremath{f_{YAW}}^{opt})$	$17 \mathrm{mHz}$
ROLL 方向	$f_{ROLL} = 0.72$ Hz< 380 Hz(要求値 f_{ROLL}^{opt})	$0.88~\mathrm{Hz}$
LONG 方向	$f_{LONG} = 2.1 \text{ Hz}$	2.1 Hz
PITCH 方向	$f_{PITCH} = 11 \text{ Hz}$	11 Hz

共振器長制御ピエゾの特性

結果(ROLL方向のオープンループ伝達関数)

UGF~1.3Hz 位相余裕~15°

安定した制御になった

石英 2 nm/cm 2.54 nm

サファイヤ 80 µm/cm 0.1 mm

水晶 91 μm/cm 0.1 mm 石英 3.5×10⁻¹² /Pa ×6.35×10⁻³×2 m ×<u>3.9×10⁴ Pa</u> =1.75×10⁻⁹ m

M3ねじの断面積 7.1×10⁻⁶ m²

応力 0.28 N

光バネ

1量子のエネルギー (λ=1 μm) 10⁴ K > 300K

半径 0.35 mm 表面積 0.77 mm² 吸収率 0.001% レーザーからのパワー 500W×0.00001=5 mW としたとき 半径 3.5 mm 表面積 77 mm² 吸収率 0.001% レーザーからのパワー 500W×0.00001=5 mW としたとき

鏡 ≈600K 鏡 ≈300K