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Chapter 1

Introduction

The aim of this research is the accurate estimation of thermal noise sensitivity limit

of interferometric gravitational wave detectors. We proved experimentally that the tra-

ditional method to estimate the thermal noise breaks down when the dissipation is dis-

tributed inhomogeneously. On the other hand, our experimental results agree with the

new estimation methods. The thermal noise of the detectors was evaluated using new

estimation methods.

Gravitational waves are ripples of the space-time which propagate at the speed of light.

The gravitational wave was derived from the general theory of relativity by Einstein

in 1916 [1]. The existence of the gravitational waves was proved by the observation

of the binary pulsar PR1913+16 discovered by Hulse and Taylor [2]. The observed

decrease of the period of the revolution of this binary agrees well with theoretical values

of orbital decay due to radiation of the gravitational wave [3]. However, the gravitational

waves have not been detected directly yet. The development of the gravitational wave

detectors was pioneered by Weber [4, 5] in 1960’s. The construction and improvement of

gravitational wave detectors are in progress in order to directly observe the gravitational

wave.

The direct detection of the gravitational waves is an important subject not only in

physics but also in astronomy. In physics, the detection implies the test of gravita-

tional theories [8]. In astronomy, gravitational wave detection opens a new window of

observation into the universe because the gravitational waves give information that elec-

tromagnetic waves and the neutrinos do not carry [9, 10].
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CHAPTER 1. INTRODUCTION

The end of the twentieth century saw large interferometric gravitational wave detectors

being constructed in several countries. There are four ongoing projects of interferometric

gravitational wave detectors: the LIGO project [14] in the United States of America, the

VIRGO project [15] of France and Italy, the GEO project [16] of Germany and United

Kingdom, and the TAMA project [17] in Japan. It is expected that the research and

development in these projects will realize detection of the gravitational waves in the first

decade of the twenty-first century.
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Figure 1.1: The expected sensitivity of TAMA300, the interferometric gravitational wave detector in

TAMA project. The thick solid line shows the design observation band (between 150 Hz and 450 Hz)

and the goal sensitivity (h = 1.7× 10−22/
√

Hz) of the TAMA project. The sensitivity in the observation

band is limited by the thermal noise of the mirror (thick dashed curve) and of the suspension (thick solid

curves). The details of the sensitivity are described in Chapter 3.

Thermal fluctuation is one of the fundamental noise sources in the interferometric

gravitational wave detectors. The thermal noise is the thermally-excited motion of the

mechanical components of the interferometers. It is expected that the sensitivity of the

interferometers in the observation band will ultimately be limited by the thermal noise

2



of its mirrors and suspensions. As an example, the expected sensitivity of TAMA300,

which is the interferometer built by the TAMA project, is shown in Fig.1.1. This figure

shows that the sensitivity of TAMA300 in the observation band is limited by the thermal

noise. The goal sensitivity of future projects is tens or hundreds times higher than that

of the current projects. Therefore, the estimation and reduction of the thermal noise is

one of the most important issues in the improvement of the sensitivity of the detectors.

Loss
Distribution

Loss
Property

Mechanical
Response

Thermal
Noise

FDT

Estimation

Inverse Problem

Figure 1.2: The relation between fluctuation and dissipation. FDT represents the fluctuation-dissipation

theorem. This theorem describes the relation between the thermal noise and the mechanical response to

the external force. Estimation is the derivation of the mechanical response from the properties (frequency

dependence, etc.) and the distribution of the dissipation. Inverse problem is to get the information of

the properties and of the distribution of the loss from the measurable mechanical responses.

It is extremely difficult to observe the thermal noise directly because the thermal noise

is much small. Since there is the relationship between the thermal noise and dissipation,

the thermal motion is evaluated from the measurement of the loss. This relation is shown

in Fig.1.2. The thermal noise is related to the mechanical response to the external force

by the fluctuation-dissipation theorem (FDT) [21, 22, 23, 24]. The mechanical response

depends on the properties (frequency dependence, etc.) and the distribution of the loss.

Estimation in Fig.1.2 is the derivation of the mechanical response from the dissipation.

Inverse problem in Fig.1.2 is to get information of the properties and the distribution of

the loss from the measurable mechanical responses.
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CHAPTER 1. INTRODUCTION

The traditional method to estimate mechanical responses from the dissipation is called

the normal-mode expansion method [26]. This method estimates the mechanical response

from Q-values which represent the dissipation of resonant modes. This method is com-

monly used to evaluate the thermal noise of the interferometric gravitational wave detec-

tors. For example, the evaluated spectrum of Fig.1.1 is obtained from the normal-mode

expansion.

However, some theoretical studies [65, 68] and the models obtained from the exper-

iments [84, 85] suggest that the mode expansion does not give a correct mechanical

response when the loss is distributed inhomogeneously. Since, in general, the loss is dis-

tributed inhomogeneously, it is one of the most important issues to study in detail the

thermal noise induced by the inhomogeneous dissipation. Nevertheless, the thermal noise

caused by the inhomogeneous loss has been seldom and unsatisfactory investigated.

The main theme of this thesis is the study of the thermal noise caused by inhomoge-

neously distributed loss in order to estimate correctly the thermal noise of the gravita-

tional wave detectors. We have developed a new estimation method replacing the mode

expansion. The validity of the new estimation methods was confirmed experimentally.

The thermal fluctuations of the gravitational wave detectors were evaluated using the new

method. Consequently, almost main problems of the thermal noise of the inhomogeneous

loss were solved in our research.

The new estimation method developed by us is called the advanced mode expansion

because this method is a modification of the traditional mode expansion. This method

gives the physical interpretation of the thermal noise of the inhomogeneous loss. For

example, the advanced mode expansion shows the reason why the thermal noise induced

by the inhomogeneous loss does not agree with the traditional mode expansion. In

fact, there are other new methods, direct approaches [68, 69, 70], to estimate thermal

noise. Although the results of the direct approaches are consistent with the estimation

of the advanced mode expansion, the direct approaches do not give the clear physical

interpretation.

In order to test the new estimation methods, the thermal motion of a leaf spring with

inhomogeneous loss was measured. The results prove that the advanced mode expansion

and the direct approaches are correct. On the other hand, these results are not consistent

with the evaluation using the traditional mode expansion. This is the first experimental

results which show the invalidity of the traditional mode expansion.
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The thermal elastic vibrations of the mirrors with the inhomogeneous loss in the grav-

itational wave detectors were derived from the direct approach. The calculations showed

that there are large discrepancies between the actual thermal noise of the mirror and the

estimation of the traditional mode expansion. The theoretical estimations were checked

experimentally using a mechanical model of mirrors. This measurement supported our

evaluation of the thermal noise of the real mirror.

In this thesis, the details of above research are described. In Chapter 2, the physical

background of the gravitational waves are explained. Chapter 3 describes the theory

of the thermal noise. The traditional mode expansion is introduced here. The advance

mode expansion developed by us and the physical interpretation of the thermal noise

caused by the inhomogeneous loss are given in Chapter 4. The direct approaches are

introduced in Chapter 5. In Chapter 6 the experimental test of the estimation methods

using a leaf spring is shown. The thermal motions of the mirror with inhomogeneous loss

are calculated in Chapter 7. The experimental test of this estimation of the mirror is

described in Chapter 8. In Chapter 9 the requirements of the loss of the mirrors in the

interferometric gravitational wave detectors and the future works of the investigation of

the thermal noise of the inhomogeneous loss are summarized.
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Chapter 2

Gravitational wave

The gravitational waves are ripples of the space-time. These waves are generated by

catastrophic phenomena like supernova explosions, coalescence of compact binaries, and

so on. The gravitational waves come from these sources without scattering and absorption

because the interaction of the gravitation is extremely weak. Therefore, gravitational

waves have astronomical information which electromagnetic waves and neutrinos never

carry [9, 10, 11]. In order to obtain this astronomical information, gravitational wave

detectors are being developed. In this chapter, properties, sources, and methods of

detection of gravitational waves are introduced.

2.1 Propagation of gravitational waves

The propagation of gravitational waves is considered here [6, 7].

2.1.1 General theory of relativity

In the general theory of relativity, the gravitation is described as strain of the space-

time. The proper distance, ds, between two slightly separate points in space-time is

defined by

ds2 = gµνdxµdxν , (2.1)

7



CHAPTER 2. GRAVITATIONAL WAVE

where gµν is the metric tensor. Christoffel symbols, Γµ
νλ, and Riemann tensor, Rµ

ναβ ,

are expressed as

Γµ
νλ =

1

2
gµα (gαν,λ + gαλ,ν − gνλ,α) , (2.2)

Rµ
ναβ = Γµ

νβ,α − Γµ
να,β + Γµ

γαΓγ
νβ − Γµ

γβΓγ
να. (2.3)

Ricci tensor, Rµν, Ricci scalar, R, and Einstein tensor, Gµν , are written as

Rµν = Rα
µαν , (2.4)

R = Rα
α, (2.5)

Gµν = Rµν − 1

2
gµνR. (2.6)

The Einstein equation, which is the fundamental equation of gravitational fields, is de-

scribed as

Gµν =
8πG

c4
Tµν , (2.7)

where Tµν is the energy-momentum tensor which represents distributions of mass and

energy in the space-time. The constants, G and c, are the gravitational constant and the

speed of light, respectively.

2.1.2 Linearized Einstein equation

When weak gravitational fields are considered, the Einstein equation can be linearized.

The metric tensor in the weak fields can be written as

gµν = ηµν + hµν , (2.8)

where ηµν is the metric tensor in Minkowski space-time,

ηµν =




−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


 . (2.9)

The tensor, hµν , describes the perturbation of the metric tensor. The absolute value

of hµν is much smaller than unity, |hµν | � 1. Only the first order of hµν is taken into

account. The index raising and lowering are written in the form

hµ
ν = ηµαhαν , (2.10)

hµ
ν = ηµαhαν . (2.11)

8



2.1. PROPAGATION OF GRAVITATIONAL WAVES

In this approximation, the Einstein equation, Eq.(2.7), is rewritten as

hµα,ν
α + hνα,µ

α − hµν,α
α − h,µν − ηµν(hαβ

,αβ − h,β
β) =

16πG

c4
Tµν . (2.12)

In order to simplify Eq.(2.12), the trace reverse tensor and the Lorentz gauge condition

are introduced. The trace reverse tensor, hµν, is defined by

hµν = hµν − 1

2
ηµνh, (2.13)

where h is the trace of hµν . The relation between the traces of hµν and hµν is written as

h = −h (2.14)

where h is the trace of hµν. The Lorentz gauge condition is expressed as

h
µα

,α = 0. (2.15)

The change of the coordinates makes an arbitrary trace reverse tensor, hµν , satisfy the

Lorentz gauge condition, Eq.(2.15).

Using the trace reverse tensor, Eq.(2.13), which satisfies the Lorentz gauge condition,

Eq.(2.15), Eq.(2.12) is simplified as

−hµν
,α

α =
16πG

c4
Tµν. (2.16)

In the vacuum, this equation is written in the form

−hµν
,α

α = 0. (2.17)

Equation (2.17) shows that the perturbation of the metric satisfies the wave equation.

This perturbation is called the gravitational wave.

2.1.3 Plane gravitational wave

The simplest solution of Eq.(2.17) corresponds to a plane gravitational wave,

hµν = Aµν exp(ikαxα), (2.18)

where Aµν is an arbitrary tensor, kα is a wave number four-vector, and xα represents a

position in the space-time. Putting Eq.(2.18) into Eqs.(2.17) and (2.15), the important

expressions of the plane gravitational wave are derived as

kαkα = 0, (2.19)

Aµαkα = 0. (2.20)

Equation (2.19) proves that the speed of the gravitational wave is the same as that of

the light. Equation (2.20) shows that the gravitational wave is the transverse wave.

9



CHAPTER 2. GRAVITATIONAL WAVE

2.1.4 TT gauge

The trace reverse tensor, hµν, satisfying the Lorentz gauge condition, Eq.(2.15), is not

unique. Thus, new conditions are imposed on hµν in Eq.(2.18). These new conditions

are called Transverse-Traceless gauge (TT gauge),

Aα
α = 0, (2.21)

Aµαuα = 0. (2.22)

The vector, uα in Eq.(2.22), is an arbitrary constant timelike unit vector. The trace

reverse tensor satisfying Transverse-Traceless gauge is unique. Eqs.(2.21), (2.13), and

(2.14) show that hµν is equal to hµν in the coordinates of the TT gauge.

2.1.5 Polarization

The plane gravitational wave in the coordinates of the TT gauge is considered here.

It is assumed that the gravitational wave propagates along the z-axis. The wave number

four-vector, kα in Eq.(2.18), is expressed as

(k0, k1, k2, k3) = (k, 0, 0, k), (2.23)

where k is the wave number of the gravitational wave. The relationship between the wave

number and the angular frequency is described as

k =
ω

c
. (2.24)

The vector, uα, in Eq.(2.22) can be rewritten as

uα = δα
0. (2.25)

The tensor, δi
j in Eq.(2.25), is Kronecker’s δ-symbol. Under these conditions, Eq.(2.18)

is rewritten as

hTT
µν =




0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0


 exp[i(−ωt + kz)], (2.26)

where hTT
µν is hµν in the coordinates of the TT gauge. Equation (2.26) shows that the

gravitational wave has two polarizations, the plus mode, h+, and the cross mode, h×.

10



2.1. PROPAGATION OF GRAVITATIONAL WAVES

2.1.6 Effects on free particles

The effects of the gravitational wave on a free particle are considered. A free particle

obeys the geodesic equation described as

d2xµ

dτ 2
+ Γµ

αβ
dxα

dτ

dxβ

dτ
= 0, (2.27)

where τ is the proper time. It is supposed that this particle is at rest in the coordinate

frame of the TT gauge initially, t = 0. The four-velocity of this particle at the initial

moment is defined by

dxµ

dτ

∣∣∣∣
t=0

= δµ
0. (2.28)

Putting Eq.(2.28) into Eq.(2.27), the geodesic equation at the initial time is obtained as

d2xµ

dτ 2

∣∣∣∣
t=0

= 0, (2.29)

because Eqs.(2.2) and (2.26) show that Γµ
00 vanishes in the coordinate frame of the TT

gauge. Equation (2.29) proves that a particle which is at rest in the frame of the TT

gauge has no acceleration. Therefore, the gravitational waves do not affect a free particle

in the coordinate frame of the TT gauge.

The above discussion does not imply that the gravitational waves do not have effects

on separate free particles. The deviation between two separate particles is expressed as

the vector, nµ, which connects them. Both the particles are at rest in the coordinates in

the TT gauge at the initial moment. The equation of the geodesic deviation is expressed

as

d2nµ

dτ 2
− Rµ

αβγ
dxα

dτ

dxβ

dτ
nγ = 0, (2.30)

where xµ is a position of a particle in the space-time. Since only the first order of

hµν are considered and the mass points move extremely much slowly than light, the

approximations:

τ ≈ ct, (2.31)

dxµ

dτ
≈ δµ

0, (2.32)

11
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are appropriate. Under this approximations, Eq.(2.30) is rewritten as

1

c2

d2nµ

dt2
+ Rµ

0γ0n
γ = 0. (2.33)

Calculating Rµ
0γ0 from Eq.(2.26), Eq.(2.33) is written in the form

d2nµ

dt2
− 1

2

∂2hµ
γ
TT

∂t2
nγ = 0, (2.34)

Since both the particles are at rest initially, the solution of Eq.(2.34) is expressed as

nµ(t) = nα(0)

[
δα

µ +
1

2
hα

µTT

]
. (2.35)

This solution implies that the separation between the free particles oscillates under the

effects of a gravitational wave. The amplitude of this oscillation is proportional to the

amplitude of the gravitational wave and to the distance between the free particles.

Figure 2.1 shows the time variations of the deviations between a center and free par-

ticles on a circle caused by the gravitational wave. The upper and lower parts of Fig.2.1

represent the plus and cross modes, respectively.

time
x

y

Figure 2.1: The time variations caused by the gravitational wave of the separation between a center and

free particles on a circle. The dots correspond to mass points. The upper and lower parts represent the

plus and cross modes, respectively.
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2.1.7 Energy

The gravitational waves carry energy. The energy-momentum tensor of a gravitational

wave is expressed as

T (GW)
µν =

c4

32πG
< hjk,µh

jk
,ν > . (2.36)

This formula is the expression in the coordinate frame of the TT gauge. The sign, < A >,

denotes an average of A over several wavelengths.

2.2 Generation of gravitational waves

The generation of gravitational waves are discussed here [6, 9, 10, 11]. The radiation

formula and sources of gravitational waves are introduced.

2.2.1 Radiation formula

When the gravitational potential and velocity of matter of a source are small, the

formula of the radiation energy of the gravitational wave is expressed as

−dE

dt
=

G

45c5

(
d3Dij

dt3

)2

, (2.37)

Dij =

∫
ρ

(
xixj − 1

3
δijr

2

)
d3x, (2.38)

where E and ρ are the energy and density of a source. This formula corresponds to the

quadrupole radiation. There is no dipole radiation of the gravitational waves because the

mass is always positive. Equations (2.37) and (2.38) prove that spherically symmetric or

stationary axially symmetric systems never generate the gravitational waves.

The amplitude of the gravitational wave is described as

hij = −2G

c4

1

r
D̈ij, (2.39)

where r is the distance from a source.
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2.2.2 Sources

The sources of the gravitational waves are introduced here. There are three kinds of

sources: burst sources, periodic sources, and stochastic sources.

Burst sources

The supernova explosions are a kind of burst wave sources. The amplitude1, h, of the

gravitational wave from supernovas in our galaxy and within 20 Mpc distance is expected

to be about 10−18 and 10−21, respectively. The frequency is hundreds or thousands

Hz. The supernova is one of the targets of the interferometric detectors on the Earth.

These gravitational waves carry information about supernova explosions and generation

of neutron stars and black holes.

The coalescence of compact binaries also generates burst waves. The distance between

the compact objects in a binary system becomes shorter because of the radiation of

gravitational waves until the two compact objects collide. In the last several minutes

before the coalescence, large burst of gravitational wave is generated. If the binary is a

neutron star-neutron star binary, the frequency is expected to peak at a few thousands

Hz. The amplitude of the gravitational waves, h, from these binaries within 20 Mpc

distance is calculated to be about 10−21. The neutron star-neutron star coalescing2 is

a particular important target of interferometric detectors on the Earth. Several kinds

of information are derived from the gravitational waves of the neutron star-neutron star

binary: the equation of state of condensed matter, the distance from the source, and so

on.

If small black hole-black hole binaries (binary Black Hole MACHO) were made in the

early universe, this is an important candidate of the burst wave sources for interferometric

detectors on the Earth. The amplitude, h, and frequency of the gravitational wave from

these binaries in our galactic halo are calculated to be 10−18 and 500 Hz, respectively[12,

13].

If the binary is made of two extremely large black holes3, the frequency of the gravi-

tational wave is expected to peak at 0.01 mHz. It is expected that these large black hole

1The parameter, h, represents hij in Eq.(2.39).
2If the gamma-ray bursts are generated in the neutron star-neutron star final coalescing, the gamma-

ray burst radiates not only the gamma-ray but also the gravitational waves.
3The mass is about 107 times larger than that of the sun.
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binaries are at centers of galaxies.

Other burst sources are the generation of large black holes and the falling matter into

the large black holes. Typical frequencies are about 1 mHz and 10 mHz, respectively. It

is expected that these phenomena occurs at the centers of the galaxies.

Periodic sources

The compact binaries radiate periodic gravitational waves. The generation of peri-

odic waves by the compact binaries was proved by the observation of the slow decay of

the revolution of binary pulsars [3]. Since there are many binaries in the universe, the

gravitational waves from these sources can be observed as stochastic back ground. The

typical frequency of these sources is about 0.01 mHz. The periodic gravitational wave

from the binaries is a target of interferometric detectors in space.

If a pulsar is not axial symmetric, it can generate periodic gravitational waves. The

expected frequency is twice the neutron star revolution frequency, between ten Hz and

thousands Hz. This is one of the targets of resonant detectors as well as interferometric

detectors.

Stochastic sources

There are two kinds of expected stochastic gravitational waves. The first kind is the

random summation of the gravitational waves from burst and periodic sources. The

second kind is related with the evolution of the universe. The second type is introduced

here.

Before the Planck time4, the gravitational waves and other elementary particles were

in thermal equilibrium. If these gravitational waves exist, their present spectrum is that

of the black body radiation, i.e. these gravitational waves are equivalent to the cosmic

microwave background radiation. The temperature of the black body radiation of the

gravitational waves is estimated to be 0.9 K. If the inflation scenario is valid, these

gravitational waves would vanish because of the outrageously rapid expansion of the

universe. In this case, the universe would be filled with the gravitational waves caused

by quantum fluctuations in the inflation.

In the history of the universe, the phase transition occurred several times: inflation,

4The Planck times is about 10−43 sec.
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GUT, electroweak, and QCD. These phase transitions may have caused bubbles, cosmic

strings, and fluctuations of pressure. The collisions of the bubbles, the collapses of the

cosmic strings, and the fluctuations of the pressure can generate gravitational waves.

Especially, the cosmic strings caused by GUT phase transition are famous candidate

sources of gravitational waves.

2.3 Detection of gravitational waves

The methods of detection of the gravitational waves are described here [9, 10, 11].

There are four proposed methods: interferometric detector, resonant detector, Doppler

tracking, and pulsar timing.

2.3.1 Interferometric detectors

The details of interferometric detectors are discussed here [9, 10, 11].

Principle

The Michelson interferometer is a device to measure differences between distances or

transit times of light lays in two orthogonal directions. Since the gravitational waves

affect this difference, the Michelson interferometers can be used as gravitational wave

detectors.

The schematic view of a interferometric detector is shown in Fig.2.2. The beam splitter

divides the light, two beams are reflected by the end mirrors, the reflected beams are

recombined at the beam splitter, the combined light goes into the photo detector or back

to the light source. The intensity at the photo detector depends on the difference between

the phases of the two light beams5. The difference between the phases is proportional to

the difference between the traveling times in the two arms of the interferometer.

The difference between the phases of the two beams at the beam splitter is estimated

for an interferometer subject to a gravitational wave. It is supposed that the mirrors and

the beam splitter are free. In actual interferometers, these optical components are sus-

pended. Suspended components act in the horizontal plane as free masses at frequencies

5The details of the principles of the interferometer are discussed in Chapter 6.
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LASER

Beam
Splitter

Photo Detector
x

y

Mirror
(inline)

Mirror
(perpendicular)

Figure 2.2: Schematic view of a Michelson interferometric gravitational wave detector. The beam splitter

divides the light. These beams are reflected by the mirrors. The reflected beams are combined at the

beam splitter. The combined light goes into the photo detector or back to the laser. The intensity at the

photo detector depends on the difference between the traveling times of the two beams. The traveling

times are affected by the gravitational wave.

higher than the resonant frequency of the pendulum. In order to simplify the discussion,

the interferometer is considered at rest in the coordinate frame of the TT gauge. From

Eq.(2.29), in this coordinate, the free optical components are not moved by the gravita-

tional wave. The beam splitter is at the origin. The x-axis and y-axis are parallel to the

two Michelson arms. The lengths of the two arms are l1 and l2. The gravitational wave

of the plus mode goes along the z-axis. The proper distance measured by the light is

ds2 = −c2dt2 + (1 + h+)dx2 + (1 − h+)dy2 + dz2 = 0. (2.40)

From Eq.(2.40), the round-trip of the light along the x-axis is derived. The integration

of Eq.(2.40) is expressed as∫ t0

t1

cdt√
1 + h+(t)

=

∫ l1

0

dx +

∫ 0

l1

(−dx). (2.41)
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When time is t1, the light enters an arm. When time is t0, the light goes back to the

beam splitter. Since the amplitude of the gravitational wave is small, |h+| � 1, t1 in the

term of the integration of h+ can be written in the form

t1 ≈ t0 − 2l1
c

. (2.42)

Equation (2.41) is rewritten as

(t0 − t1) − 1

2

∫ t0

t0− 2l1
c

h+(t)dt =
2l1
c

(2.43)

From a similar calculation along the y-axis, the expression which corresponds to Eq.(2.43)

is,

(t0 − t2) +
1

2

∫ t0

t0− 2l2
c

h+(t)dt =
2l2
c

. (2.44)

At t2, the light enters the perpendicular arm. At t0, the light goes back to the beam

splitter. From Eqs.(2.43) and (2.44), the difference of the phases, φ, between the two

beams is evaluated as

φ(t0) = Ω(t1 − t2) = −2Ω(l1 − l2)

c
− δφGR(t0) (2.45)

δφGR(t0) = Ω

∫ t0

t0− 2l
c

h+(t)dt. (2.46)

The parameter, Ω, is the angular frequency of the light and it is supposed that l1 ≈ l2 ≈ l.

Equation (2.46) represents the effect of the gravitational wave. From this expression,

the transfer function, HMichelson(ω), which is the ratio of the Fourier component of the

gravitational wave, h+, to the Fourier component of φGR is obtained as

HMichelson(ω) =
2Ω

ω
sin

(
lω

c

)
exp

(
−i

lω

c

)
. (2.47)

Equation (2.47) shows that there is the optimal length, lopt, of the arm of the interfer-

ometer. This length depends on the angular frequency, ω, of the gravitational wave,

lopt =
cπ

2ω
= 75 [km]

(
1 kHz

f

)
(2.48)

with f = ω/2π.
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Delay-line and Fabry-Perot

Since the typical frequency of the observable gravitational wave is a few thousand Hz

at most, Eq.(2.48) shows that the optimal length of the arms is about 100 km at least. It

is difficult and expensive to construct such a large interferometer. However, there are two

methods to enhance the effective optical lengths in the short baselines, Delay-line and

Fabry-Perot Michelson interferometers. The schematic view of these interferometers is

shown in Fig.2.3. The left and right sides of Fig.2.3 show the Delay-line and Fabry-Perot

interferometers, respectively. In the Delay-line interferometer, the long optical paths are

folded between two mirrors. In the Fabry-Perot interferometer, Fabry-Perot cavities are

placed in both the arms. The photons are stores in the cavities for a time when the

light is resonant in the cavities. This represents that the optical path length is effectively

enhanced.

End mirror

Front mirror

LASER

Cavity

Beam
Splitter

Photo Detector

End mirror

Front mirror

LASER

Beam
Splitter

Photo Detector

Delay-line Fabry-Perot

Figure 2.3: The schematic view of the Delay-line and Fabry-Perot Michelson interferometers. The left

and right sides of this figure show the Delay-line and Fabry-Perot interferometers, respectively.
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Current projects

Several construction projects of large interferometric gravitational wave detectors6 are

in progress. They are summarized in Table.2.1.

Table 2.1: Current projects for large interferometric detectors

project country site type length

LIGO U.S.A. Hanford, Livingston Fabry-Perot 4 km

VIRGO Italy, France Pisa Fabry-Perot 3 km

GEO Germany, U.K. Hannover Delay-line 600 m

TAMA Japan Tokyo Fabry-Perot 300 m

In the United State of America, the LIGO project [14] is in progress. The interfer-

ometers are constructed at Hanford in Washington and Livingston in Louisiana. The

distance between these sites is about 3000 km. The comparison between the outputs of

the interferometers of each site is indispensable to decrease false alarms.

In the VIRGO project [15] of Italy and France, the interferometer is located at Pisa

in Italy. The main focus of the VIRGO project is the detection of the low frequency

gravitational waves. Since the sensitivity in the low frequency region is limited by seismic

motions, an excellent seismic isolation systems, the super attenuators, was developed by

the VIRGO project.

Germany and United Kingdom proceed with the GEO project [16]. The site is at

Hannover in Germany. This is the only project adopting the Delay-line interferometer

with dual-recycling.

TAMA [17] is the Japanese project. The interferometer is located at the Mitaka

campus of National Astronomical Observatory in Tokyo. The objectives of this project

are the observation of gravitational waves from near galaxies and the establishment of the

technology for future projects. The interferometer of TAMA is the only interferometric

detector presently operating with significant sensitivity.

6The interferometers in these projects are on the Earth. The target frequency is about 100 Hz. The

LISA project [18] to assemble a interferometer in space are planning by NASA and ESA. The target

frequency is about 1 mHz.
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Noise sources
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Figure 2.4: The expected noise budget of the TAMA300. The thick solid and dashed curves show the

thermal noise of the suspensions and the mirrors, respectively. The thin solid curve is the seismic noise.

The thin dashed curve is the shot noise level. The thick solid line shows the observation band of TAMA

(between 150 Hz and 450 Hz) and the goal of the sensitivity (h = 1.7 × 10−22/
√

Hz).

Several factors contribute to the limit of the interferometric gravitational wave detec-

tors. As a example of the noise budgets of interferometers, Fig. 2.4 shows the estimation

of the spectral noise of TAMA300, which is the interferometer of the TAMA project.

There are three fundamental noise sources: seismic noise, thermal noise, and shot noise7.

The sensitivity in the low frequency region is limited by the seismic motions. The

measured power spectrum of the seismic motion is described as [77, 78]

Gseismic(f) =
10−7

f 2
[m/

√
Hz]. (2.49)

7There are many other noise sources: the noise caused by the laser source, the residual gas, and so

on.
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The values in Eq.(2.49) were measured near suburbs. The seismic motions in rural areas

and especially mines are one hundred times smaller than that near suburbs [78]. The

search of silent sites is an important issue in construction of gravitational wave detectors.

Even in the quietest location on the Earth, seismic isolation systems are necessary to

further suppress the seismic noise. The mirrors in the interferometer are suspended to

make the mirrors act as free masses and this contributes some seismic isolation. However,

the isolation power of the mirror suspension system is not high enough to allow detection

of gravitational waves. Sophisticated isolation systems should be added to enhance the

seismic isolation ratio.

The sensitivity in the middle frequency range is limited by the suspension and mirror

thermal noise. The thermal motions of the suspension systems cause the fluctuations of

the centers of the mirrors. The surfaces of the mirrors are deformed by the thermally

excited elastic vibrations of the mirrors themselves. The thermal noise is the main theme

in this thesis. The details are described in the following chapters.

In higher frequency region, the noise is dominated by the shot noise. The shot noise

is generated by the quantum fluctuation of the number of photons stored in each beam.

The limit of the measurement of the phase difference, δφshot[rad/
√

Hz], in a Michelson

interferometer due to the shot noise can be expressed as

δφshot =

√
2h̄Ω

ηP
, (2.50)

where h̄ is the reduced Planck constant. The parameters, Ω and P , are the angular

frequency and the stored power of light, respectively. Here, η, is the quantum efficiency

of the photo detector. Equation (2.50) shows that increasing of the stored power of the

light reduces the shot noise. The power recycling is a useful technique to enhance the

stored power of the light. A recycling mirror is inserted between the source of the light

and the interferometer. This mirror reflects the light going back to the source. The

reflected light goes into the interferometer again. In short, the power of the light going

back to the source is re-used to enhance the power effectively.

2.3.2 Resonant detectors

Resonant motions of elastic bodies are excited by gravitational waves. The information

of the gravitational waves passing through the elastic bodies is derived from monitoring
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the vibrations of the elastic bodies. This is the principle of resonant detectors [4, 5].

spring constant : k

natural length : l0

m m
w0 = (2k/m)1/2

Figure 2.5: A simple model of a resonant detector. Two masses, m, are attached to the ends of a spring.

The parameters, k and l0, are the spring constant and the natural length of this spring, respectively.

The value, ω0 ≡√2k/m, is the angular resonant frequency of this oscillator.

A simple model of a resonant detector is shown in Fig.2.5. Two masses, m, are

attached to both the ends of a spring. The parameters, k and l0, are the spring constant

and the natural length of this spring, respectively. The value, ω0 ≡ √
2k/m, is the

angular resonant frequency of this oscillator. In order to simplify the discussion, it is

assumed that this detector is at rest in the coordinate frame of the TT gauge. The x-axis

is parallel to the spring. The gravitational wave of the plus mode propagates along the

z-axis. Since only the first order of h+ is considered, the equation of the motion of the

resonant detector is written in the from

m
d2ξ

dt2
+ m

ω0

Q

dξ

dt
+ mω0

2ξ =
1

2
ml0

∂2h+

∂t2
, (2.51)

where ξ is the difference between the length of the spring and the natural length, l0.

The second term in the left-hand side of Eq.(2.51) corresponds to friction force. The

parameter, Q, is the Q-value which represents the strength of dissipation8. Equation

(2.51) is equal to the equation of the motion of a harmonic oscillator on which an external

force is applied. This force corresponds to the restoring force due to the change of

the proper length of the spring caused by the gravitational wave. From Eq.(2.51), the

resonant detector vibrates when the frequency of the gravitational wave is the same as the

resonant frequency of the detector. Thus, the observation band of the resonant detector,

unlike that of interferometric detectors, is intrinsically narrow.
8The details of Q-values are discussed in Chapter 3.
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An actual detector is a bulk made of metal. The typical mass, size, and resonant

frequency are about 1 ton, a few meters, and 1 kHz, respectively. The elastic vibration

of the detector is monitored using a transducer. The sensitivity is limited by the ther-

mal elastic vibration, the noise of the transducer, and so on. In order to suppress the

thermal excitation, the detectors are made of low loss material and cooled to cryogenic

temperature. Low noise transducers are being continuously developed to improve the

sensitivity.

2.3.3 Doppler tracking

The frequency of the electromagnetic wave traveling free space is shifted by gravi-

tational waves. Thus, the precise measurement of the frequency standards of electro-

magnetic wave emitted by far away spacecraft may show the arrival of the gravitational

waves. This method is called the Doppler tracking because the Doppler effect caused by

the gravitational waves is detected. Usually, the electromagnetic signals going back and

forth between the earth and a spacecraft are used as a probe.

Several space crafts, Viking, Voyager, ULYSSES, and so on, are used for the Doppler

tracking. The observation band of this method is between 0.1 mHz and 10 mHz. The

sensitivity of strain, h, is about 10−15. The main noise source is plasma in space. The

methods for the suppression of the noise caused by the plasma are adopting the higher

frequency or two frequencies of the electromagnetic waves.

2.3.4 Pulsar timing

Pulsars are extremely precise clocks. The arrival times of signals from pulsars are

affected by gravitational waves. In the pulsar timing, the information of the gravitational

waves is derived from the analysis of the pulses from the pulsars. The observation band

of the pulsar timing is between 10−8 Hz and 10−6 Hz. The upper limit of the spectrum

of the gravitational waves obtained from the pulsar timing is the strict constraint on the

scenario of the galaxies formation by the cosmic strings.
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Chapter 3

Thermal noise

Thermal noise is one of fundamental noise sources in precision measurement, such as

gravitational experiments. Especially, it is expected that the sensitivity of the interfero-

metric gravitational wave detectors will be limited by the thermal noise of its mechanical

components. Therefore, it is important to study the thermal noise for the improvement

of the sensitivity. In this chapter, the fundamental theorem and the estimation method

of the thermal noise are introduced. Moreover, the evaluation of the thermal noise of the

interferometric gravitational wave detectors are discussed.

3.1 Thermal fluctuation

The thermal noise is one of the most serious problems of precise measurement. The

thermal motions are fluctuations of generalized coordinates of systems due to the energy

stochastically flowing to and from the heat bath. A famous example of the thermal

fluctuations is the Brownian motion of small particles from pollen. This thermal motion

is caused by random collisions of molecules; this physical interpretation was given by

Einstein [19]. The thermal noise of resistances in electric circuits is also a well known

example. The fluctuation of the voltage between both the ends of a resistance is due to

thermal motions of electrons. The relationship between the fluctuation of the voltage and

the resistance was found by Nyquist [20]. In the gravitation experiments, the thermal

motion of mechanical oscillators is one of the limits of the measurement.
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In precision experiments, generally, the observed frequency range is near a resonant

frequency of mechanical systems. Since most of the energy of the thermal fluctuation is

concentrated near the resonance, it is sufficient to evaluate the root mean square (rms)

of the amplitude of the thermal fluctuation in these precise experiments. This value is

derived from the principle of equipartition. The result is described as

√
x2 =

√
kBT

mω0
2
, (3.1)

where
√

x2 is the rms of the displacement of the oscillator, kB is the Boltzmann constant1,

T is the temperature, and m and ω0 are the mass and the resonant angular frequency of

the mechanical oscillator, respectively.

Interferometric gravitational wave detectors are different. It is required that the sen-

sitivity of the interferometric gravitational wave detectors is extremely high in broad

frequency band. Therefore, the power spectrum density of the thermal noise in the broad

band must be considered in the development of the detectors. In the following sections,

the method of the evaluation of the spectrum of the thermal noise is introduced.

3.2 Fluctuation-dissipation theorem

The fluctuation-dissipation theorem (FDT) is one of the most important theorems

of non-equilibrium statistical mechanics. The FDT predicts the relationship between

the spectrum of the thermal noise and the dissipation of systems. Since the thermal

fluctuations and the dissipation are governed by the same interaction between a system

and the heat bath, there must be a relation between both phenomena. This theorem

was established by Callen et.al [21, 22, 23, 24]. The formulae given by Einstein [19] and

Nyquist [20] are the application of the FDT to small particles in liquid or air and voltage

of resistances, respectively.

This theorem implies that the thermal noise can be estimated from the dissipation of

systems. In most cases, the direct measurement of thermal noise is difficult because it is

extremely small. Thus, loss of mechanical oscillators is measured instead of investigation

of the thermal noise in the development of detectors. In this section, this important

theorem of the thermal fluctuation is introduced.

1kB = 1.38 × 10−23[J/K].
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3.2.1 FDT in a one-dimensional system

To simplify the discussion, a one-dimensional system is considered. The one-dimensional

system has only one generalized coordinate, X. The generalized force, F , represents the

interaction between the system and externals.

The information of the dissipation of this system is included in the response of X

to F . This response is derived from the equation of motion of the system. In order to

introduce the generalized force into this equation of the motion, the new term,

V = −F (t)X, (3.2)

is added to the Hamiltonian2 of this system [25].

Several values are defined to represent responses of the physical systems. The impedance,

Z, is defined as

Z(ω) ≡ F̃ (ω)

iωX̃(ω)
(3.3)

where F̃ and X̃ are the Fourier components of the generalized force and coordinate,

respectively. The real part of the impedance,

R(ω) ≡ Re[Z(ω)], (3.4)

is called the resistance. The admittance, Y , is defined as

Y (ω) ≡ 1

Z(ω)
. (3.5)

The real part of the admittance,

σ(ω) ≡ Re[Y (ω)], (3.6)

is called the conductance. The transfer function, H(ω), is defined by

H(ω) ≡ X̃

F̃
, (3.7)

in this thesis.

2The total energy flowing from outside into the system is described as F (t)X.
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The relationship between the power spectrum density of X, GX(f), and the response

of the system is described as

GX(f) =
4kBT

ω2
σ(ω). (3.8)

This relationship [23] is called the first fluctuation-dissipation theorem. Using H(ω),

Eq.(3.8) is rewritten as

GX(f) = −4kBT

ω
Im[H(ω)]. (3.9)

The imaginary part of the transfer function represents the phase lag between the gener-

alized force and its coordinate. When a phase lag exists, the average work by the force

is not zero in the stationary state. Thus, the imaginary part describes the dissipation

of the system. Consequently, the loss is associated with the thermal noise by the first

fluctuation-dissipation theorem.

The power spectrum density of the generalized force, GF (f), is also derived from the

physical response. The expression is written as

GF (f) = 4kBTR(ω). (3.10)

This relation [23] is called the second fluctuation-dissipation theorem.

3.2.2 FDT in a n-dimension system

In general, physical systems have several generalized coordinates. The previous dis-

cussion is extended to a system which has n coordinates, X1, X2, · · · , Xn. The interaction

between this system and externals are represents by the generalized forces, F1, F2, · · · , Fn.

In order to introduce these forces into the equations of the motions, the new term,

V = −
n∑

i=1

FiXi, (3.11)

is added to the Hamiltonian of this system [25]. The response of this system is obtained

from these equations of the motions.

Since energy can be exchanged between different degrees of freedom, the impedance

and admittance of the n-dimension system are written using matrices. The relationship
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between the generalized coordinates and forces is expressed as


F̃1

F̃2

...

F̃n


 =




Z11 Z12 · · · Z1n

Z21 Z22 · · · Z2n

...
...

. . .
...

Zn1 Zn2 · · · Znn







iωX̃1

iωX̃2

...

iωX̃n


 . (3.12)

where Zij is the component of the impedance matrix. The admittance matrix is the

inverse matrix of the impedance matrix. Equation (3.12) is rewritten as


iωX̃1

iωX̃2

...

iωX̃n


 =




Y11 Y12 · · · Y1n

Y21 Y22 · · · Y2n

...
...

. . .
...

Yn1 Yn2 · · · Ynn







F̃1

F̃2

...

F̃n


 . (3.13)

where Yij is the component of the admittance matrix. The real parts of the impedance

and admittance matrices are the resistance and conductance matrices, respectively. The

component of the resistance matrix, Rij , is described as

Rij = Re[Zij]. (3.14)

The component of the conductance matrix, σij , is expressed in the form

σij = Re[Yij ]. (3.15)

The transfer function is also expressed using a matrix. Equation (3.13) is rewritten as


X̃1

X̃2

...

X̃n


 =




H11 H12 · · · H1n

H21 H22 · · · H2n

...
...

. . .
...

Hn1 Hn2 · · · Hnn







F̃1

F̃2

...

F̃n


 . (3.16)

The first fluctuation-dissipation theorem of the n-dimension system [24] is expressed

as

GXiXj
(f) =

4kBT

ω2
σij(ω). (3.17)

The functions, GXiXj
(f), is the cross spectrum density. It is the Fourier component of the

cross correlation function between Xi and Xj. When i is equal to j, the cross spectrum
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density is identical with the power spectrum density of Xi. Using the transfer function

matrix, Eq.(3.17) is rewritten as

GXiXj
(f) = −4kBT

ω
Im[Hij(ω)]. (3.18)

This formula shows that GXiXj
is derived from Hij which is the ratio of X̃i to F̃j when

the other generalized forces, Fk (k 6= i), are zero.

The second fluctuation-dissipation theorem [24] is written as

GFiFj
(f) = 4kBTRij(ω). (3.19)

This expression implies that GFiFj
is derived from Rij which is the real part of the ratio

of F̃i to iωX̃j when the other generalized coordinates, Xk (k 6= i), are zero.

3.2.3 FDT for a linearly combined coordinate

It is often useful to define a special coordinate, which is not a natural mode of a

system, but corresponds to an easily measurable quantity, like for example the surface

of a mirror as seen by a laser beam profile. A new coordinate, Xcom, of the n-dimension

system can be defined as

Xcom =
n∑

i=1

PiXi, (3.20)

where Pi are arbitrary real constants. The power spectrum density of Xcom is given by

the application of the fluctuation-dissipation theorem to the transfer function, Hcom; this

transfer function is the ratio of X̃com to the Fourier component of the generalized force,

F̃com. This proposition is proved here. In order to evaluate Hcom, Fcom is introduced into

the equations of the motions. The new term,

V = −FcomXcom = −
n∑

i=1

FcomPiXi = −
n∑

i=1

(PiFcom)Xi, (3.21)

is added to the Hamiltonian. The comparison between Eqs.(3.11) and (3.21) suggests that

the relation between Xi and Fcom is given from substituting PiFcom for Fi in Eq.(3.16);


X̃1

X̃2

...

X̃n


 =




H11 H12 · · · H1n

H21 H22 · · · H2n

...
...

. . .
...

Hn1 Hn2 · · · Hnn







P1F̃com

P2F̃com

...

PnF̃com


 . (3.22)
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From Eqs.(3.20) and (3.22), the transfer function, Hcom, is described as

Hcom =
X̃com

F̃com

=

n∑
i=1

PiX̃i

F̃com

=

n∑
i=1

n∑
j=1

PiHijPjF̃com

F̃com

=

n∑
i=1

n∑
j=1

PiPjHij. (3.23)

From Eqs.(3.18) and (3.20), the power spectrum density of the new coordinate, GXcom ,

is written as

GXcom(f) =
n∑

i=1

n∑
j=1

PiPjGXiXj
(f) = −4kBT

ω
Im

[
n∑

i=1

n∑
j=1

PiPjHij(ω)

]
(3.24)

From Eqs.(3.23) and (3.24), the relationship between GXcom and Hcom is written in the

form

GXcom = −4kBT

ω
Im[Hcom(ω)]. (3.25)

This is formally the same expression as the first fluctuation-dissipation theorem, Eq.(3.9),

of a one-dimensional system. As a result, Gcom is obtained from the transfer function,

Hcom; this transfer function corresponds to the ratio of X̃com to F̃com when the forces,

Fi = PiFcom(i = 1 ∼ n), are applied on the system. In this case, Xi is a function of the

discrete parameter, i. Even though X was a function of the continuous parameter, r,

the same result would be obtained. The spectrum of the thermal fluctuation of the new

coordinate, which is defined by

Xcom =

∫
P (r)X(r)dV, (3.26)

is derived from Eq.(3.25). In this case, the transfer function, Hcom, represents the response

of the system when the force, FcomP (r), is applied.

From the similar consideration, the fluctuation of the new generalized force defined by

F ′
com =

n∑
i=1

P ′
iFi, (3.27)

is obtained. The values, P ′
i , are arbitrary real constants. The impedance, Zcom, is the

ratio of F̃ ′
com to the iωX̃ ′

com when each generalized coordinate, Xi, is equal to P ′
iX

′
com. The

parameter, X ′
com, is the generalized coordinate which corresponds to F ′

com. The power

spectrum density of F ′
com is derived from applying the second fluctuation-dissipation

theorem, Eq.(3.10), to Zcom.
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3.3 Thermal noise of the harmonic oscillator

As a simple example, the thermal noise of a harmonic oscillator is discussed here [26].

This formula is the basis of the normal-mode expansion used frequently to evaluate the

thermal noise of interferometric gravitational wave detectors.

3.3.1 Spectrum of thermal noise

The equation of the motion of a harmonic oscillator without dissipation is expressed

as

mẍ + mω0
2x = F (t). (3.28)

where m,ω0, x, and F are the mass, the angular resonant frequency, the displacement,

and the generalized force, respectively. The equation of the motion of the harmonic

oscillator with loss in the frequency domain is written in the form

−mω2x̃ + mω0
2[1 + iφ(ω)]x̃ = F̃ , (3.29)

where φ(ω) is the loss angle which represents the frequency dependence of the dissipation.

From Eq.(3.29), the transfer function, H , is expressed as

H(ω) =
1

−mω2 + mω0
2[1 + iφ(ω)]

. (3.30)

Substituting Eq.(3.30) for H(ω) in Eq.(3.9), the power spectrum density of the harmonic

oscillator is obtained,

Gx(f) =
4kBT

mω

ω0
2φ(ω)

(ω2 − ω0
2)2 + ω0

4φ2(ω)
. (3.31)

3.3.2 Viscous damping and structure damping

Using Eq.(3.31), the thermal noise caused by two well known kinds of dissipation are

considered here. These two kinds of idealized dissipation are the viscous damping and the

structure damping. The details of the properties of the dissipation in these two models

are introduced in the next section.

32



3.3. THERMAL NOISE OF THE HARMONIC OSCILLATOR

When the loss is expressed as viscous damping, a resistance force proportional to the

velocity is applied to the oscillator. The equation of the motion is described as

mẍ + mΓẋ + mω0
2x = F (t), (3.32)

where Γ is a constant. In the frequency domain, this equation can be rewritten as

−mω2x̃ + imωΓx̃ + mω0
2x̃ = F̃ . (3.33)

From Eqs.(3.29) and (3.33), the expression of the loss angle is derived,

φ(ω) =
Γω

ω0
2
. (3.34)

Commonly, Eq.(3.34) is rewritten as

φ(ω) =
ω

ω0Q
, (3.35)

where Q is the Q-value. The Q-value is frequently used as an indicator which represents

the dissipation. The definition of the Q-value is in Eq.(3.44). From Eq.(3.34) and (3.35),

the Q-value of the viscous damping is written in the form

Q =
ω0

Γ
. (3.36)

As long as Γ is independent of the frequency, the Q-value is proportional to the reso-

nant frequency. Substituting Eq.(3.35) for φ(ω) in Eq.(3.31), the power spectrum of the

thermal noise of the viscous damping is obtained,

Gx(f) =
4kBT

mQ

ω0

(ω2 − ω0
2)2 + ω0

2ω2/Q2
. (3.37)

The typical behavior of the spectrum of the thermal noise of the viscous damping is shown

in Fig3.1. Below the resonant frequency (ω � ω0), the power spectrum is described as

Gx(f) =
4kBT

mω0
3Q

= constant. (3.38)

Above the resonant frequency (ω � ω0), the thermal noise approximates to

Gx(f) =
4kBTω0

mQ

1

ω4
∝ f−4. (3.39)
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If the dissipation of the oscillator is described by the structure damping, the loss angle

is written as

φ(ω) =
1

Q
, (3.40)

where Q is a measured Q-value of the oscillator. The definition of Q is in Eq.(3.44). In

structure damping model, the Q-value is independent of the resonant frequency. Putting

Eq.(3.40) into Eq.(3.31), the spectrum of the thermal noise of the structure damping is

given by:

Gx(f) =
4kBT

mQω

ω0
2

(ω2 − ω0
2)2 + ω0

4/Q2
. (3.41)

The typical behavior of the spectrum of the thermal noise of structure damping is shown

in Fig3.1. When the frequency is lower than the resonant frequency (ω � ω0), the

approximate expression of the thermal noise is written in the form

Gx(f) =
4kBT

mω0
2Q

1

ω
∝ f−1. (3.42)

On the contrary, when the frequency becomes higher than the resonant frequency (ω �
ω0), the thermal noise approximate to

Gx(f) =
4kBTω0

2

mQ

1

ω5
∝ f−5. (3.43)

3.3.3 Q-value

The Q-value in Eqs.(3.37) and (3.41) is an important parameter for the estimation of

the thermal noise. The definition and the methods to measure Q-values are introduced

here. The definition of the Q-value is expressed as

Q =
1

φ(ω0)
. (3.44)

This definition implies that the Q-value is associated with the loss at the resonant fre-

quency.

In order to estimate the thermal noise of the harmonic oscillator using Eq.(3.31), it

is necessary to evaluate the loss angle, φ(ω). Since the measurement of the loss angle
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Figure 3.1: Examples of the power spectrum density of the thermal noise (
√

Gx) of a harmonic oscillator;

the mass, m, is 1kg, the resonant frequency, ω0/2π, is 1Hz, and Q is 5× 105. The solid and dotted lines

show the spectrum of the thermal noise of the viscous damping and the structure damping, respectively.

far from the resonance and in wide frequency range is difficult, the loss angle is derived

commonly from the dependence of the Q-value on the resonant frequency. This depen-

dence is obtained from the measurement in several modes. Therefore, the measurement

of Q-values is indispensable for the evaluation of the thermal noise.

The most common method is the measurement of the decay time of the resonant

motion. The second most common method is the measurement of the width of the

resonant peak in the transfer function.

The measurement of the decay time is discussed. In order to measure the decay time

of the excited resonant motion, the force,

F (t) =

{
F0 cos(ω0t + δ) (t < 0)

0 (t > 0)
, (3.45)

is applied on the harmonic oscillator. The values, F0 and δ, are arbitrary constants.

The relation between the displacement of the harmonic oscillator, x(t), and F (t) in the

frequency domain is expressed as

x̃(ω) = H(ω)F̃ (ω), (3.46)
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where H(ω) is the transfer function given by Eq.(3.30). In the time domain, this relation

is rewritten in the form

x(t) =

∫
h(t − t′)F (t′)dt′, (3.47)

where h(t) is the impulse response which is the inverse Fourier component of the transfer

function, H(ω). The impulse response, h(t), is written as3

h(t) =
1

mω0
exp

(
− ω0

2Q
t

)
sin(ω0t). (3.48)

Putting Eqs.(3.45) and (3.48) into Eq.(3.47), the decay of the resonant motion is written

as

x(t) =
F0Q

mω0
2

exp

(
− ω0

2Q
t

)
sin(ω0t + δ) (t > 0). (3.49)

The decay time of the amplitude is related with ω0/Q. Thus, the Q-value is derived

directly from the measured decay time and the resonant frequency. Since the Q-value is

proportional to the decay time, this method is appropriate when the Q-value is high.

The measurement of the half width, ∆ω0, of the resonant peak of the transfer function

is considered. The half width is defined by the solutions, ∆ω0, of the equation:

∣∣∣∣H
(

ω0 ± ∆ω0

2

)∣∣∣∣
2

=
|H(ω0)|2

2
. (3.50)

From Eqs.(3.30) and (3.50), the half width is described as4

∆ω0 =
ω0

Q
. (3.51)

Thus, the Q-value are derived from the measured half width of the resonant peak. Since

the half width is inverse proportional to the Q-value, this method is appropriate when

the Q-value is low.

3When the impulse response is calculated, it is supposed that the Q-value is much larger than unity,

Q � 1. In addition, since x(t) and F (t) are the real functions, the imaginary part of the transfer function

is a odd function, i.e. the loss angle is a odd function.
4This is an approximate expression when the Q-value is larger than the unity, Q � 1.
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3.4 Dissipation

From the fluctuation-dissipation theorem, the thermal noise is related to the dissipa-

tion. Several kinds of the dissipation [26] are introduced here. Sources of the loss are

classified into the two categories. In the first category, the sources of the loss are exter-

nal. In the second category, the sources of the dissipation are inside the oscillator itself

(internal losses).

3.4.1 External losses

Typical examples of the external losses are the residual gas damping and the eddy

current damping. Both these loss mechanisms are expressed by the viscous damping

model.

Residual gas damping

This dissipation is caused in evacuated systems by the residual gas molecules hitting

moving parts of an oscillator. Since most precision experiments are performed at suf-

ficiently low pressure, the mean free paths of molecules of the residual gas are larger

than the typical dimensions of an oscillator. Under such low pressure, the dissipation

caused by the momentum transfer between the oscillator and molecules is larger than

that caused by the true viscosity of the gas.

The Q-value limited by the momentum transfer [26, 27, 28] is expressed as

Qgas = Ch
ρω0

n
√

mmolkBT
, (3.52)

where C is a dimensionless parameter which depends on the shape of the oscillator. In

most case, C is of the order of unity. The parameters, h, ρ, and ω0 are the size, density,

and angular resonant frequency of the oscillator, respectively. The values, n and mmol,

are the numerical density and mass of the gas molecules. An effective mass is commonly

used when the residual gas is a mixture of several different gases, like air. Using the

equation of state of the ideal gas, Eq.(3.52) is rewritten as

Qgas = Chρω0

√
kBT

mmol

1

p
, (3.53)
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where p is the pressure. If the gas is air at room temperature, this expression is described

as

Qgas = 9 × 105

(
h

0.25m

)(
ρ

2g/cm3

)(
f0

1Hz

)(
1Pa

p

)
(3.54)

where f0 is the resonant frequency of the oscillator (f0 = ω0/2π).

If an oil diffusion pump is used, a typical pressure is about 10−6 Pa. This suggests

that Qgas is larger than 1012 in most case. Q-values of oscillators are seldom larger than

1012. Thus, the residual gas damping can be made negligible by operating in vacuum

unless the size of the oscillator is extremely small or its resonant frequency is extremely

low.

Eddy current damping

Eddy current is induced in a conductor moving in a magnetic field. Since the eddy

current causes Joule heating, the kinetic energy of the conductor in the magnetic field is

dissipated. This phenomenon is called the eddy current damping. The resistance force,

Feddy, caused by the eddy current is written as [29]

Feddy = AσB
∂B

∂x
ẋ, (3.55)

where A is a constant which depends on the shape of the conductor, σ is the electric

conductivity on the surface of the material, B and ∂B/∂x are the magnetic field and its

gradient, and ẋ is the velocity of the conductor. From Eqs.(3.32), (3.36), and (3.55), the

Q-value of the eddy current damping is described as [29]

Qeddy =
mω0

AσB ∂B
∂x

. (3.56)

This formula shows how to avoid the eddy current damping: magnetic shields and oscilla-

tors made from insulating materials. In general, these devices suppress the eddy current

damping sufficiently. Therefore, the eddy current damping is usually negligible.

In some case, the eddy current damping is introduced intentionally to damp excita-

tions of metal oscillators [29]. In the experiments discussed in Chapter 6 and 8, strong

permanent magnets5 are used in order to realize selective and controlled losses.

5The strength of the magnetic field is about 1 T on the surface of these magnets.

38



3.4. DISSIPATION

3.4.2 Internal losses

Internal losses are discussed here. In most cases, the residual gas and the eddy current

damping are reduced sufficiently. Thus, the dissipation is dominated by the internal losses

in the material of the oscillator. In order to describe the internal losses, the complex

spring constant model [26, 30] is frequently used. This model is an extension of the

Hooke’s law. This extended Hooke’s law is expressed as

F̃restoring = −k[1 + iφ(ω)]x̃, (3.57)

where Frestoring is the restoring force, k is the real spring constant, and φ is the loss angle.

The equation of the motion of the harmonic oscillator derived from the Hooke’s law is

the same as Eq.(3.29)6. The Hooke’s law shows that the phase of the strain of the spring

lags behind that of the restoring force. The material property causing the phase lag is

called anelasticity.

Two kinds of the internal dissipation are introduce here, the structure damping and

the thermoelastic damping. Some investigations [31, 32, 33] suggest that loss in wires

can be expressed as the sum of these two damping mechanism.

Structure damping

In the structure damping model, φ is independent of the frequency. The loss angle,

φ, is expressed as Eq.(3.40). Various experiments [34, 35, 36, 37, 38] show that the

structure damping is observed in many kinds of materials. However, the mechanism of

this damping is not well understood.

In addition, this model has mathematical difficulties. It is not possible that the loss

angle is a constant in all the frequency range. The reason is that the loss angle must be

an odd function because F̃restoring and x̃ in Eq.(3.57) are the Fourier components of the

real functions. The loss angle must go to zero in the low and high frequency limits. If

the loss angle was a constant in these limits, the displacement would be divergent when

a step-function force is applied [36]. Therefore, the structure damping model should be

seen only as valid for the dissipation which has weak dependence on the frequency.

6The spring constant, k, is replaced by mω0
2.
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Thermoelastic damping

The thermoelastic damping is caused by an inhomogeneous strain of a elastic body.

Since the thermal expansion coefficient is not zero, the strain changes the temperature

in the elastic body. If the strain is inhomogeneous, a gradient of temperature occurs.

Heat flows to cancel this gradient of temperature. The elastic energy is dissipated owing

to this flow of heat. The details of the process of the thermoelastic damping is fully

understood [39]. Moreover, the experiments [31, 32, 33] support this theory.

The loss angle of the thermoelastic damping [26, 39] is expressed as

φ(ω) = ∆
ωτ

1 + (ωτ)2
, (3.58)

where ∆ represents the strength of the loss and τ corresponds to the relaxation time

of the gradient of temperature. The frequency, f0, which corresponds to the relaxation

time, τ , is defined by

f0 =
1

2πτ
. (3.59)

When the frequency is f0, the loss angle is maximum. The maximum value is ∆/2. Below

this frequency, the loss angle is proportional to the frequency. Above this frequency, the

loss angle is inversely proportional to the frequency.

The parameter, ∆, in a wire and a rectangular ribbon is written as

∆ =
Eα2T

Cρ
, (3.60)

where E is the Young’s modulus, α is the linear coefficient of thermal expansion, T is the

temperature, C is the specific heat, and ρ is the density. The value, ∆, depends on the

properties of the material and on the temperature7. However, ∆ is independent of the

dimensions of the elastic body. On the contrary, the relaxation time, τ , of the gradient

of the temperature depends on the dimensions of the oscillators. The characteristic

frequency, f0 in Eq.(3.59), in the wire is written as

f0 =
1

2πτ
= 2.16

D

d2
, (3.61)

where d is the diameter of the wire, D is the thermal diffusion coefficient; D is the ratio

of the thermal conductivity, κ, to Cρ. In the rectangular ribbon, f0 is described as

f0 =
1

2πτ
=

π

2

D

t2
, (3.62)

7At room temperature, ∆ is about 10−3 in ordinary materials.
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where t is the thickness of the ribbon.

The thermal noise of a cylindrical mirror caused by the thermoelastic damping was

estimated recently [40, 41]. The loss angle is the same as Eq.(3.58). The strength of the

loss, ∆, is expressed as

∆ =
Eα2T

Cρ

1 + σ

1 − σ
, (3.63)

where σ is the Poisson’s ratio. The characteristic frequency, f0, is written in the form

f0 =
1

2πτ
=

2D

πr0
2
, (3.64)

where r0 is the beam radius on the surface of the mirror8.

3.5 Mode expansion

The thermal noise is obtained from the application of the fluctuation-dissipation the-

orem to the imaginary part of the transfer function, H(ω). However the measurement

of the imaginary part of the transfer function in a broad frequency range is generally

difficult [37, 42, 62, 63, 64]. This is because the imaginary part of the transfer function

is in general much smaller than the real part. Thus, in order to evaluate Im[H(ω)] the

normal-mode expansion method is frequently used. In this method, the imaginary part

is derived from the measured Q-values. The outline of the derivation of the thermal noise

from the normal-mode expansion is described here.

The observable physical quantity, X, of a system is defined as

X(t) =

∫
u(r, t) · P (r)dV, (3.65)

where u is the displacement of the system and P is a weighting function defining the

physical quantity being observed. For example, when thermal fluctuations of the internal

modes of the mirrors in interferometers are considered, P is the beam profile of laser. The

power spectrum density of X, GX , is obtained from Eq.(3.25). In order to calculate the

8The definition of the beam radius in [40, 41] is different from that in this thesis. In [40, 41],

the beam profile is written as (1/πr0
2) exp(−r2/r0

2). In this thesis, the profile is described as

(2/πr0
2) exp(−2r2/r0

2).
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transfer function in Eq.(3.25), the generalized force, F (t)P (r), is applied on the system.

Thus, the equation of motion of the system without dissipation is described as

ρ
∂2u

∂t2
− L[u] = F (t)P (r), (3.66)

where ρ is the density, L is a linear operator. The first and second terms of the left-hand

side of Eq.(3.66) represent the inertia and the restoring force of the small elements of the

oscillator, respectively.

The solution of Eq.(3.66) is the superposition of basis functions,

u(r, t) =
∑

n

wn(r)qn(t). (3.67)

The basis function, wn, is the solution of the eigenvalue problem written as

L[wn(r)] = −ρωn
2wn(r), (3.68)

where ωn and wn(r) correspond to the angular resonant frequency and the displacement

of the n-th resonant mode of the system, respectively. The displacement, wn, is the

component of an orthogonal complete system, and is normalized to satisfy the condition

written as ∫
wn(r) · P (r)dV = 1. (3.69)

The formula of the orthonormality is written as∫
ρ(r)wl(r) · wn(r)dV = mnδln. (3.70)

The parameter, mn, is called the effective mass of the modes and δln is the Kronecker’s

δ-symbol.

The function, qn(t) in Eq.(3.67), represents the time development of the n-th mode.

The equation of motion of qn is derived. Equation (3.67) is substituted for u in Eq.(3.66).

Equation (3.66) is multiplied by wn and then integrated using Eqs.(3.69) and (3.70). The

result is written in the form

mnq̈n(t) + mnωn
2qn(t) = F (t). (3.71)

Consequently, the time development of the n-th mode is the same as that of a harmonic

oscillator on which the force, F (t), is applied. The angular resonant frequency and the

mass of this harmonic oscillator are equal to ωn and mn, respectively.
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Putting Eq.(3.67) into Eq.(3.65), we obtain the relationship between X and qn using

Eq.(3.69),

X(t) =
∑

n

qn(t). (3.72)

This formula shows that the observable coordinate, X, can be simply described as the

superposition of the motions of the harmonic oscillators, qn. Moreover, the kinetic energy,

Ekinetic, of the total system is expressed as

Ekinetic =

∫
1

2
ρ|u̇(r, t)|2dV =

∑
n

1

2
mn|q̇n(t)|2. (3.73)

The total kinetic energy is the sum overall the harmonic oscillators, mn|q̇n|2/2.

The transfer function, HX , from the generalized force, F , to the observable coordinate,

X, is evaluated. Equation (3.71) is rewritten in the frequency domain as

−mnω2q̃n + mnωn
2q̃n = F̃ . (3.74)

These equations do not include dissipation. To describe dissipation, the loss angles,

φn(ω), are introduced. Equation (3.74) is rewritten as

−mnω2q̃n + mnωn
2[1 + iφn(ω)]q̃n = F̃ . (3.75)

From Eqs.(3.72) and (3.75), HX is described as

HX(ω) =
X̃

F̃
=

∑
n q̃n

F̃
=
∑

n

1

−mnω2 + mnωn
2[1 + iφn(ω)]

. (3.76)

The transfer function, HX , of the system is the sum overall the harmonic oscillators with

dissipation.

The power spectrum density of X, GX , is derived from Eqs.(3.25) and (3.76). The

formula is written as

GX(f) =
∑

n

4kBT

ω

ωn
2φn(ω)

mn[(ω2 − ωn
2)2 + ωn

4φn
2(ω)]

. (3.77)

Therefore, the thermal motion of the system is the sum of the harmonic oscillators in the

normal-mode expansion.

From Eq.(3.77), the thermal noise is derived from the angular resonant frequency, ωn,

and the effective mass, mn, and the loss angle, φn, of each mode. The angular resonant
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frequency and the displacement of the mode, wn, are obtained from the eigenvalue prob-

lem, Eq.(3.68). From wn and Eq.(3.70), the effective mass is calculated. If wn is not

normalized as Eq.(3.69), Eq.(3.70) is rewritten as

mn =

∫
ρ(r)|wn(r)|2dV∣∣∫ wn(r) · P (r)dV

∣∣2 . (3.78)

The loss angle is derived from the experiments. Since the measurement of the loss angle

in a wide frequency range is commonly difficult, the loss angle is evaluated from the

dependence of the Q-value on the resonant frequency. The relationship between φn and

Qn is expressed as

Qn =
1

φn(ωn)
. (3.79)

The structure damping model, Eq.(3.40), is frequently used when the thermal noise of

interferometers is estimated. Consequently, the thermal noise is evaluated from the calcu-

lation of mn and ωn and the measurement of Q-values using the normal-mode expansion.

3.6 Thermal noise of the interferometer

The thermal noise of interferometric gravitational wave detectors are estimated from

the normal-mode expansion here. These results are compared with the goals of sensitivity

of current and future projects.

There are two kinds of thermal noise affecting interferometers. The first one is the

thermal noise of suspensions. This noise generates fluctuations of the centers of mass of

mirrors caused by thermal vibrations of the suspensions. The second one is the thermal

noise of internal modes of the mirrors. This noise corresponds to surface deformation of

the mirrors caused by the thermally excited elastic vibrations of the mirrors themselves.

3.6.1 Suspension

A suspension is a complex system. However, when the thermal noise of the suspension

is evaluated, only the part which directly suspends a mirror is relevant. Since the obser-

vation band of detectors is higher than the resonant frequencies of the suspension, the
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thermal fluctuations of parts which are far from the mirror are only marginally transferred

to the mirror [43].

The mirror is usually suspended by wires. To simplify the consideration9, it is supposed

that the mirror is suspended by a single wire [26, 44]. The upper end of the wire is fixed.

The mirror is treated as a mass point. The x-axis is set on the wire. The origin is the

fixed point of the wire. The x-coordinate of the mirror position is l. From Eq.(3.65), the

observed coordinate, X, is defined as

X =

∫
u(x, t)P (x)dx, (3.80)

where u is the transverse displacement of the wire and P is a suitable weighting function.

Since the motion of the center of the mirror is discussed, the weighting function, P , is

expressed as

P (x) = δ(x − l), (3.81)

where δ(x) is the δ-function.

The eigenvalue problem is derived from the wave equation of the wire. The expression

is written as

T

A

∂2wn

∂x2
= −ρωn

2wn, (3.82)

where T ,A, and ρ are the tension, cross section and density of the wire, respectively10.

In this case, the tension is equal to the product of the mass of the mirror, M , and

the acceleration of gravity, g. Since the upper end is fixed, the boundary condition is

described as

wn(0) = 0. (3.83)

Another boundary condition is the equation of motion of the mirror. This boundary

condition is expressed as

−T
∂wn

∂x

∣∣∣∣
x=l

= −Mωn
2wn(l). (3.84)

9The mirror is frequently suspended by two loop wires. The discussion in this subsection is appropriate

for such a suspension system. However, in this system, m in Eq.(3.88) corresponds to the total mass of

the two loop wire.
10In this equation, the elasticity of the wire is neglected. The effect of the elasticity was investigated

in [45].
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From Eqs.(3.82), (3.83), and (3.84), ωn is the solution of the equation described as

cos

(
ωnl

v

)
−
(

ωnv

g

)
sin

(
ωnl

v

)
= 0, (3.85)

where v is the velocity of the transverse wave of the wire. This speed is written in the

form

v =

√
T

ρA
=

√
Mg

ρA
. (3.86)

Since the mass of the mirror, M , is much larger than the mass of the wire, m (=ρAl),

the lowest order solution of Eq.(3.85) is expressed as

ω0 ≈
√

g

l
, (3.87)

which is the resonant frequency of the pendulum. The other solutions are written as

ωn ≈ nπω0

√
M

m
(3.88)

These are the resonant frequencies of the standing wave of the wire. These modes are

called the violin modes. The solution of the eigenvalue problem, Eq.(3.82), is described

as

wn(x) = sin
(ωnx

v

)
. (3.89)

Putting Eqs.(3.81) and (3.89) into Eq.(3.78), the effective mass is obtained. Since the

point mass is on the lower end of the wire, Eq.(3.78) is rewritten as

mn =
1

|wn(l)|2
∫ l

0

ρA|wn(x)|2dx + M. (3.90)

Using Eq.(3.85), the formula of the effective mass is reduced as

mn =
M

2

[
1 +

1

cos2(ωnl/v)

(
ωn

ω0

)2
]

(3.91)

≈



M (n = 0)

M
2

(
ωn

ω0

)2

(n 6= 0)
. (3.92)
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Commonly, the structure damping model is adopted to express the dissipation. The

theoretical discussions [46, 47] suggest that the Q-value of the pendulum mode, Q0, is

twice as large as those of the violin modes, Qn. The loss angle is written in the form

φn(ω) =

{
1

Q0
(n = 0)

2
Q0

(n 6= 0)
. (3.93)

The Q-values of the violin modes, Qn, are frequently measured because the decay time

of the pendulum mode can be extremely long11. Inserting Eqs.(3.87), (3.88), (3.92), and

(3.93) into Eq.(3.77), we obtain the expression of the thermal noise of the suspension.

The approximate expression of the thermal noise of the suspension is derived here.

Most of the observation band of gravitational wave detectors is between the resonant

frequencies of the pendulum mode (about 1 Hz) and the first violin mode (several hun-

dreds Hz). From Eq.(3.92), the effective masses of the violin modes are much larger than

that of the pendulum mode. Consequently, in the observation band, the thermal noise

of the suspension is dominated by the contribution of the pendulum mode. Thus, only

the thermal fluctuation of the pendulum mode is estimated. Since the observation band

is higher than f0, the approximate formula is written as

√
Gsuspension(f) = 2.6 × 10−19m/

√
Hz

(
f0

1Hz

)(
1kg

m

)1/2(
105

Q0

)1/2

×
(

T

300K

)1/2(
100Hz

f

)5/2

. (3.94)

3.6.2 Mirror

When the thermal noise of the internal modes of a mirror in interferometric gravi-

tational wave detectors is calculated, the mirror is treated as a elastic cylinder. It is a

good approximation to consider the mirror as an inertial system and that all the surfaces

are free because the mirror is suspended by wires. Cylindrical coordinates are employed

with the origin at the center of the mirror and the z-axis along the cylindrical axis. The

observable coordinate, X, is expressed as

X =

∫
surface

uz(r)P (r)dS, (3.95)

11If the Q-value of the pendulum mode is as low as 105, the decay time is about a day.
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where uz is the z-component of the displacement vector, u. The weighting function, P , is

the Gaussian profile of the beam. The optical axis usually is aligned with the cylindrical

axis. The weighting function is written as

P (r) =
2

πr0
2

exp

(
−2r2

r0
2

)
, (3.96)

where r0 is the beam radius.

The eigenvalue problem is derived from the equation of motion of an elastic body [48].

If the material is isotropic12, the eigenvalue problem is written as

E

2(1 + σ)
∆wn +

E

2(1 + σ)(1 − 2σ)
grad divwn = −ρωn

2wn, (3.97)

where E is the Young’s modulus, σ is the Poisson ratio, and ρ is the density of the mirror.

The boundary condition is that there is no stress on all the surfaces of the mirror. There

are two methods to solve this eigenvalue problem. The first one is the method proposed by

Hutchinson [49]. This is a very accurate semi-analytical algorithm to simulate resonances

of an isotropic elastic cylinder. The relative errors between the measured and calculated

resonant frequencies are 0.6% at most [52]. Hutchinson’s method is frequently used to

estimate the thermal noise of mirrors [50, 51, 52]. The second method is the finite element

method which is a numerical method. With this method, it is possible to calculate the

mechanical responses of various shapes of elastic systems even though the material is

anisotropic13 and non uniform. The relative errors between the measured and calculated

resonant frequencies are also 0.6% [53].

The effective masses are derived from the solution of the eigenvalue problem, Eq.(3.97).

Equation (3.78) is rewritten as

mn =

∫
volume

ρ(r)|wn(r)|2dV∣∣∫
surface

wn,z(r)P (r)dS
∣∣2 , (3.98)

where wn,z is the z-component of wn.

Frequently, it is supposed that the loss is described by the structure damping and that

the Q-values of all the modes are the same. The loss angle is written as

φn(ω) =
1

Q
. (3.99)

12The fused silica which is the material adopted in the current projects is isotropic.
13The sapphire which is a candidate material used in the future projects is anisotropic.
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Recent experiments suggest that Q-values governed by the intrinsic loss of the material

of the mirror are independent of modes [53, 54].

Putting calculated ωn and Eqs.(3.98) and (3.99) into Eq.(3.77), the thermal noise of

the mirror is evaluated. Since the observation band is lower than the resonant frequencies

of the mirror, Eq.(3.77) is rewritten as

Gmirror(f) =
∑

n

4kBT

mnωn
2Q

1

ω
. (3.100)

Since the number of modes is infinite, only the contributions of the modes below a cut-

off frequency are considered. Thus, the estimated value of the thermal noise depends

on the cut-off frequency. This dependence calculated for a TAMA mirror [52] is shown

in Fig.3.2. Figure.3.2 proves that the contributions from higher modes are large. The

thermal noise amplitude integrated overall modes is about three times larger than that

of the first mode alone. Therefore, the cut-off frequency must be sufficiently high to

estimate the thermal noise accurately. As an empirical rule, when the wavelength of the

cut-off frequency is smaller than the beam radius, the contributions of the higher modes

than the cut-off frequency become negligible.

The dependence of the thermal noise on the parameters of the mirror and beam size

was investigated using the previous discussions [50, 51, 52]. The thermal noise is almost

independent of the radius of the mirror when the mirror radius is sufficient large14. The

thermal noise is almost independent of the distance between the optical axis and the

cylindrical axis. The thermal noise depends on the aspect ratio which is the ratio of the

thickness to the diameter of the mirror. When the aspect ratio is between 0.3 and 1.0,

the thermal noise is minimum. Since the aspect ratio of mirrors in all the current projects

are between 0.3 and 1.0, the optimum geometry has already been selected for the thermal

noise. From Eq.(3.100), the thermal noise of this optimum mirror is expressed as

√
Gmirror(f) = 1.2 × 10−19m/

√
Hz

(
1cm

r0

)1/2(
7.24 × 1010Pa

E

)1/2

×
(

106

Q

)1/2(
T

300K

)1/2(
100Hz

f

)1/2

. (3.101)

14The ordinary radius of the mirror is at least three times larger than the beam radius to reduce the

diffraction losses.
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Figure 3.2: Dependence on the cut-off frequency of the estimated amplitude of the thermal noise of a

mirror used in TAMA on the cut-off frequency. The material of the mirror is the fused silica. The mirror

is 5 cm in radius and 6 cm in height. The resonant frequency of the first mode is 28 kHz. The beam

radius is 8 mm at the front mirror (solid line) and 15 mm at the end mirror (dotted line), respectively.

The Q-values are 106.

3.6.3 Comparison with the goal

From the previous results of the mode expansion, the thermal noise of the TAMA

interferometer, TAMA300, was derived15. In addition, this estimation of the thermal

noise was compared with the sensitivity goal. The estimated thermal noise of the sus-

pensions (thick solid curve) and the mirrors (thick dashed curve) of TAMA300 are shown

in Fig.3.3. The seismic noise (thin solid curve) and the shot noise level (thin dashed

curve) are also shown. The estimation of thermal noise in Fig.3.3 was derived from the

measured Q-values. The measured Q-value of the first violin mode of the suspension

which was similar to that of TAMA300 was 1.5 × 105 [55]. From Eq.(3.93), the Q-value

15The amplitude of the thermal noise of an interferometer is twice times larger than that of a suspension

or a mirror because a Fabry-Perot Michelson interferometer has four mirrors which comprise two cavities.
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Figure 3.3: The expected noise budgets of the TAMA interferometer (TAMA300). The thick solid and

dashed curves show the thermal noise of the suspensions and the mirrors, respectively. The Q-values of

the pendulum mode and the internal modes are 3× 105 and 3× 106. The thin solid curve is the seismic

noise. The thin dashed curve is the shot noise level. The thick solid line shows the observation band

(150Hz ∼ 450Hz) and the goal of the sensitivity (h = 1.7 × 10−22/
√

Hz) of TAMA.

of the pendulum mode was 3.0× 105. The measured intrinsic Q-values of the mirror was

3 × 106 [53, 54].

Figure 3.3 shows that the sensitivity in the observation band (150Hz ∼ 450Hz) will

be limited by the thermal noise. Moreover, since the goal sensitivity in the observation

band is 1.7 × 10−22/
√

Hz, the thermal noise of TAMA300 is comparable with it. In the

other current projects, LIGO, VIRGO, and GEO, the amplitude of the thermal noise

is also comparable with the target sensitivity. On the other hand, in future projects,

the goal sensitivity is ten or one hundred times better than that in the current projects.

Consequently, the reduction of the thermal noise is one of the most important issues in

future projects. In the Large-scale Cryogenic Gravitational wave Telescope (LCGT) [56],

which is the Japanese future project, the mirrors and suspensions are cooled to cryogenic
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temperatures in order to decrease the thermal noise. The research on the methods to

cool the mirrors and suspensions shows that sufficiently low temperatures can be reached.

At these temperatures, the thermal noise of the cooled mirrors and of the suspensions is

sufficiently small to meet the goal sensitivity of LCGT [57, 58, 59, 60].

3.7 Problems of mode expansion

As shown in this chapter, the normal-mode expansion is the basis of the estimation of

the thermal noise of the interferometric gravitational wave detectors. The results derived

from the mode expansion affect strategies of reduction of the thermal noise. Nevertheless,

there are problems in the normal-mode expansion. One of them is a main theme of this

thesis. These problems are discussed here.

The main problem is that the mode expansion is not correct when the losses are

distributed inhomogeneously. This is because the inhomogeneity of the losses causes cor-

relations between fluctuations in motions of different modes [65]. The formula, Eq.(3.77),

derived from the mode expansion does not include these correlations. Since losses are

mainly localized, this is a serous problem. There are only a few theoretical investiga-

tions16 on the thermal noise caused by inhomogeneous loss: the details of this problem

are discussed in the following chapters.

Another serious problem is in the evaluation method of the loss angles. Commonly,

the loss angle is obtained from measurement of Q-values of modes. Since the Q-values

represent dissipation at the resonant frequencies, it is difficult to estimate the loss angle

at frequencies which are far from resonance. For example, recent theoretical researches

[40, 41] showed that the thermoelastic damping of sapphire has a significant role at

low frequencies. However, at the resonant frequencies, the dissipation of sapphire is

dominated by other losses because the thermoelastic damping is small above the first

16Majorana and Ogawa showed that the thermal noise of a double oscillator with inhomogeneous loss

is not consistent with the estimation obtained from the mode expansion [65]. Levin suggested that the

thermal noise of a cylindrical mirror of which the loss is concentrated in the reflective coating is larger

than the evaluation from the mode expansion [68]. Logan et al. has researched loss of a mirror with

a coupling between modes [84]. Gillespie has studied effects of loss in spacers between a mirror and

magnets [85].
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resonance. Thus, it is impossible to derive the information of the thermoelastic damping

from the measurement of the Q-values. In order to solve this problem, methods to

measure the loss angle at the off-resonance are developed: measurement of anelastic

relaxation [61] and measurement at anti-resonant frequencies [62, 63, 64].
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Chapter 4

Advanced mode expansion

In the previous chapter, the normal-mode expansion adopted frequently to estimate

thermal noise of interferometric gravitational wave detectors was introduced. Some the-

oretical researches [65, 68, 84, 85] show that the thermal motions of oscillators with the

inhomogeneous loss do not agree with the estimation obtained from the mode expan-

sion. Therefore, it is necessary to develop new evaluation methods replacing the mode

expansion.

We have modified the traditional mode expansion to evaluate the thermal noise cor-

rectly. This new modified method is called the advanced mode expansion. Majorana and

Ogawa have discussed the modification of the mode expansion using a double harmonic

oscillator with inhomogeneous viscous damping [65]. This discussion is extended to the

general system. In addition, we found that this new method clarifies the physical inter-

pretation of the thermal noise of the inhomogeneous losses. For example, the advanced

mode expansion shows that the reason why the thermal noise of the inhomogeneous loss

is not consistent with the traditional mode expansion. Although there are other new

estimation methods, direct approaches [68, 69, 70] introduced in the next chapter, these

methods do not give the clear physical interpretation. The advanced mode expansion

and the physical interpretation are described here.
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4.1 Coupling between modes

The problem of the traditional mode expansion described in the previous chapter

starts on the introduction of the dissipation term into the equation of the motion. The

dissipation terms are introduced after the system is decomposed into the modes. The

n-th loss angle, φn(ω), is put into Eq.(3.74) which is the equation of the motion of the

n-th mode. The validity of this introduction has not been checked. In the advanced

mode expansion, the dissipation term is introduced before the equation of motion of the

total system is decomposed.

The advanced mode expansion shows that coupling terms between the modes are

obtained from the dissipation term when the loss is inhomogeneous. These coupling

terms cause the discrepancy between the advanced and the traditional mode expansion.

In order to investigate the coupling terms, the advanced mode expansion is applied to

the system with inhomogeneous viscous damping and then with structure damping.

4.1.1 Viscous damping

The equation of motion of the system with inhomogeneous viscous damping is consid-

ered using the advance mode expansion. The friction force, which is proportional to the

velocity of the elements of the system, is applied on this system. Introducing the friction

force term into Eq.(3.66), the equation of the motion with the loss is obtained;

ρ
∂2u

∂t2
+ ρΓ(r)

∂u

∂t
− L[u] = F (t)P (r), (4.1)

where Γ is the coefficient of the friction force and depends on the position, r.

The solution of Eq.(4.1) is expressed as

u(r, t) =
∑

n

wn(r)qn(t). (4.2)

This equation is the same as Eq.(3.67). Since the loss is small, the dissipation term is

treated as perturbation. Thus, the basis functions of the equation with loss are the same

as those without loss. The basis function, wn, is the solution of the eigenvalue problem

written as

L[wn(r)] = −ρωn
2wn(r), (4.3)
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which is the same as Eq.(3.68). These basis functions satisfy Eq.(3.69) which are the

normalized condition.

The equations of motion of qn is derived. Eq.(4.2) is put into Eq.(4.1). Eq.(4.1)

multiplied by wn is integrated overall the volume. From Eq.(3.70), in the frequency

domain, the result is written in the form

−mnω2q̃n + mnωn
2q̃n +

∑
k

iαnk(ω)q̃k = F̃ , (4.4)

where αnk is defined by

αnk = ω

∫
ρ(r)Γ(r)wn(r) · wk(r) = αkn. (4.5)

The term which includes the coefficient, αnn, represents the loss of the n-th mode. The

relationship between αnn and the loss angle, φn, is represented as1

φn(ω) =
αnn(ω)

mnωn
2
. (4.6)

The Q-value of the n-th mode is written as

Qn =
1

φn(ωn)
=

mnωn
2

αnn(ωn)
. (4.7)

Eq.(4.4) is rewritten as

−mnω2q̃n + mnωn
2[1 + iφn(ω)]q̃n +

∑
k 6=n

iαnk(ω)q̃k = F̃ . (4.8)

The last term in the left-hand side of Eq.(4.8) does not exist in the formula obtained from

the traditional mode expansion, Eq.(3.75). This is the difference between the advanced

and traditional mode expansion. This part includes the coordinates of the other modes,

qk(k 6= n). Therefore, it corresponds to couplings between the modes.

The traditional mode expansion is an appropriate method, when and only when all the

coupling coefficients, αkn(k 6= n), vanish. The comparison between Eqs.(3.70) and (4.5)

shows that all the couplings vanish when and only when Γ is independent of position:

Γ(r) = Γ. (4.9)

1From Eqs.(4.5) and (4.6), the kinetic energy is dissipated in the system with viscous damping.
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This expression implies that the traditional mode expansion is valid when the viscous

damping is homogeneous. Consequently, the inhomogeneity of dissipation causes the

couplings between the modes.

When Γ is independent of the position, Eq.(4.5) is rewritten as

αnk = ωmnΓδnk, (4.10)

where δij is Kronecker’s delta symbol. Eq.(4.6) is simplified as

φn(ω) =
Γω

ωn
2

(4.11)

The Q-value of n-th mode is expressed as

Qn =
1

φn(ωn)
=

ωn

Γ
. (4.12)

The loss angle and Q-value of each mode depend on the resonant frequency of the mode.

4.1.2 Structure damping

The advanced mode expansion is applied to the elastic body with inhomogeneous

structure damping. The equation of motion of an isotropic elastic body without loss [48]

is written in the form

ρ
∂2ui

∂t2
− ∂σij

∂xj
= F (t)Pi(r), (4.13)

where ui and Pi are the i-th components of the displacement, u, and the weighting

function, P , respectively. The stress tensor, σij , is defined by

σij =
E0

1 + σ

(
uij +

σ

1 − 2σ
ullδij

)
, (4.14)

where E0 is Young’s modulus, σ is Poisson ratio, and uij is the strain tensor. The value,

ull, represents the trace of the strain tensor. The strain tensor is described as

uij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
. (4.15)

The solutions of Eq.(4.13) is decomposed as

ui(r, t) =
∑

n

wn,i(r)qn(t), (4.16)
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where wn,i is the i-th component of the displacement, wn, of the n-th resonant mode.

Again, since the loss is small, the dissipation term is treated as perturbation and the basis

functions of the equation with loss are the same as those without loss. The displacement

of the n-th mode, wn, is a solution of the eigenvalue problem written as

∂σn,ij

∂xj
= −ρωn

2wn,i, (4.17)

where σn,ij is the stress tensor of the n-th resonant mode. The displacement of n-th

mode, wn, satisfy Eq.(3.69) which are the normalized condition.

The dissipation term is introduced into Eq.(4.13). The structure damping is described

using the complex Young’s modulus. In the frequency domain, Eq.(4.14) is rewritten as

σ̃ij =
E0[1 + iφ(ω, r)]

1 + σ

(
ũij +

σ

1 − 2σ
ũllδij

)
, (4.18)

where φ is the loss angle2. This is a position dependent extension of the complex Hooke’s

law, Eq.(3.57). Since the loss is inhomogeneous, the loss angle depends on the position,

r. Putting Eq.(4.18) into Eq.(4.13) in the frequency domain, the dissipation term is

introduced in the equation of motion:

−ρω2ũi −
∂σ̃′

ij

∂xj

− i
∂φ(ω, r)σ̃′

ij

∂xj

= F̃Pi(r). (4.19)

The value, σ̃′
ij , is the real part of the σ̃ij in Eq.(4.18):

σ̃′
ij =

E0

1 + σ

(
ũij +

σ

1 − 2σ
ũllδij

)
. (4.20)

The equation of the motion of qn is derived. Eq.(4.16) in the frequency domain is

put into Eq.(4.19). Eq.(4.19) multiplied by wn is integrated in all the volume. From

Eq.(3.70), the result is written in the form

−mnω2q̃n + mnωn
2q̃n +

∑
k

iαnk(ω)q̃k = F̃ , (4.21)

where αnk is defined by3

αnk =

∫
E0φ(ω, r)

1 + σ

[
wn,ijwk,ij +

σ

1 − 2σ
wn,llwk,ll

]
= αkn, (4.22)

2Since the loss is the structure damping, the loss angle is independent of the frequency. However, the

discussion in this section is appropriate also when the loss angle depends on the frequency.
3This definition is appropriate when the surface is fixed (ui = 0) or there is no surface stress (σijnj = 0,

where nj is the j-th component of the normal unit vector of the surface.).

59



CHAPTER 4. ADVANCED MODE EXPANSION

where wn,ij is the strain tensor of the n-th mode. The expression, wn,ll, corresponds to

the trace of wn,ij. The term which includes the coefficient, αnn, represents the loss of the

n-th mode. The relationship between αnn and the loss angle, φn, is represented as4

φn(ω) =
αnn(ω)

mnωn
2
. (4.23)

The Q-value of the n-th mode is written as

Qn =
1

φn(ωn)
=

mnωn
2

αnn(ωn)
. (4.24)

Eq.(4.21) is rewritten as

−mnω2q̃n + mnωn
2[1 + iφn(ω)]q̃n +

∑
k 6=n

iαnk(ω)q̃k = F̃ , (4.25)

The last term in the left-hand side of Eq.(4.25) does not exist in the formula derived

from the traditional mode expansion, Eq.(3.75). Again, this part includes the coordinate

of the other modes, qk(k 6= n), corresponding to couplings between modes.

The traditional mode expansion is an appropriate method, when and only when all

the coupling coefficients, αkn(k 6= n), vanish. If the third term of the left-hand side in

Eq.(4.19) is proportional to the second term, the coupling terms vanish. The third term

is rewritten as

−i
∂φ(r)σ̃′

ij

∂xj
= −iφ(ω, r)

∂σ̃′
ij

∂xj
− iσ̃′

ij

∂φ(ω, r)

∂xj
. (4.26)

The first term in Eq.(4.26) is proportional to the second term in Eq.(4.19). Thus, when

and only when the second term in Eq.(4.26) vanishes, the traditional mode expansion is

correct. This condition is satisfied when the loss angle is independent of the position:

φ(ω, r) = φ(ω). (4.27)

This expression implies that the traditional mode expansion is valid when the structure

damping is homogeneous. Therefore, the inhomogeneity of the structure damping causes

the couplings between the modes.

4From Eq.(4.22), a half of αnn is equivalent to the integration of the product of the loss angle, φ(r),

and the elastic energy density. Thus, the elastic energy is dissipated in the system with the structure

damping.
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When φ is independent of the position, Eq.(4.22) is rewritten as5

αnk = mnωn
2φδnk. (4.28)

Eq.(4.23) is simplified as

φn(ω) = φ(ω). (4.29)

The Q-value of the n-th mode is expressed as

Qn =
1

φn(ωn)
=

1

φ(ωn)
. (4.30)

The loss angle of the n-th mode is the same as φ.

4.1.3 Summary of coupling

The advanced mode expansion is applied on the system with the inhomogeneous vis-

cous or structure damping. From both the cases, the similar conclusions are derived.

The discussion of the advanced mode expansion is summarized and some comments are

added.

In the traditional mode expansion, the dissipation terms are put into the equations

of the motions after the system is decomposed. The loss angle is introduced into the

equation of the motion of each mode. These equations are expressed as

−mnω2q̃n + mnωn
2[1 + iφn(ω)]q̃n = F̃ . (4.31)

In the advanced mode expansion, the equation of the motion with the dissipation term

is decomposed. The equation of the motion of each mode is given by

−mnω2q̃n + mnωn
2[1 + iφn(ω)]q̃n +

∑
k 6=n

iαnk(ω)q̃k = F̃ . (4.32)

The third term in the left-hand side of Eq.(4.32) is the discrepancy between the traditional

and advanced mode expansion. Since this term include the coordinates of the other

modes, qk(k 6= q), this term introduces the couplings between the modes. Eqs.(4.5) and

(4.22) show that the coupling coefficient, αnk, depends on the properties and distribution

of the loss.

5Because the third term of the left-side hand in Eq.(4.19) is proportional to the second term.
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When the loss is homogeneous viscous or structure damping, the coupling terms vanish

because the coupling coefficients, αnk(n 6= k), is proportional to the inner product of the

n-th and k-th modes in this case. This implies that the inhomogeneity of the losses

causes the couplings between the modes. Therefore, the traditional mode expansion is

not correct when the losses are not homogeneous6.

The reason why the inhomogeneity of the losses causes the couplings is discussed

here. The decay of a resonant mode is considered. When the loss is homogeneous in the

elastic body, the phase of the decay motion does not depend on the position. The shape

of displacement of the system does not change while the resonant motion decays. On

the other hand, if the dissipation is inhomogeneous, the phase of the motion near the

concentrated loss lags with respect to other parts [67]. The shape of the displacement

becomes different from that of the resonant mode while the resonant motion decays. This

inhomogeneous loss generates excitation of other modes.

In the advanced mode expansion, the dissipation term is treated as perturbation. From

the perturbation theory in the quantum mechanics [66], this treatment is appropriate

when the condition expressed as

|αnk|2 � mnmk

4
|ωn

2 − ωk
2|2 (4.33)

is satisfied. From Eqs.(4.33) and (4.40), if the difference between the resonant frequencies

is sufficiently larger than the half widths of the resonant peaks, the loss can be treated

as perturbation in most cases.

4.2 Properties of coupling

The properties of the coupling are discussed here before the effects of the coupling

terms on the thermal noise are investigated. The maximum of the absolute value and

the sign of the coupling terms are considered.

6In some cases, there are the couplings between the modes even though the loss is distributed homo-

geneously. The thermoelastic damping is an example. The thermoelastic damping is expressed by the

imaginary part of E and σ in Eq.(4.18) [40, 48]. Even though the imaginary parts does not depend on

the position, the couplings exist because the imaginary part of σ̃ij is not proportional to the real part.

These cases are not considered in this thesis.
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4.2.1 Maximum of the absolute value

The discrepancy between the advanced and traditional mode expansion is proportional

to the absolute value of the coupling coefficients, αnk(n 6= k). However, the maximums

of the absolute values of the couplings exist. This maximum value is evaluated here.

From Eqs.(4.5) and (4.22), αnk is expressed as

αnk =
∑

i

∫
fn,i(r)φ(r)fk,i(r)dV, (4.34)

where fn,i is derived from the n-th basis function and φ (≥ 0) represents the distribution

of the loss.

The Cauchy-Schwarz’s inequality is written as

∫
|F (r)|2dV

∫
|G(r)|2dV ≥

∣∣∣∣
∫

F (r)G(r)dV

∣∣∣∣
2

, (4.35)

where F and G are arbitrary real functions. When and only when F is expressed as

F = cG, (4.36)

where c is an arbitrary constant, the right and left hands in Eq.(4.35) are equal. Another

expression of the Cauchy-Schwarz’s inequality is describe as

∑
n

|an|2
∑

n

|bn|2 ≥
∣∣∣∣∣
∑

n

anbn

∣∣∣∣∣
2

, (4.37)

where an, bn are arbitrary real progressions. When and only when an is expressed as

an = cbn, (4.38)

where c is an arbitrary constant, the right and left hands in Eq.(4.37) are equal.

Substituting fn,i

√
φ and fk,i

√
φ for F and G in Eq.(4.35) respectively, the following

expression is obtained,

∫
fn,i(r)φ(r)fn,i(r)dV

∫
fk,i(r)φ(r)fk,i(r)dV ≥

∣∣∣∣
∫

fn,i(r)φ(r)fk,i(r)dV

∣∣∣∣
2

. (4.39)
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From Eqs.(4.34), (4.37), (4.39), (4.6), and (4.23), the inequality of αnk is derived,

|αnk| =

∣∣∣∣∣
∑

i

∫
fn,i(r)φ(r)fk,i(r)dV

∣∣∣∣∣
≤

∑
i

∣∣∣∣
∫

fn,i(r)φ(r)fk,i(r)dV

∣∣∣∣
≤

∑
i

√∫
fn,i(r)φ(r)fn,i(r)dV

√∫
fk,i(r)φ(r)fk,i(r)dV

≤
√∑

i

∫
fn,i(r)φ(r)fn,i(r)dV

√∑
i

∫
fk,i(r)φ(r)fk,i(r)dV

=
√

αnnαkk

=
√

mnωn
2φn(ω)mkωk

2φk(ω). (4.40)

From Eqs.(4.36) and (4.39), the absolute value of αnk (n 6= k) is near the maximum

when wn is similar to cwk, where c is an arbitrary constant, in the localized loss. This

condition is realized when the typical size of the volume in which the dissipation is

concentrated is smaller than the wavelength of the n-th and k-th mode. When the loss is

localized in the extremely small region, the absolute values of a lot of coupling coefficients

are near the maximums. Therefore, the discrepancy between the actual thermal noise

and the estimation of the traditional mode expansion is near the maximum when the

dissipation is concentrated in a small volume.

4.2.2 Sign

From Eqs.(4.5) and (4.22), the sign of the coupling coefficients, αnk(n 6= k), depend

on the distribution of the dissipation. Moreover, the sign of αnk depends on the observed

area. The observed area is expressed by the weighting function, P (r), in Eqs.(3.65)

and (3.69). The basis function, wn, in Eqs.(4.5) and (4.22) is normalized so that wn

satisfies Eq.(3.69). The sign of the displacement, wn, depends on the observed area.

Therefore, the sign of the coupling coefficient depends on the observation area and on

the distribution of the loss.

64



4.3. THERMAL NOISE OF THE SYSTEM WITH COUPLING

4.3 Thermal noise of the system with coupling

The formula of the thermal noise in the advanced mode expansion is discussed here. It

is shown that the coupling terms correspond to the correlations between the fluctuations

in the motions of the modes.

4.3.1 Formula of two mode system

To simplify the discussion, a system which has only two modes is considered. From

Eq.(4.32), the equations of motions of the two modes are written in the form

−m1ω
2q̃1 + m1ω1

2[1 + iφ1(ω)]q̃1 + iα12q̃2 = F̃ (4.41)

−m2ω
2q̃2 + m2ω2

2[1 + iφ2(ω)]q̃2 + iα21q̃1 = F̃ (4.42)

From Eqs.(3.72), (4.41), and (4.42), the total system of the transfer function, HX(ω), is

obtained as

HX(ω) =
X̃

F̃
=

q̃1 + q̃2

F̃

=
−m1ω

2 + m1ω1
2(1 + iφ1) − m2ω

2 + m2ω2
2(1 + iφ2) − 2iα12

[−m1ω2 + m1ω1
2(1 + iφ1)][−m2ω2 + m2ω2

2(1 + iφ2)] + α12
2
. (4.43)

If the two modes are well separated in frequency, i.e. the difference between the resonant

frequencies of the two modes is larger than their half widths, α12
2 in the denominator of

Eq.(4.43) is negligible because of the upper limit of the coupling coefficient, Eq.(4.40).

Thus, Eq.(4.43) is rewritten as

HX(ω) =
1

−m1ω2 + m1ω1
2(1 + iφ1)

+
1

−m2ω2 + m2ω2
2(1 + iφ2)

− 2iα12

[−m1ω2 + m1ω1
2(1 + iφ1)][−m2ω2 + m2ω2

2(1 + iφ2)]
. (4.44)

The first and second terms correspond to the transfer function calculated from the tra-

ditional mode expansion, Eq.(3.76). The last term is derived from the coupling term.

Putting Eq.(4.44) into Eq.(3.9), the power spectrum of the fluctuation of X is obtained:

GX(f) =
2∑

n=1

4kBT

mnω

ωn
2φn(ω)

(ω2 − ωn
2)2 + ωn

4φn
2(ω)

+
4kBT

m1m2ω

2α12[(−ω2 + ω1
2)(−ω2 + ω2

2) − ω1
2φ1(ω)ω2

2φ2(ω)]

[(ω2 − ω1
2)2 + ω1

4φ1
2(ω)][(ω2 − ω2

2)2 + ω2
4φ2

2(ω)]
. (4.45)
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The first term in Eq.(4.45) are the same as the formula of the traditional mode expansion,

Eq.(3.77). The extra term is not taken into account in the traditional mode expansion.

Since the thermal noise in the broad frequency range are considered, the frequency of

interest is far from the resonant frequencies. Thus, Eq.(4.45) is rewritten as

GX(f) =

2∑
n=1

4kBT

mnω

ωn
2φn(ω)

(ω2 − ωn
2)2

+
4kBT

m1m2ω

2α12

(ω2 − ω1
2)(ω2 − ω2

2)
. (4.46)

4.3.2 Correlation between modes

The last term in Eq.(4.46) represents the correlation between the fluctuations of the

motions of the first and second modes [65]. This interpretation is derived from the FDT

here. The fluctuations and the correlation of the generalized forces, Fn, which correspond

to the coordinates, qn, of the modes are evaluated from the FDT. From Eq.(3.11), the

relation between the generalized forces and the coordinates of the modes is described as

−m1ω
2q̃1 + m1ω1

2[1 + iφ1(ω)]q̃1 + iα12q̃2 = F̃1, (4.47)

−m2ω
2q̃2 + m2ω2

2[1 + iφ2(ω)]q̃2 + iα21q̃1 = F̃2. (4.48)

Using Eqs.(3.12), (3.14), and (3.19), the power spectrum density of Fn, GFn, and the

cross spectrum density between F1 and F2, GF1F2, are evaluated from Eqs.(4.47) and

(4.48):

GFn(f) = 4kBT
mnωn

2φn(ω)

ω
, (4.49)

GF1F2(f) = 4kBT
α12(ω)

ω
. (4.50)

The power spectrum density, GFn, are independent of α12. On the other hand, GF1F2

depends on α12. Therefore, the coupling term has no effect on the amplitude of the

fluctuation of the generalized forces, while the coupling simply causes correlation between

the generalized forces.

Having correlation between the generalized forces which correspond the modes, cor-

relation between the motions of the modes must also exist. Using Eqs.(3.16) and (3.18),

the power spectrum density of qn, Gqn, and the cross spectrum density between q1 and
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q2, Gq1q2 , are evaluated from Eqs.(4.47) and (4.48)7:

Gqn(f) =
4kBT

mnω

ωn
2φn(ω)

(ω2 − ωn
2)2

, (4.51)

Gq1q2(f) =
4kBT

m1m2ω

α12

(ω2 − ω1
2)(ω2 − ω2

2)
. (4.52)

These formulae are approximated expressions when the frequency is far from resonance.

The fluctuations of the modes, Eq.(4.51), and the correlation, Eq.(4.52), correspond to

the first and second terms in the formula of the advanced mode expansion, Eq.(4.46),

respectively. The power spectrum, Gqn, is independent of α12. On the contrary, Gq1q2

depends on α12. Therefore, the coupling term has no effect on the amplitudes of the

fluctuations of the modes, while it causes the correlation. Although the sign of the

correlation between the generalized forces, Eq.(4.50), depends on only α12, the sign of

the correlation between the displacements, Eq.(4.52), depends on not only α12 but also

on the frequency. This is because the sign of the real part of the transfer function from

the n-th generalized force, Fn, to the n-th coordinate, qn, depends on the frequency.

There is a maximum for the absolute value of the correlation, Eq.(4.52), because of

the upper limit of the absolute value of the coupling coefficient in Eq.(4.40). This upper

limit is derived as

|Gq1q2 | ≤
√

4kBT

m1ω

ω1
2φ1

(ω2 − ω1
2)2

√
4kBT

m2ω

ω2
2φ2

(ω2 − ω2
2)2

=
√

Gq1Gq2. (4.53)

This expression is the same as the upper limit of the correlation derived from the definition

of the cross spectrum. Thus, the upper limit of the coupling corresponds to the perfect

correlation.

The correlation between the modes, the second term in Eq.(4.46), represents the dis-

crepancy between the advanced and traditional mode expansion. Thus, if this term is

comparable to the sum of the fluctuation of the modes expressed in the first term in

Eq.(4.46), the discrepancy between the advanced and traditional mode expansion is not

negligible. If the sign of the second term in Eq.(4.46) is negative, the estimation of the

advanced mode expansion can be smaller than the evaluation of the traditional mode

expansion. The conditions for which the difference between the advanced and traditional

mode expansion becomes large is discussed here. From Eq.(4.53), the maximum of the

7The term, α12
2, in the denominator is negligible because of the discussion to derive Eq.(4.44).
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absolute value of the correlation, Gq1q2, in Eq.(4.52), is equal to the geometric mean of

the fluctuations of the first and second modes, Gq1 and Gq2 in Eq.(4.51). The first term

in Eq.(4.46) is the sum of the fluctuations of the first and second modes, Gq1 and Gq2 .

Thus, when the absolute value of the coupling coefficient, α12, is about maximum and

the thermal motions of the first and second modes, Gq1 and Gq2, are about the same,

the contribution of the correlation, the second term in Eq.(4.46), is nearly equal to the

sum of the fluctuations of the modes, the first term in Eq.(4.46). On the contrary, when

the thermal noise is dominated by the contribution of one mode, the contribution of the

correlation is smaller than the sum of the fluctuations of the modes, i.e. the difference

between the advanced and traditional mode expansion is not serious even though the

absolute value of the coupling coefficient, α12, is almost maximum.

4.3.3 Formula of general system

The previous discussion about the thermal noise of the two mode system is easily

generalized for all systems. The formula of the transfer function, Eq.(4.44), is rewritten

as

HX(ω) =
∑

n

1

−mnω2 + mnωn
2(1 + iφn)

−
∑
k 6=n

iαnk

[−mnω2 + mnωn
2(1 + iφn)][−mkω2 + mkωk

2(1 + iφk)]
. (4.54)

Putting Eq.(4.54) into Eq.(3.9), the formula of the thermal noise is obtained as

GX(f) =
∑

n

4kBT

mnω

ωn
2φn(ω)

(ω2 − ωn
2)2 + ωn

4φn
2(ω)

+
∑
k 6=n

4kBT

mnmkω

αnk[(−ω2 + ωn
2)(−ω2 + ωk

2) − ωn
2φn(ω)ωk

2φk(ω)]

[(ω2 − ωn
2)2 + ωn

4φn
2(ω)][(ω2 − ωk

2)2 + ωk
4φk

2(ω)]
.(4.55)

At the off-resonance frequencies, this formula is rewritten as

GX(f) =
∑

n

4kBT

mnω

ωn
2φn(ω)

(ω2 − ωn
2)2

+
∑
k 6=n

4kBT

mnmkω

αnk

(ω2 − ωn
2)(ω2 − ωk

2)
. (4.56)

The first and second terms of the right-hand side of Eq.(4.56) represent the sum of the

fluctuations of the modes and the correlations between the fluctuations of the modes,

respectively.
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When the contributions of the correlations, the second term in Eq.(4.56), is about as

large as the sum of the fluctuations of the modes, the first term in Eq.(4.56), the differ-

ence between the advanced and traditional mode expansion is a serious issue. From the

consideration about the two mode system, when the absolute values of many correlations

are large and the fluctuations of a lot of modes are about equal to each other, the con-

tributions of the correlations are comparable to the summation of the fluctuations of the

modes. On the other hand, if the thermal noise is dominated by the contribution of one

mode, the correlation terms are smaller than the contribution of this mode, i.e., in this

case, the discrepancy between the advanced and traditional mode expansion is negligible

even though the coupling coefficients are large.

4.3.4 Thermal noise of interferometer

The previous considerations give important suggestions for the research of the thermal

noise of the interferometric gravitational wave detectors. Figure 3.2 shows that the

thermal noise of the mirror is composed of the contributions of many modes. Since

losses localized in small volumes cause large couplings, the thermal noise of the mirror

with the losses distributed inhomogeneously is much different from the evaluation of the

traditional mode expansion. On the other hand, the discrepancy between the thermal

noise of the suspension and the the evaluation from the traditional mode expansion is

negligible even though the loss is not uniform. This is because the thermal noise of the

suspension is dominated by the fluctuation of the pendulum mode in the observation

band. Consequently, the inhomogeneity of the dissipation is a serious problem in the

thermal noise of the mirror and does not have an important role in the thermal noise of

the suspension. In this thesis, the thermal noise of the mirror with inhomogeneous losses

are considered in Chapters 7 and 8.

4.3.5 Root mean square

Equation (4.55) shows that the couplings, αnk, caused by the inhomogeneity of the

losses affects the spectrum of the thermal noise. However, the couplings have no effect

on the root mean square (rms) of the thermal noise because the integration of the cross
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spectrum between qn and qk in Eq.(4.52) overall the frequency range vanish:

qn(t)qk(t) =

∫ ∞

0

Gqnqk
(f)df =

kBT

mnωn
2
δnk, (4.57)

where δnk is the Kronecker’s δ-symbol. The sign, A, denotes a time average of A. From

Eq.(4.57), the root mean square of the observable physical quantity, X, expressed as

Eq.(3.72) is obtained:

√
X2 =

√∑
n,k

qnqk =

√∑
n

qn
2 =

√∑
n

kBT

mnωn
2
. (4.58)

Consequently, when the rms of X is calculated, it can be considered that the fluctuations

of the modes are independent of each other in spite of the inhomogeneity of the losses,

i.e. X2 is the sum of qn
2 derived from the principle of equipartition, Eq.(3.1).

4.4 Measurement of coupling

The useful information is obtained from the measurement of the coupling. Eq.(4.56)

shows that the coupling between the modes causes the discrepancy between the advanced

and the traditional mode expansion. This implies the necessity of the measurement

of the couplings to correctly estimate thermal noise. From Eqs.(4.5) and (4.22), the

coupling terms depends on the distribution of the losses. Thus, the distribution of the

losses can be derived from the measured coupling. This is a solution of the inverse

problem shown in Fig.1.2 to derive the distribution and the properties of the loss from

the mechanical response. The methods of the measurement of the coupling are discussed

here. The measurements near the resonant frequencies and at the off-resonant frequencies

are considered.

4.4.1 Measurement near resonant frequencies

The correlation term is maximum near the resonant frequencies. However, the resonant

mode term is also maximum. The ratio of the term of the correlation to that of the

resonant mode is about φn at most. Therefore, the measurement near the resonant

frequencies is not useful to obtain the coupling coefficients, αnk.
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As an example, the measurement of the transfer function is considered. From Eq.(4.54),

at the resonant frequency, ωn/2π, the transfer function of the system is described as

HX(ωn) =
1

imnωn
2φn

−
∑
k 6=n

1

imnωn
2φn

iαnk

−mkωn
2 + mkωk

2(1 + iφk)
. (4.59)

The terms of the other modes are neglected. The second term in Eq.(4.59) is the object

of the measurement. The ratio of the second term to the first term in Eq.(4.59) is written

as ∑
k 6=n

− iαnk

−mkωn
2 + mkωk

2(1 + iφk)
. (4.60)

Since φk is smaller than the unity, Eq.(4.60) approximates a pure imaginary number. The

coupling terms shift the phase of the transfer function, HX . The order of magnitude of

this phase shift is about φn at most because of the upper limit of αnk, Eq.(4.40). Thus, in

order to estimate the coupling from the measurement of the phase of the transfer function

near the resonance, the phase error of the measurement should be smaller than φn. This

is a difficult experiment in general.

As another example, the measurement of the thermal noise is discussed. Eq.(4.55)

shows that the spectrum of the thermal noise at resonance is almost independent of αnk.

However, the absolute value of the correlation term in Eq.(4.55) has a local maximum,

when the frequency is fn±∆fn/2, where fn is the resonant frequency and ∆fn is the half

width of the resonant peak defined by Eq.(3.50). From Eq.(4.55), at these frequencies,

the thermal noise is expressed as

GX(fn ± ∆fn/2) =
2kBT

m1ωn
3φn

∓
∑
k 6=n

4kBT

mnωn
3φn

αnk

mk(−ωn
2 + ωk

2)
. (4.61)

The terms of the fluctuations of the other modes can be neglected. The second term in

Eq.(4.61) is the object of the measurement. The ratio of the second term to the first

term in Eq.(4.61) is written as

∓
∑
k 6=n

2αnk

mk(−ωn
2 + ωk

2)
. (4.62)

Since the upper limit of αnk is described as Eq.(4.40), the order of the absolute value

of Eq.(4.62) is about φn at most. Thus, in order to estimate the coupling from the

measurement of the spectrum of the thermal noise near the resonance, the relative error

of the measurement must be smaller than φn. Again, this is also difficult.
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4.4.2 Measurement at off-resonance frequencies

The method to derive the coupling from the measurement of the thermal noise or the

transfer function in a broad frequency range is discussed. The difference between the

measured values and the estimation of the traditional mode expansion does not always

represents the couplings. There is the possibility that this difference corresponds to the

discrepancy between the real loss angle and the adopting loss angle. However, there is a

method to obtain the coupling from the measured spectrum. The signs of the coupling

coefficients, αnk, depend on the observation point. Thus, the measurement at various

points should show the information of the couplings. For example, if the sign of the

difference between the observed spectrum and the estimation of the traditional mode

expansion depends on the observation points, the observed difference corresponds to the

couplings. On the other hand, if this sign is independent of the observation points,

the observed difference indicates that the chosen loss is not correct. Consequently, the

coupling at off-resonant frequencies can be derived from the measurement of the thermal

noise or of the transfer function at various points and from the comparison with the

calculation based on the traditional mode expansion.
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Chapter 5

Direct approach

In the previous chapter, the advanced mode expansion was developed because the

traditional mode expansion is wrong when the loss is distributed inhomogeneously. The

discussion in the previous chapter proved that there is a large discrepancy between the

calculations of the advanced and that of the traditional mode expansion when the thermal

noise consists of the contributions of many modes and the dissipation is highly inhomo-

geneous. However, in such a case, the calculation in the advanced mode expansion is

complicated because many modes must be taken into account. Fortunately, there are

more suitable methods for a practical computation. These methods are called direct

approaches in this thesis. The computations in the direct approaches are easier even

when there are contributions from many modes. This is because in direct approaches the

thermal noise is evaluated without the mode decomposition.

In this chapter, three kinds of direct approaches are introduced. These methods are

proposed by Levin [68], Nakagawa [69], and Tsubono [70]. Moreover, it is showed that

the results of these three methods and that of the advanced mode expansion agree with

each other.

5.1 Levin’s approach

In the method proposed by Levin [68], the thermal noise is derived from the dissipated

energy. The fluctuation-dissipation theorem, Eq.(3.9), shows the relation between the
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thermal noise and the imaginary part of the transfer function. The imaginary part of

the transfer function represents the energy dissipated in the system. The calculation of

the dissipated energy is simpler than that of the imaginary part of the transfer function.

Thus, Levin rewrote the fluctuation-dissipation theorem using the dissipated energy. The

result is described as

GX(f) =
2kBT

π2f 2

Wloss

F0
2 , (5.1)

where GX is the power spectrum of the fluctuation of the observed coordinate, X, defined

by Eq.(3.65), and f is the frequency. The value, Wloss, is the average dissipated power

when the oscillatory force, F0 cos(2πft)P (r), is applied on the system.

Levin applied this formula to the mirror of the interferometer. It is supposed that

the dissipation can be described by the structure damping model. This dissipation is

expressed using the complex Young’s modulus as Eq.(4.18):

E = E0[1 + iφ(r)]. (5.2)

The dissipated power, Wloss, is then written in the form

Wloss = 2πf

∫
E(r)φ(r)dV, (5.3)

where E is the elastic energy density when the strain is at its maximum. When E was

evaluated, Levin adopted the approximation that the static pressure, F0P (r), is applied

on the mirror. This is possible because the observation band of the gravitational wave

detectors is lower than the resonant frequencies of the mirror.

Levin calculated the thermal noise of the mirror with homogeneous loss and confirmed

that the result agrees with the estimation derived from the traditional mode expansion.

In addition, Levin suggested that the thermal noise of a cylindrical mirror in which

the losses are concentrated on the surface illuminated by the laser beam is larger than

the evaluation from the traditional mode expansion [68]. Bondu, Hello, and Vinet have

evaluated the thermal noise of the mirror with homogeneous loss using Levin’s approach

[71]. The thermal noise of the mirror caused by the thermoelastic damping was calculated

based on this method [40, 41].
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5.2 Nakagawa’s approach

Nakagawa has shown a method to estimate thermal noise using Green functions. The

generalized equation of motion of the elastic body without loss is described as1

ρ
∂2ui

∂t2
− ∂

∂xj

(
cijkl

∂ul

∂xk

)
= F (t)Pi(r), (5.4)

where ui and Pi are the i-th component of the displacement, u, and the weighting func-

tion, P , respectively. The parameter, ρ, is the density, and cijkl is the stiffness parameter.

The dissipation term is introduced into Eq.(5.4). In the frequency domain, the result is

written as

−ρω2ũi − ∂

∂xj

{
[c′ijkl(ω) − ic′′ijkl(ω, r)]

∂ũl

∂xk

}
= F̃Pi(r), (5.5)

where c′ijkl and c′′ijkl correspond respectively to the real and imaginary parts of cijkl in

Eq.(5.4). The parameter, c′′ijkl, represents the dissipation. The solution of Eq.(5.5) is

expressed as

ũi(r) =

∫
χij(ω, r, r1)F̃Pj(r1)dV1, (5.6)

where χij(ω, r, r1) is the Green function.

From the balance between the energy brought by the pressure, P , and the dissipated

energy, an important relation is derived. This relation is expressed as

Im[χij(ω, r1, r2)] = −
∫ [

∂χli(ω, r, r1)

∂xk

]
c′′klmn(ω, r)

[
∂χnj(ω, r, r2)

∂xm

]∗
dV. (5.7)

The relation between the imaginary part of the Green function and the cross spectrum

density between ui(r1) and uj(r2), Guiuj
(ω, r1, r2), is written in the form2 [69]

Guiuj
(ω, r1, r2) = −4kBT

ω
Im[χij(ω, r1, r2)]. (5.8)

The power spectrum density of the observed coordinate, X, defined by Eq.(3.65) is de-

scribed as

GX(f) =

∫
Pi(r1)Guiui

(ω, r1, r2)Pi(r2)dV1dV2. (5.9)

1This equation is valid also in an anisotropic elastic body.
2This formula corresponds to Eq.(14) in [69]. Although the sign of the right-hand of Eq.(14) in [69]

is positive, the correct sign is negative. Moreover, in [69], the two-sided spectrum is used. Since the

one-sided spectrum is adopted in this thesis, Eq.(5.8) is Eq.(14) in [69] multiplied by two.
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The thermal fluctuation of X is derived from the Green functions, Eqs.(5.7), (5.8), and

(5.9),

Nakagawa suggested that the Green function in the static state, χij(0, r1, r2), is used

when the thermal noise in the lower frequency range is estimated. In addition, the

thermal noise of the one-dimensional elastic system with homogeneous loss in the lower

frequency range was evaluated based on his approach.

5.3 Tsubono’s approach

In Tsubono’s approach, the transfer function, H(ω), defined as Eq.(3.7), is derived

from the transfer matrix [70]. The transfer matrix [63, 72, 73] was developed to analyze

the vibration of complex systems. In this method the elements of the system are replaced

by matrices. The product of these matrices represents the total system. The transfer

function is derived from this product. The thermal noise is calculated from the application

of the fluctuation-dissipation theorem to the transfer function evaluated from the transfer

matrix method. The advantage of the transfer matrix is simplicity. The calculation only

involves multiplying the matrices. The matrices are derived from the elements through a

simple process. Moreover, even in the high frequency range, the calculation of the transfer

matrix is simple. In Levin’s and Nakagawa’s approaches, the calculation is difficult in

the high frequency range. However, there is a demerit of the transfer matrix method.

The system must be segmented as Fig.5.1 to use the transfer matrix and it is impossible

to subdivide some systems. For example, continuous oscillators which have two or three

dimensions are not segmentable as Fig.5.1. Thus, the transfer matrix is not a appropriate

method to estimate the thermal noise of a disk or of a bulk.

The total system is divided as Fig.5.1. There are n elements in Fig.5.1. We consider

the points at both the sides of each element. The (i − 1)-th and i-th points are the

left and right ends of the i-th element, respectively. Every point has the state vector,

zi. The state vector are composed of the Fourier components of the displacement of the

generalized coordinates of the point and of the generalized forces applied on the point

itself. For example, in the system which consists of mass points and springs, the state
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Elastic System

1 2 ni i+1

0 1 2 i-1 i i+1 n-1 n

...... ......

Figure 5.1: A segmented system. The total system is divided into n elements. There are the points at

both the sides of the elements. The (i − 1)-th and i-th points are the left and right ends of the i-th

element, respectively. Every point has the state vector, zi.

vector is defined by

zi =

(
X

F

)
i

, (5.10)

where X and F are the Fourier components of the displacement of and the applied force

on the i-th point, respectively. As another example, bends of beams are considered. The

state vector is expressed as

zi =




X

V

Ψ

M




i

, (5.11)

where X, V, Ψ, M are the Fourier components of the displacement of the beam, the shear

force, the rotation angle, and the moment of the i-th point, respectively. The definitions

of these parameters are in Fig.5.2. In this thesis, the (2m− 1)-th component of the state

vector represents the generalized displacement. The 2m-th component is the generalized

force which corresponds to the (2m−1)-th component. The sign of the displacement and

force is defined as Fig.5.3.

The i-th state vector, zi, is connected to the (i − 1)-th state vector, zi−1, by the

transfer matrix, Ti, of i-th element. This relation is defined by

zi = Tizi−1. (5.12)
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X

V M
Y

Figure 5.2: The definitions of X, V, Ψ, M . X, V, Ψ, M are the Fourier component of the displacement of

the beam, the shear force, the rotation angle, and the moment of the i-th point, respectively.

i

ii-1 XiXi-1

FiFi-1

Figure 5.3: The definitions of the signs of the generalized displacement (Xi) and the generalized force

(Fi). When the direction of the displacement and that of the force are the same as those of the arrows

in this figure, the signs are positive.

The matrix, Ti, is calculated from the equation of motion in the frequency domain. The

effect of the dissipation is included. When the external force is not applied on the system,

Eq.(5.12) can be rewritten as




ζ1

ζ2

...

ζm




i

=




t11 t12 · · · t1m

t21 t22 · · · t2m

...
...

. . .
...

tm1 tm2 · · · tmm




i




ζ1

ζ2

...

ζm




i−1

. (5.13)
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When the external force is applied on the system, Eq.(5.12) is expressed as




ζ1

ζ2

...

ζm

1




i

=




t11 t12 · · · t1m F1

t21 t22 · · · t2m F2

...
...

. . .
...

...

tm1 tm2 · · · tmm Fm

0 0 · · · 0 1




i




ζ1

ζ2

...

ζm

1




i−1

, (5.14)

where Fi is a function of the external force.

From Eq.(5.12), the state vector at both ends of the system, z0 and zn, can be

connected to each other. This relation is expressed as

zn = Tn · Tn−1 · · ·T2 · T1z0. (5.15)

Thus, the matrix, Ttotal, which corresponds to the total system is the product of the

matrices of the elements, Ti:

Ttotal = Tn · Tn−1 · · ·T2 · T1. (5.16)

Components of the state vectors at the both ends, z0 and zn, are governed by the

boundary conditions. When the end is fixed, the components which represent the dis-

placement vanish. On the other hand, when the end is free, the components which

correspond to the force are zero.

An outline of the calculation of the transfer function is introduced. The generalized

force is applied on the observation point. In general, this applied force is treated as the

external force. Thus, the transfer matrix of the total system has the same form as that

of the matrix in Eq.(5.14)3. It is supposed that the left-hand end (z0) is free and that

3When the observation point is at an end of the system, the state vector at this end point includes

the applied force as the boundary condition, i.e. this applied force is not treated as the external force.

Thus, the transfer matrix of the total system is the same form as that of the matrix in Eq.(5.13).
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the right-hand end (zn) is fixed. The relation between z0 and zn is written in the form


0

ζ2

...

0

ζ2m

1




n

=




t11 t12 · · · t1 2m−1 t1 2m F1

t21 t22 · · · t2 2m−1 t2 2m F2

...
...

. . .
...

...
...

t2m−1 1 t2m−1 2 · · · t2m−1 2m−1 t2m−1 2m F2m−1

t2m 1 t2m 2 · · · t2m 2m−1 t2m 2m F2m

0 0 · · · 0 0 1







ζ1

0
...

ζ2m−1

0

1




0

.

(5.17)

Eq.(5.17) is rewritten as


0
...

0

1




n

=




t11 · · · t1 2m−1 F1

...
. . .

...
...

t2m−1 1 · · · t2m−1 2m−1 F2m−1

0 · · · 0 1







ζ1

...

ζ2m−1

1




0

. (5.18)

Eq.(5.18) is simplified as


t11 · · · t1 2m−1

...
. . .

...

t2m−1 1 · · · t2m−1 2m−1






ζ1

...

ζ2m−1




0

= −




F1

...

F2m−1


 . (5.19)

From Eq.(5.19), z0 is evaluated as a function of the applied force. The transfer ma-

trix which connects z0 to the state vector at the observation point is estimated from

the multiplication of the matrices of the elements. Therefore, the displacement of the

observation point is calculated as a function of the generalized force. Substituting the

transfer function obtained from these discussion for H(ω) in Eq.(3.9), the spectrum of

the thermal noise is obtained.

Tsubono has investigated the thermal noise of a one-dimensional system. When the

loss was homogeneous, the estimation from the transfer matrix was consistent with the

results of the traditional mode expansion. On the other hand, the results prove that the

traditional mode expansion fails when the loss is not uniform.

5.4 Consistency of three direct approaches

The consistency of the three direct approaches is investigated here. The thermal

noise of a one-dimensional elastic system shown in Fig.5.4 was estimated using the three
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x

l0

Observation surface

Elastic bar

Figure 5.4: A one-dimensional elastic system. The length, cross section, Young’s modulus, and density

are l, A, E0, and ρ, respectively. This bar is free. The coordinate (x) at the left-hand and right-hand

sides are zero and l, respectively. The thermal longitudinal vibration at the left-hand side (x = 0) are

estimated based on three direct approaches.

methods and the results were compared.

The length and cross section of the elastic bar are l and A, respectively. The bar is

free. The coordinate (x) at the left-hand and right-hand sides are zero and l, respectively.

The thermal longitudinal vibration at the left-hand side (x = 0) is estimated with the

three direct approaches. The frequency range of interest is lower than the first longi-

tudinal resonant frequency. This is a simple model of the mirror in the interferometric

gravitational wave detectors. The equation of the motion of this elastic bar without the

dissipation is described as [48]

ρ
∂2u

∂t2
= E0

∂2u

∂x2
, (5.20)

where u is the longitudinal displacement, ρ is the density, and E0 is the Young’s modulus.

Since the thermal noise at the left-hand side (x = 0) is calculated, the generalized force,

F , is applied on the left-hand end. The first boundary condition is expressed as

F = −E0A
∂u

∂x

∣∣∣∣
x=0

. (5.21)

The other end is free. The second boundary condition is written as

0 = −E0A
∂u

∂x

∣∣∣∣
x=l

. (5.22)
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Observation surface

(i)

Observation surface

(ii)

ld

Observation surface

(iii)

d l

Figure 5.5: The distribution of the loss. The three types of the distribution is considered. The gray parts

show the volume in which the dissipation is concentrated. The parameter, δl, is the thickness of the

loss layer. The model of the loss is the structure damping model described using the complex Young’s

modulus, E0[1 + iφ(x)].

It is assumed that the dissipation is expressed by the structure damping model. This

model is described by the complex Young’s modulus as Eq.(5.2):

E = E0[1 + iφ(x)]. (5.23)

Three types of loss distributions are considered in Fig.5.5 . The gray parts in Fig.5.5

represents the volume in which the dissipation is concentrated. The first type is the

homogeneous loss. The loss angle, φ1(x), is written in the form

φ1(x) = φ. (5.24)

In the second type, the loss is concentrated on the observation surface. The loss angle,
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φ2(x), is described as

φ2(x) =

{
φ (0 ≤ x ≤ δl)

0 (δl ≤ x ≤ l)
, (5.25)

where δl is the thickness of the loss layer. The value, δl, is much smaller than l. The loss

layer in the third type is at the opposite side. The loss angle, φ3(x), is expressed as

φ3(x) =

{
0 (0 ≤ x ≤ l − δl)

φ (l − δl ≤ x ≤ l)
. (5.26)

5.4.1 Levin’s approach

In Levin’s approach, the thermal noise is derived using Eqs.(5.1) and (5.3). Since φ(x)

is known, the problem is the calculation of the elastic energy density, E(x). When the

oscillatory force, F0 cos(2πft), is applied on the edge of the bar, the maximum of the

elastic energy density is expressed as

E(x) =
1

2
E0

(
∂u0

∂x

)2

, (5.27)

where u0 is the amplitude of u. From Eqs.(5.20), (5.21), and (5.22), u0 is written as

u0 = − F0v

E0A sin(ωl/v)ω
cos

[
ω(x − l)

v

]
, (5.28)

where v is the velocity of the longitudinal wave written in the from

v =

√
E0

ρ
. (5.29)

Putting Eq.(5.28) into Eq.(5.27), the elastic energy density is obtained:

E(x) =
F0

2

2E0A2

sin2
[

ω(x−l)
v

]
sin2

(
ωl
v

) . (5.30)

Since the thermal noise in the lower frequency range is evaluated, ωl/v is much smaller

than unity. Thus, Eq.(5.30) is rewritten as

E(x) ≈ F0
2

2E0A2

(
x − l

l

)2

. (5.31)

From Eqs.(5.1), (5.3), (5.31), and φ(x), the thermal noise is evaluated.
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5.4.2 Nakagawa’s approach

From Eqs.(5.7), (5.8), and (5.9), the thermal longitudinal vibration of a one-dimensional

elastic system is described as

G(x, f) =
4kBT

ω

∫ [
∂χ11(x, x1)

∂x

]
c′′1111(ω, x1)

[
∂χ11(x, x1)

∂x

]∗
dx1, (5.32)

where f is the frequency corresponds to the angular frequency, ω. Here, c′′1111 is equal to

the imaginary part of the complex Young’s modulus,

c′′1111(ω, x) = E0φ(ω, x). (5.33)

The Green function, χ11, is expressed as4 [69]

χ11(ω, x1, x2) = −
cos
[

ω(l−|x1−x2|)
v

]
+ cos

[
ω(l−x1−x2)

v

]
2ρ
√

Avω sin
(

ωl
v

) . (5.34)

Since the thermal noise in the lower frequency range is investigated, ωl/v is much smaller

than unity. Thus, Eq.(5.34) is rewritten as

χ11(ω, x1, x2) = −
2 − 1

2

[
ω(l−|x1−x2|)

v

]2
− 1

2

[
ω(l−x1−x2)

v

]2
2ρ
√

Aω2l
. (5.35)

From Eqs.(5.32), (5.33), (5.35), and the loss angle, φ(x), the thermal noise at the end of

bar, G(0, f), is derived.

5.4.3 Tsubono’s approach

The generalized force is applied on the end of the bar. Since the boundary condition

includes the effect of this force, this applied force is not treated as an external force.

Thus, the transfer matrix is the same type as that of the matrix in Eq.(5.13). The basis

of the calculation is the transfer matrix of the elastic bar with the homogeneous structure

damping defined by [72, 73, 63]

T(l, φ) =

(
cos kl sin kl

kE0(1+iφ)A

−kE0(1 + iφ)A sin kl cos kl

)
, (5.36)

4ρ in [69] is ρ
√

A.
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where l is the length of the bar, and φ is the loss angle of the complex Young’s modulus,

Eq.(5.23). The complex wave number, k, is described as

k2 =
ρω2

E0(1 + iφ)
. (5.37)

The overall transfer matrix of the first type of the distribution, Eq.(5.24), is described

as

Ttotal = T(l, φ). (5.38)

The overall transfer matrix of the second type, Eq.(5.25), is defined by

Ttotal = T(δl, φ)T(l − δl, 0). (5.39)

The overall transfer matrix of the third type, Eq.(5.26), is written as

Ttotal = T(l − δl, 0)T(δl, φ). (5.40)

An end in this case is the observation point. The other end is free. The state vectors

of both the ends are connected with each other by the overall transfer matrix, Ttotal.

This relation is expressed as(
X

F

)
obs

= Ttotal

(
X

0

)
free

, (5.41)

where obs and free represent the observation point and the free end, respectively. The

parameters, X and F , are the Fourier components of the displacement of the end points

and the applied force, respectively. The transfer matrix, Ttotal, is written as

Ttotal =

(
t11 t12

t21 t22

)
(5.42)

From Eq.(5.42), the transfer function, H(ω), is derived as

H(ω) =
X

F

∣∣∣∣
obs

=
t11
t21

. (5.43)

The thermal noise spectrum is calculated from the application of the fluctuation-dissipation

theorem, Eq.(3.9), to this transfer function, Eq.(5.43). Since the thermal noise of interest

is in the lower frequency range, only the first order of ωl/v is considered.
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CHAPTER 5. DIRECT APPROACH

5.4.4 Results

The thermal noise of the elastic bar shown in Fig.5.4 is calculated using the three

direct approaches. These results agree with each other. Therefore, the consistency of the

three direct approach is proved.

The results derived from the three direct approaches are summarized. The thermal

noise, G1, caused by the loss of the first type, Eq.(5.24), is obtained as

G1(f) =
2kBT lφ

3πE0A

1

f
. (5.44)

The thermal motion, G2, of the second type, Eq.(5.25), is derived as

G2(f) =
2kBT (δl)φ

πE0A

1

f
. (5.45)

The thermal noise, G3, of the third distribution, Eq.(5.26), is expressed as

G3(f) =
2kBT (δl)3φ

3πE0Al2
1

f
. (5.46)

These results give useful hints about the general properties of thermal noise. The

calculations of the second and third distributions in Fig.5.5 from the traditional mode

expansion are the same because the Q-values of both the cases are the same. However, all

direct approaches predict that G3 is (δl/l)2/3 times smaller than G2. This result shows

that the traditional mode expansion is not valid when the loss is not homogeneous.

Moreover, these results suggest that the thermal noise of the mirror is larger when the

loss is concentrated near the observation point. This conclusion agrees with Levin’s

considerations [68]. The details of the thermal noise of the mirror with inhomogeneous

losses are discussed in Chapter 7.

5.5 Consistency with advanced mode expansion

The consistency between the direct approach and the advanced mode expansion is

considered. The estimation of the direct approaches was compared with that of the

advanced mode expansion. The experiments of the thermal noise of the leaf spring and a

prototype mirror with inhomogeneous eddy current damping are described in Chapter 6

and Chapter 8, respectively. The thermal noise of these oscillators was evaluated from the
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direct approach (Tsubono’s approach) and from the advanced mode expansion. These

calculated results of the leaf spring and the prototype of the mirror are shown in Figs.6.7

and 8.8, respectively. These figures prove that the estimation of the direct approach is

at least in these cases consistent with that of the advanced mode expansion.
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Chapter 6

Experimental test of the estimation

The discussions in Chapter 4 prove theoretically that the traditional mode expansion

fails when the loss is distributed inhomogeneously. On the contrary, it is expected that

new methods, the advanced mode expansion in Chapter 4 and the direct approaches

in Chapter 5, are valid even when the dissipation is not uniform. However, there have

been few experimental test of the evaluation methods of the thermal noise caused by the

inhomogeneous loss. In order to check the failure of the traditional mode expansion and

the validity of the new methods, the thermal noise of a simple oscillator with inhomoge-

neous loss was measured. The results of this experiment showed that the new methods

are correct and that the traditional mode expansion fails. This is the first experimental

evidence of the failure of the traditional mode expansion. The details of this experiment

[74, 75] are described in this chapter.

6.1 Outline of the experiments

To test the estimation methods, the thermal motion of a metal leaf spring with inho-

mogeneous loss was measured. This loss was intentionally introduced using eddy current

generated by strong permanent magnets. To confirm that the measured motion was

the thermal fluctuation, the thermal noise was evaluated from the measured mechanical

response of the leaf spring using the fluctuation-dissipation theorem.

An advantage of the leaf spring geometry was that there is a large difference between
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CHAPTER 6. EXPERIMENTAL TEST OF THE ESTIMATION

the noise estimation from the traditional mode expansion and new methods because of

the large loss inhomogeneity. The dissipation induced by the eddy current was localized

near the magnet and much larger than the original loss of the leaf spring. The resultant

distribution of loss was highly inhomogeneous. Another advantage of this setup was

that the thermal noise could be evaluated without ambiguity because the properties and

distribution of the loss caused by the eddy current are well known. Moreover, it was

possible to measure the thermal noise and the imaginary part of the transfer function

because this oscillator was light and soft and had a large source of the dissipation.

6.2 Leaf spring

4mm

35mm

5mm

0.1mm

leaf spring

magnets

Figure 6.1: Dimensions and configuration of the leaf spring and the magnets.

The leaf spring was a plate made of aluminum alloy (Al97/Mg3: GOODFELLOW

CAMBRIDGE Ltd.) with a size of 35 mm×5 mm×0.1 mm, as shown in Fig.6.1. In order

to realize the desired inhomogeneous loss, neodymium permanent magnets were set near

the surface of the plate, as shown in Fig.6.1; they produced an eddy current in a limited
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6.3. ESTIMATION OF THERMAL NOISE OF THE LEAF SPRING

area of the plate. Six magnets were used; each one was 2 mm in diameter and 10 mm in

length. The gap between the leaf spring and the magnets was about 0.5 mm. The power

spectrum of the thermal noise of the leaf spring between the first mode (ω1/2π=60 Hz)

and the second mode (ω2/2π=360 Hz) was measured.

AB

12mm
2mm

35mm

Figure 6.2: Positions of points A and B. These are the damped and observation positions.

The thermal fluctuation caused by inhomogeneous losses depends on both the positions

of the damped area and the observation point. In order to investigate this dependence,

the two points, A and B, shown in Fig.6.2 were selected as the center of the damped area

and the observation point. Thus, there were four configurations, which are named AdAo,

AdBo, BdAo, BdBo. These configurations are shown in Fig.6.3. For example, in AdBo,

the center of the damped area is A and the observation point is B.

6.3 Estimation of thermal noise of the leaf spring

In order to compare with the measured values, the spectrum of the thermal noise was

evaluated from the traditional and from advanced mode expansion. The direct approach

was also used to evaluate the thermal motion. The results showed large discrepancy

between the estimation from the traditional and advanced mode expansion. This implies

that this leaf spring was appropriate for this experiment to check the estimation method

of the thermal noise. Moreover, it was confirmed the calculated results from the advanced

mode expansion are the same as that of the direct approach. The reason why the large

difference between the estimation of the advanced and traditional mode expansion exists

was also considered.
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AdAo

Magnets

Observation point

BdAo

Magnets

Observation point

AdBo

Magnets

Observation
          point

BdBo

Magnets

Observation
          point

Figure 6.3: The configurations of the magnets. They are labelled AdAo, AdBo, BdAo, BdBo. For

example, in AdBo, the center of the damped area is A and the observation point is B.

6.3.1 Estimation

The details of the evaluation of the traditional and advanced mode expansion and

direct approach are introduced. Moreover, the results of these estimation methods are

summarized. Since the dissipation caused by the eddy current is much larger than the

original loss of the leaf spring, the original loss is neglected.

Estimation of traditional mode expansion

In the traditional mode expansion, the angular resonant frequency, ωn, the effective

mass, mn, and the loss angle, φn, are evaluated. Inserting these values into Eq.(3.77),

the spectrum of the thermal noise is obtained.

From Eq.(3.65), the observed coordinate, X, is defined as

X =

∫
u(x, t)P (x)dx, (6.1)

where u is the transverse displacement of the leaf spring and P is its weighting function.

Since the displacement of a point is observed, the weighting function, P , is expressed as

P (x) = δ(x − xo), (6.2)
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where δ(x) is the δ-function and xo is the coordinate of the observation point.

The displacement, wn, of the n-th mode of the leaf spring is the solution of the

eigenvalue problem expressed as [48]

− h2E

12(1 − σ2)

∂4wn

∂x4
= −ρωn

2wn, (6.3)

where h, E, σ, ρ are thickness, Young’s modulus, Poisson ratio, and density of the leaf

spring respectively. Figure 6.1 shows that an end (x = 0) of the spring is fixed and that

the other end (x = l) is free. The boundary conditions are written in the form [76]

wn(0) = 0, (6.4)

dwn

dx

∣∣∣∣
x=0

= 0, (6.5)

d2wn

dx2

∣∣∣∣
x=l

= 0, (6.6)

d3wn

dx3

∣∣∣∣
x=l

= 0. (6.7)

From Eqs.(6.3), (6.4), (6.5), (6.6), and (6.7), the n-th angular resonant frequency, ωn,

is given:

ωn =
αn

2

l2

√
Eh2

12ρ(1 − σ2)
, (6.8)

where αn is the n-th solution of the equation expressed as

coshαn · cos αn + 1 = 0. (6.9)

The values of αn (n = 1, 2, 3, 4) are summarized in Table.6.1. The displacement of the

n-th mode, wn, is written in the form

wn(x) = cosh
(
αn

x

l

)
− cos

(
αn

x

l

)
− Φn

[
sinh

(
αn

x

l

)
− sin

(
αn

x

l

)]
, (6.10)

where Φn is a function of αn defined by

Φn =
sinhαn − sinαn

coshαn + cosαn
. (6.11)

The shapes of the modes are shown in Fig.6.4.
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Table 6.1: αn of leaf springs.

n αn

1 1.87510

2 4.69409

3 7.85476

4 10.99554

first mode second mode

third mode fourth mode

Figure 6.4: The shapes of modes of the leaf spring.

Inserting Eqs.(6.2) and (6.10) into Eq.(3.78), the effective masses are obtained. The

formula, Eq.(3.78), is rewritten as

mn =
1

[wn(xo)]2

∫ l

0

ρA[wn(x)]2dx, (6.12)

where A is the cross section of the leaf spring.

In this case the loss of the leaf spring is dominated by the dissipation caused by the

eddy current. The loss angle, φn, is described as

φn(ω) =
ω

ωnQn
. (6.13)

The Q-value, Qn, of the n-th mode is evaluated from Eqs.(6.14) and (4.7).
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Estimation of advanced mode expansion

In the advanced mode expansion, the coupling coefficient, αnk, is evaluated. Inserting

the coupling coefficients and the parameters in the traditional mode expansion, mn, ωn,

and φn, into Eq.(4.55), the expression of the thermal noise is obtained.

The loss is dominated by the dissipation caused by the eddy current. Thus, the

coupling coefficient, αnk, is derived from Eq.(4.5). The basis function, wn in Eq.(4.5),

satisfies the normalization condition, Eq.(3.69). Since wn(x) in Eq.(6.10) is not nor-

malized, Eq.(4.5) must be rewritten. From Eq.(6.2), the rewritten formula is expressed

as

αnk =
ω

wn(x0)wk(x0)

∫
ρΓ(x)wn(x)wk(x)dx. (6.14)

In order to simplify the consideration, it is supposed that only the part of the leaf

spring which faces the magnet is damped and that the strength of the dissipation is

uniform in this damped region. Thus, Γ(x) in AdAo and AdBo is written as

Γ(x) =

{
Γ (31l/35 ≤ x ≤ l)

0 (0 ≤ x ≤ 31l/35)
. (6.15)

On the other hand, Γ(x) in BdAo and BdBo is defined by

Γ(x) =

{
Γ (10l/35 ≤ x ≤ 14l/35)

0 (0 ≤ x ≤ 10l/35, 14l/35 ≤ x ≤ l)
. (6.16)

Estimation of direct approach

The thermal noise of the leaf spring was calculated using Tsubono’s approach. Since

the observation point is not at the free end, the applied force at the observation point is

treated as the external force. Thus, the transfer matrix includes the effect of this applied

force, i.e. the transfer matrix is the same type as that of the matrix in Eq.(5.14).

The foundation of the calculation is the transfer matrix of the element shown in Fig.6.5.

This element corresponds to a segment of the leaf spring with loss. The dissipation is the

homogeneous eddy current damping. The transfer matrix of this system is T(l′, Γ, l′′, F ).

The length is l′. The force, F , is applied at the point which is l′′ away from the right end

(1). The value, Γ, is the strength of the eddy current damping in Eqs.(6.15) and (6.16).
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l'0 1

l''F

Figure 6.5: The part of the leaf spring with loss. The dissipation is the homogeneous eddy current

damping. The transfer matrix of this system is T(l′, Γ, l′′, F ). The length is l′. The force, F , is applied

at the point which is l′′ away from the right end (1). The value, Γ, is the strength of the eddy current

damping in Eqs.(6.15) and (6.16).

The transfer matrix, T(l′, Γ, l′′, F ), is described as [72, 73, 63]




X

V

Ψ

M

1




1

=
1

2




C+(αl′) S−(αl′)
EIα3 −S+(αl′)

α
C−(αl′)
EIα2 −S−(αl′′)F

EIα3

−S+(αl′)EI
α3 C+(αl′) −C−(αl′)EI

α2 −S−(αl′)
α

−C+(αl′′)F

S−(αl′)α −C−(αl′)
EIα2 C+(αl′) S+(αl′)

EIα
C−(αl′′)F

EIα2

C−(αl′)EI
α2

S+(αl′)
α

−S−(αl′)EIα C+(αl′) −S+(αl′′)F
α

0 0 0 0 1







X

V

Ψ

M

1




0

.

(6.17)

The definition of the parameters, X, V , Ψ, and M , are the same as those in Fig.5.2. The

functions, C+, C−, S+, and S−, are defined as

C+(x) = cosx + coshx, (6.18)

C−(x) = cosx − cosh x, (6.19)

S+(x) = sinx + sinhx, (6.20)

S−(x) = sinx − sinh x. (6.21)
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The parameter, α, is expressed as1

α =

[
12ρ(1 − σ2)

h2E
ω2 − iρΓω

]1/4

. (6.22)

The value, I, is the moment of inertia of the cross section of the leaf spring. Since the

cross section of the leaf spring is a rectangle, I is defined as [48]

I =
wh3

12
, (6.23)

where w and h are the width and thickness of the leaf spring, respectively.

The transfer matrix, Ttotal, of the entire system is derived from Eqs.(6.15), (6.16), and

(6.17). The matrix of the total spring is written in the form

Ttotal =




T(4l/35, Γ, 2l/35, F )T(31l/35, 0, 0, 0) (in AdAo)

T(10l/35, 0, 2l/35, F )T(4l/35, Γ, 0, 0)T(21l/35, 0, 0, 0) (in BdAo)

T(4l/35, Γ, 0, 0)T(31l/35, 0, 8l/35, F ) (in AdBo)

T(10l/35, 0, 0, 0)T(4l/35, Γ, 2l/35, F )T(21l/35, 0, 0, 0) (in BdBo)

. (6.24)

An end of the leaf spring is fixed, the other end is free. The state vectors of both

ends are connected with each other by the overall transfer matrix, Ttotal. This relation

is expressed as 


X

0

Ψ

0

1




free

= Ttotal




0

V

0

M

1




fixed

, (6.25)

where free and fixed correspond to the free and fixed end, respectively. This matrix,

Ttotal, is expressed as

Ttotal =




t11 t12 t13 t14 F1

t21 t22 t23 t24 F2

t31 t32 t33 t34 F3

t41 t42 t43 t44 F4

0 0 0 0 1




. (6.26)

1If the original loss of the leaf spring is considered, the complex Young’s modulus, E = E0(1 + iφ), is

substituted for Young’s modulus in Eqs.(6.17) and (6.22).
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From Eq.(6.26), the formula described as(
V

M

)
fixed

=
1

t22t44 − t24t42

(
−t44F2 + t24F4

t42F1 − t22F2

)
. (6.27)

is obtained.

The displacement of the observation point is calculated from the state vector at the

fixed end, Eq.(6.27), and the transfer matrix, T′, from the fixed end to the observation

point; 


X

V

Ψ

M

1




obs

= T′




0

V

0

M

1




fixed

, (6.28)

where obs represents the observation point. This transfer matrix, T′, is defined by

T′ =




T(2l/35, Γ, 0, F )T(31l/35, 0, 0, 0) (in AdAo)

T(8l/35, 0, 0, F )T(4l/35, Γ, 0, 0)T(21l/35, 0, 0, 0) (in BdAo)

T(23l/35, 0, 0, F ) (in AdBo)

T(2l/35, Γ, 0, F )T(21l/35, 0, 0, 0) (in BdBo)

. (6.29)

The displacement at the observation point is derived from the above formulae as the

function of the applied force, F . The transfer function is evaluated from this result. The

thermal noise spectrum is calculated from the application of the fluctuation-dissipation

theorem, Eq.(3.9), to this transfer function.

Results of the estimation

From above consideration, the thermal noise was evaluated using each method. The

parameters of the leaf spring and the strength of the eddy current damping, Γ, are

summarized in Table.6.2. The observation points are shown in Fig.6.2. The distribution

of the eddy current damping is described as Eqs.(6.15) and (6.16). The thermal noise is

estimated from these data.

The parameters in the mode expansion, resonant frequency (fn), effective mass (mn),

Q-value (Qn), and coupling coefficient (αnk), were evaluated. In this experiment, the
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Table 6.2: Parameters of leaf spring and damping.

parameter

length (l) 35 mm

width (w) 5 mm

thickness (h) 0.1 mm

density (ρ) 2.67 g/cm3

Young’s modulus (E) 7.03 ×1010 Pa

Poisson ratio (σ) 0.345

Strength of damping (Γ) 4.98 ×102 /sec

A

A

B

B

first mode

second mode

Figure 6.6: Displacement of the first mode (w1) and the second mode (w2). The positions of A and B

are the same as those in Fig.6.2.

thermal motion was measured in the frequency range between the first and second modes.

Since the thermal noise in this frequency range is dominated by that of the first and

second modes, it was sufficient to know mn, ωn, and Qn(n = 1, 2) for estimation based
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on the traditional mode expansion. In the advanced mode expansion, only α12 was

calculated. The shape of the first and second modes and the points A and B are shown

in Fig.6.6. The resonant frequencies, the effective masses, and Q-values of the leaf spring

are shown in Tables.6.3, 6.4, and 6.5, respectively. The coupling coefficient is listed

in Table.6.6. This value, α12, was normalized by the maximum of the absolute value,

|α12|max =
√

m1ω1
2φ1m2ω2

2φ2, in Eq.(4.40).

Table 6.3: Resonant frequencies of the leaf spring.

n fn

1 72.1 Hz

2 452 Hz

Table 6.4: Effective masses of the leaf spring.

Observation point m1 m2

A 14 mg 22 mg

B 41 mg 58 mg

Table 6.5: Q-values of damped leaf spring.

Center of damped area Q1 Q2

A 2.3 23

B 6.9 61
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Table 6.6: Coupling coefficient of damped leaf spring.

α12/|α12|max

AdAo 0.99

BdAo -0.96

AdBo -0.99

BdBo 0.96

The results of the estimation of the thermal noise are shown in Fig.6.7. The posi-

tions of the magnets and the observation point are indicated above each graph. The

thick and thin dotted lines are the computations of the advanced and traditional mode

expansions, respectively. The solid line is the evaluation of the direct approach. Figure

6.7 proves that the spectra estimated using the advanced mode expansion were different

from those evaluated from the traditional mode expansion in all cases. Moreover, the

evaluation of the advanced mode expansion strongly depended on the observation point

and the distribution of the loss although the estimation of the traditional mode expansion

was not largely affected by the selection of the damped area and the observation point.

These systems were appropriate for this experiment to test the estimation methods of

the thermal noise because the difference between the results derived from the advanced

and traditional mode expansion was large.

The estimation of the advanced mode expansion agreed with that of the direct ap-

proach. Thus, Fig.6.7 is an example of the consistency between the advanced mode

expansion and the direct approach.

6.3.2 Physical interpretation

The difference between the estimation of the advanced and traditional mode expansion

is discussed here [74, 75]. The evaluation of the advanced mode expansion is different from

that of the traditional mode expansion in Fig.6.7. This discrepancy is due to the large

coupling between the first and second modes. Table.6.6 shows that the absolute value of

the coupling coefficient, α12, is almost the maximum. This is because the dissipation is

localized in a narrow region.

Figure 6.7 shows that the estimation of the traditional mode expansion in the four cases
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Figure 6.7: Results of estimation. The positions of the magnets and the observation point are indicated

above each graph. The thick and thin dotted lines are the computations of the advanced and traditional

mode expansions, respectively. The solid line is the evaluation of the direct approach.

has weak dependence on the observation point and the distribution of the dissipation.

This is because there are not large differences of the effective masses and the Q-values

among the four cases. Figure 6.6 shows that the amplitudes at A and B are almost the

same in both the modes. This implies that the effective masses and the Q-values are not
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sensitive to the selection of the positions of the observation and magnets, respectively.

The spectra derived from the advanced mode expansion are different in all four cases.

This is because the effect of the correlations are large and the signs of them are different.

Since the damping is localized to a small volume, ∆V , around xd, the integration in

Eq.(6.14) approximates to ρΓ(xd)w1(xd)w2(xd)∆V . From Eqs.(4.52) and (6.14), the cross

spectrum, Gq1q2, between the first and second modes is expressed as

Gq1q2 ≈
4kBT

m1m2(−ω2 + ω1
2)(−ω2 + ω2

2)

w1(xd)w2(xd)

w1(xo)w2(xo)
ρΓ(xd)∆V. (6.30)

From this expression, the sign of the correlation depends on the distribution of the losses,

the observation point, and the frequency. Figure 6.6 shows that the sign of w1(xd)/w1(xo)

is always positive, while that of w2(xd)/w2(xo) depends on the distribution of the losses

and on the observation point. In AdAo and BdBo, the sign of w2(xd)/w2(xo) is positive

because the center of the damped area and the observation point are the same. On

the other hand, in BdAo and AdBo, the sign of this term is negative because the sign

of w2 at A is opposite to that at B. The sign of the remaining part of the correlation

term, Eq.(6.30), depends on the frequency. This sign is negative in the frequency region

between the first and second modes. From these discussions, the sign of the correlation

in AdAo and BdBo is negative. Thus, the measured spectrum of the thermal motion is

smaller than that calculated from the traditional mode expansion in AdAo and BdBo.

On the contrary, the spectrum of the measured fluctuation is larger than that evaluated

from the traditional mode expansion in BdAo and AdBo because the sign in BdAo and

AdBo is positive.

The dependence of the thermal noise on the distribution of the loss is considered.

The estimated spectra in AdAo is compared with those in BdAo (The same conclusion

is derived from the comparison between AdBo and BdBo.). The observation points in

the both the cases are the same. The difference of the Q-values between the two cases

is not large. However, there is large discrepancy between the spectra obtained from

the advanced mode expansion because of the difference of the signs of the correlations.

Therefore, the spectrum of the thermal noise is changed by moving the concentrated loss

without relevant changes of Q-values.

The dependence of the thermal noise on the observation point is discussed. The calcu-

lated thermal fluctuation in AdAo is compared with those in AdBo (The same conclusion

is derived from the comparison between BdAo and BdBo.). The distribution of the eddy
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current damping in both the cases are the same. Thus, these spectra correspond to the

thermal motions at the different points in the same system. The evaluation of the ad-

vanced mode expansion is larger than that of the traditional mode expansion in AdBo.

On the other hand, the estimation obtained from the advanced mode expansion is smaller

than that of the traditional mode expansion in BdBo. This is because the sign of the

coupling coefficient, α12, depends on the observation point. When the sign of the differ-

ence between the measured thermal fluctuation and the evaluation from the traditional

mode expansion depends on the observation point, this difference corresponds to the

coupling due to the inhomogeneous loss. On the contrary, the sign of this difference is

independent of the observation point, the chosen loss angle is not correct. Therefore, the

information about the coupling, i.e. the distribution of the loss, can be derived from the

measurements of the thermal motions at several points as discussed in the last section of

Chapter 4.

6.4 Experimental method

In this experiment, the thermal motion and the transfer function, H(ω) in Eq.(3.7),

of the leaf spring were measured to test the theory of the thermal noise caused by the

inhomogeneous loss. The thermal fluctuation of the leaf spring was monitored with a

Michelson interferometer. When the transfer function was measured, the force was ap-

plied using an electrostatic actuator. The motion of the leaf spring caused by this force

was observed by the Michelson interferometer. Q-values were also measured for the esti-

mation of the mode expansion. Experimental apparatus and the details of measurement

of the thermal fluctuation and the transfer function and Q-values are introduced here.

6.4.1 Experimental apparatus

A schematic view of the experimental apparatus is shown in Fig.6.8. The leaf spring

shown in Fig.6.1 was at one end of a differential Michelson interferometer to measure its

motion. When the transfer function, H(ω), was measured, the leaf spring was excited by

the electrostatic actuator. The interferometer was located on a seismic attenuation stack

for the seismic isolation. All the apparatus, except for the laser source, were located in a
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BS
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Vacuum
      tank
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Offset

Electrode

PD

Output

Figure 6.8: Schematic view of the experimental apparatus. BS, RM, Mag, PD, and SG stand for the beam

splitter, the reference mirror, the magnets, the photo detector, and the signal generator, respectively.

The sensor was a differential Michelson interferometer. To keep the interferometer at its operation point,

the output signal of the interferometer was used to control the position of the reference mirror. The

electrostatic actuator was used to measure the transfer function and Q-values. The interferometer was

mounted on an attenuation stack for seismic isolation. All the apparatus, except for the laser source,

were mounted in a vacuum chamber.

vacuum chamber. The details of each experimental apparatus components are described

here.
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+

Beam Splitter
Light
source

Photo
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& Offset circuit

Steering
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Mirror 2

Mirror 1
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Figure 6.9: The fundamental configuration of a differential Michelson interferometer. The beam splitter

divides the light from the laser source. These beams are reflected by mirrors. The reflected beams are

recombined at the beam splitter. The recombined beams are detected by photo detectors. The output,

Vout, of the interferometer is the difference between the outputs of the two photo detectors.

Michelson interferometer

Figure 6.9 shows the fundamental configuration of a differential Michelson interfer-

ometer. A beam splitter divides the light from the laser. These beams are reflected by

mirrors. The complex amplitudes, E1 and E2, of the reflected beams are expressed as

E1 = A1 exp[i(2kx1 − ωt)], (6.31)

E2 = A2 exp[i(2kx2 − ωt)], (6.32)
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where Ai are arbitrary real numbers, ω is the angular frequency of the light, and xi are

lengths of arms of the interferometer in Fig.6.9. The parameter, k, is the wave number

written as

k =
2π

λ
, (6.33)

where λ is the wavelength of the light.

The reflected beams are recombined at the beam splitter. This combined beams go

into photo detectors. The intensities of the lights caught by the photo detectors are

considered here. To simplify the discussion, it is supposed that this beam splitter divides

the beam into equal intensities. The intensity, I1, of the light which goes into the photo

detector 1 is given by

I1 =
A1

2 + A2
2

2
− A1A2 cos[2k(x1 − x2)]. (6.34)

The intensity, I2, of the beam which goes into the photo detector 2 is written as

I2 = r2A1
2 + A2

2

2
+ r2A1A2 cos[2k(x1 − x2)], (6.35)

where r is the amplitude reflectivity of the steering mirror in Fig.6.9. The contrast, K,

of the interferometer is defined by

K =
Imax − Imin

Imax + Imin
, (6.36)

where Imax and Imin are the maximum and minimum of the intensity measured by a photo

detector, respectively. The contrast is the index of the symmetry of the interferometer.

When the interferometer is perfectly symmetric, the contrast is unitary. A small contrast

corresponds to a large asymmetry.

The output of the interferometer is the difference between the outputs of two photo

detectors. The difference between the intensities of the beams caught by the photo

detectors 1 and 2 is written in the form

I1 − I2 = (1 − r2)
A1

2 + A2
2

2
− (1 + r2)A1A2 cos[2k(x1 − x2)]. (6.37)

The offset term, which is the first term in the right-hand side of Eq.(6.37), is canceled by

the offset circuit in Fig.6.9. Consequently, the output voltage, Vout, of the interferometer

is expressed as

Vout = A cos(2kX), (6.38)
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where A is the constant, and X is the difference of the optical lengths of arms:

X = x1 − x2. (6.39)

When Vout is nearly zero, Vout is the most sensitive to the change of X. Thus, the

position of a mirror is controlled to make the output of the interferometer vanish at low

frequency. When the interferometer is kept at this operation point, Vout is proportional

to X. The proportional coefficient, Hinter, is described as

Hinter =
dVout

dX

∣∣∣∣
Vout=0

= 2kA =
4πA

λ

= 2.0 × 107 [V/m]

(
A

1 V

)(
633 nm

λ

)
. (6.40)

The schematic configuration of the interferometer used in this experiment is shown in

Fig.6.8. The light source was a helium-neon laser (λ=633 nm). The main part of the

interferometer was comprised of a beam splitter, a leaf spring, and a reference mirror

with a piezo-electric actuator (PZT). The PZT was an actuator to control the position of

the reference mirror. The leaf spring was polished to increase its reflectivity. The fringe

contrast of this interferometer was about 30%. The output signal of the interferometer

was sent to the PZT of the reference mirror through servo filters to keep the interferometer

at its best operation point. The output signal was recorded by a spectrum analyzer.

Electrostatic actuator

Figure 6.10 shows a basic configuration of an electrostatic actuator. The electrode

faces the leaf spring. The voltage, Vin, is applied to this electrode. This voltage is an

oscillatory voltage with an offset;

Vin = V0 + v cos(ωt). (6.41)

V0 is chosen much larger than v, V0 � v. The electric field applies a force, F , on the leaf

spring. This force is expressed as

F =
ε0

2

S

d2
Vin

2, (6.42)
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Leaf
spring

Signal
Generator

Offset

Electrode

Figure 6.10: The basic configuration of an electrostatic actuator. The electrode faces the leaf spring.

An oscillatory voltage with a large offset is applied on this electrode. The electric field applies a force

on the leaf spring.

where ε0 is the dielectric constant of the vacuum, S is the area of the electrode, d is the

distance between the electrode and the leaf spring. Putting Eq.(6.41) into Eq.(6.42), the

formula of the force is written as

F =
ε0

2

S

d2
[V0 + v cos(ωt)]2

=
ε0

2

S

d2

[
V0

2 + 2V0v cos(ωt) + v2 cos2(ωt)
]

≈ ε0

2

S

d2

[
V0

2 + 2V0v cos(ωt)
]
. (6.43)

This expression proves that an oscillatory force is applied on the leaf spring. The am-

plitude of this oscillatory force is proportional to the amplitude of the voltage, v. The

proportional coefficient, Hexciter, is described as

Hexciter = ε0
V0S

d2

= 2.1 × 10−8 [N/m]

(
V0

30 V

)(
S

20 mm2

)(
0.5 mm

d

)2

. (6.44)

The values obtained from the measurement using this exciter were the ratio of the

displacement, X̃, of the leaf spring to the voltage, v = Ṽin, applied on the exciter. In
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order to derive the transfer function, H(ω) = X̃/F̃ , from the observed value, X̃/Ṽin, the

exciter efficiency, Hexciter = F̃ /Ṽin, was calibrated. Since a precise measurement of the

gap between the leaf spring and the electrode is difficult, Eq.(6.44) could not be used

to estimate Hexciter in this experiment. The adopted method is introduced here. From

the expression of the transfer function in the mode expansion, Eq.(3.76), the transfer

function, HDC, of the leaf spring in a frequency range lower than the first resonance is

written in the form

HDC(ω) ≈
∑

n

1

mnωn
2
. (6.45)

Since Eq.(6.8) and Table.6.1 show that the second resonant frequency is six times larger

than the first resonant frequency, Eq.(6.45) is rewritten as

HDC(ω) ≈ 1

m1ω1
2
. (6.46)

Thus, HDC for ω � ω1 is derived from m1 and ω1. The angular resonant frequency, ω1,

was measured. The effective mass, m1, was calculated using Eq.(6.12). From HDC and

the measured data, (X̃/Ṽin)DC, in the low-frequency region, the exciter efficiency, Hexciter,

was derived2:

Hexciter =

(
X̃

Ṽin

)
DC

1

HDC
. (6.47)

The schematic configuration of the electrostatic actuator used in this experiment is

shown in Fig.6.8. From the definition of the transfer function, H(ω), the point for the

observation and the excitation were the same. When the observation point was in the

damped area, the magnets, themselves, were used as the electrode. When the observation

point was outside of the damped area, a stainless-steel electrode having the same width

as that of the damped area was used. The applied voltage was recorded by the spectrum

analyzer.

Seismic attenuation stack

The seismic motion is one of the main problems in precise measurements. The power

spectrum, Gseismic, of the seismic motion in the suburb3 is expressed as [77, 78]

Gseismic(f) =
10−7

f 2
[m/

√
Hz], (6.48)

2The order of the value estimated from Eq.(6.47) was the same as that of the evaluation from Eq.(6.44).
3The seismic motion in a mine is one hundred times smaller than that in the suburb [78].
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where f is the frequency. Figure 6.11 represents the seismic noise in the vacuum cham-

ber used in this experiment. This seismic motion was measured with a seismograph.

The spectrum in Fig.6.11 is comparable with Eq.(6.48). Figure 6.7 shows that the esti-

mated thermal motion is about 10−13m/
√

Hz at 300Hz. Therefore, the seismic motion is

comparable to the estimated thermal motion.
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Figure 6.11: The seismic motion on the bottom plate of the vacuum chamber used in this experiment.

This seismic motion was measured with a seismograph.

To avoid this problem, an isolation stack, which is a passive isolation system, was used

to isolate the interferometer from the seismic vibration. This stack was a soft system

which consisted of springs. The principle of the isolation stack is considered here using a

spring. An end of the spring fixed to earth. Another end is connected to an object. The

equation of motion of this spring in the frequency domain is written as

−mω2x̃obj = −k[1 + iφ(ω)](x̃obj − x̃s), (6.49)

where m and xobj are the mass and displacement of the object, respectively. The param-

eter, xs, is the motion of the ground, k is the spring constant, and φ is the loss angle.

The transfer function, Hisolation, from the seismic motion to the vibration of the object is
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derived from Eq.(6.49);

Hisolation(ω) =
x̃obj

x̃s

=
ω0

2[1 + iφ(ω)]

−ω2 + ω0
2[1 + iφ(ω)]

, (6.50)

where ω0 (=
√

k/m) is the angular resonant frequency of the spring. Eq.(6.50) shows

that the seismic vibration in the higher frequency range (ω � ω0) is not transferred to

the object. The Q-value of the stack should be decreased because the seismic motion at

the resonant frequency is proportional to Q-value. Commonly, isolation stack has more

than one stage to enhance the isolation ratio.

Figure 6.12 shows the configuration of the stack used in this experiment. The stack

consisted of three layers which included an aluminium plate, springs, and rubbers. Springs

were wrapped in lead ribbons to decrease the Q-values. Figure 6.13 shows that the output

of the interferometer on the stack when the leaf spring was replaced by a fixed mirror.

Comparing Fig.6.13 with Fig.6.7 proves that the interferometer is sufficiently isolated

from the seismic vibration.

Rubber

Lead ribbon

145 mm
Aluminium plate

Spring

About
60mm

Figure 6.12: The schematic view of the stack used in this experiment. This stack consisted of three

layers which included an aluminium plate, springs, and rubbers. Springs were wrapped in lead ribbons.

Vacuum chamber

All the apparatus, except for the helium-neon laser source, were put in a vacuum tank.

The vacuum chamber was evacuated by a rotary pump; the pressure was about 10 Pa.
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This pump was stopped during measurement. When the pressure was smaller than 40

Pa, the Q-values of the leaf spring without the eddy current damping was independent

of the pressure. Thus, the loss caused by the residual gas was smaller than the original

loss in the leaf spring.

6.4.2 Measurement of thermal noise
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Figure 6.13: The spectrum of the output of the interferometer when the leaf spring is replaced with a

fixed mirror. The thick line is the spectrum of the output of the interferometer. The thin line represents

the shot noise. The spectrum in the frequency range lower than 150 Hz is probably dominated by the

seismic motion. The sensitivity in the frequency region higher than 150 Hz is limited by the shot noise.

The thermal fluctuation of the leaf spring with inhomogeneous eddy current damping

was observed with the Michelson interferometer. The output of the interferometer was

recorded by the spectrum analyzer. In order to investigate the limit of the measurement

of this interferometer, the leaf spring was replaced with a fixed mirror. The spectrum
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of the interferometer in this case is shown in Fig.6.13. The thick line is the spectrum

of the output of the interferometer. Comparing Fig.6.13 with Fig.6.7 proves that this

interferometer sensitivity is sufficient to measure the thermal motion of the leaf spring

with inhomogeneous eddy current damping near 300 Hz. The spectrum in the frequency

range lower than 150 Hz is probably dominated by the seismic motion. The sensitivity

in the frequency region higher than 150 Hz is limited by the shot noise. The shot noise

is the length measurement error caused by the quantum fluctuation of the number of

the photons. The power spectrum, Gi, of the shot noise of the photo-current in a photo

detector is expressed as

Gi = 2eIDC, (6.51)

where e is the elementary electric charge4, IDC is the DC photo-current. The output

voltage of the photo detector is proportional to the photo-current. This proportional

coefficient is R. The spectrum, GPD, of the shot noise of the output voltage of the photo

detector is written in the form

GPD = 2eRVDC, (6.52)

where VDC is the DC output voltage; VDC = RIDC. The interferometer in this experiment

has two photo detectors. Thus, the shot noise, Gshot, of the interferometer is described

as

Gshot =
GPD1 + GPD2

Hinter
=

2e(R1VDC1 + R2VDC2)

Hinter
, (6.53)

where Rn, VDCn , and GPDn are the R, VDC, and GPD of the n-th photo detector, respec-

tively. The thin line in Fig.6.13 corresponds to the shot noise evaluated from Eq.(6.53).

In order to keep the interferometer at the operation point, the output signal of the in-

terferometer was used to control the position of the reference mirror. Thus, the spectrum

of the output of the interferometer was corrected in order to remove the effect of the feed-

back. The method of the correction of the output signal is discussed here. The outline of

the control system of the interferometer is reviewed in Fig.6.8. The output signal of the

interferometer was sent to the PZT of the reference mirror through frequency filters. The

strain of the PZT is proportional to the applied voltage. Its voltage to strain coefficient5

4e = 1.6 × 10−19 [C].
5In this experiment, HPZT = 1.6 × 10−8 [m/V].
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X - Hinter

HfilterHPZT

Vout

Figure 6.14: The block diagram of the control system of the interferometer. The parameter, X , is the

displacement of the leaf spring. The value, Vout, is the output of the interferometer. The expression,

Hinter, is the transfer function of the interferometer in Eq.(6.40). The values, Hfilter and HPZT, are the

transfer function of the filter and the PZT, respectively.

is HPZT. The position of the reference mirror was controlled to cancel the displacement

of the leaf spring. The block diagram of this control system is shown in Fig.6.14. The

parameter, X, is the displacement of the leaf spring. The value, Hinter, is the transfer

function of the interferometer in Eq.(6.40). The expression, Vout, is the output of the

interferometer. The values, Hfilter and HPZT, are the transfer functions of the filter and

PZT, respectively. From Fig.6.14, the relation between X and Vout is obtained:

Ṽout = Hinter(X̃ − HfilterHPZTṼout). (6.54)

From Eq.(6.54), the displacement of the leaf spring is expressed as

X̃ =
1 + G

Hinter
Ṽout, (6.55)

where G is the open loop gain defined by

G = HinterHfilterHPZT. (6.56)

From Eq.(6.55), the power spectrum, GX , of the fluctuation of the leaf spring is given√
GX =

|1 + G|
Hinter

√
GVout , (6.57)

where GVout is the power spectrum of Vout. The transfer function of the interferometer,

Hinter, was derived from Eq.(6.40). The output, Vout, of the interferometer and its open

loop gain, G, were measured. The open loop gain in this experiment6 is shown in Fig.6.15.

From these values and Eq.(6.57), the spectrum, GX , of the thermal motion is derived.
6The peak at 300 Hz is the resonance of the support of the PZT.
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Figure 6.15: The open loop gain, G, in this experiment. The upper and lower graphs represent the

amplitude and the phase of G, respectively.

6.4.3 Measurement of the transfer function

The details of the measurement of the transfer function, H(ω), which is the ratio of

the displacement, X̃, of the leaf spring to the applied force, F̃ , are described here. Using

the electrostatic actuator, the oscillatory force was applied at the observation point of

the leaf spring. The vibration of the leaf spring was observed with the interferometer.

The voltage of the actuator and the output of the interferometer were recorded by the

spectrum analyzer. From this measurement, we obtained the transfer function, H(ω).
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X
- Hinter

HfilterHPZT

Vout

F
Hexciter H(w)Vin

Figure 6.16: The block diagram of the control system of the measurement of the transfer function,

H(ω), of the leaf spring. The voltage, Vin, is applied on the electrostatic actuator, Hexciter is the transfer

function of the exciter in Eq.(6.44), and F is the force which the actuator applies on the leaf spring. The

expression, X , is the displacement of the leaf spring. The value, Hinter, is the transfer function of the

interferometer in Eq.(6.40), and Vout is the output of the interferometer. The expressions, Hfilter and

HPZT, are the transfer function of the filter and the PZT, respectively.

In this experiment the correction of the feed back was necessary. The block diagram of

the control system of this measurement is shown in Fig.6.16. The voltage, Vin, is applied

on the electrostatic actuator; Hexciter is the transfer function of the exciter in Eq.(6.44).

The value, F , is the force which the actuator applies on the leaf spring. The expression,

H(ω), is the transfer function of the leaf spring, and X is the displacement of the leaf

spring. The value, Hinter, is the transfer function of the interferometer in Eq.(6.40), and

Vout is the output of the interferometer. The expressions, Hfilter and HPZT, are the transfer

function of the filter and the PZT, respectively. From Fig.6.16, Vout is written in the form

Ṽout = Hinter[H(ω)HexciterṼin − HPZTHfilterṼout]. (6.58)

From Eq.(6.58), H(ω) is described as

H(ω) =
Ṽout

Ṽin

1 + G

HinterHexciter
. (6.59)

The ratio, Ṽout/Ṽin, and the open loop gain, G, were measured. The transfer functions,

Hinter and Hexciter, were derived from Eqs.(6.40) and (6.47), respectively. The power

spectrum of the thermal noise was obtained from the application of the fluctuation-

dissipation theorem, Eq.(3.9), to the measured transfer function, H(ω) in Eq.(6.59).
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6.4.4 Measurement of Q-values

In the estimation of the mode expansion, measured Q-values were used. The Q-value of

the second mode of the leaf spring was derived from the decay time of its resonant motion

and Eq.(3.49). The electrostatic actuator was used to excite the resonant vibration. The

Q-value of the first mode was estimated from the width of its resonant peak in the

transfer function and Eq.(3.51) because its Q-value was low. The results are summarized

in Table.6.9.

6.5 Results

The measured spectra of the thermal motions were compared with the evaluation de-

rived from the advanced and traditional mode expansion. The results proved that the

advanced mode expansion is a correct method to estimate the thermal noise. On the con-

trary, the estimation of the traditional mode expansion did not agree with the measured

values. This is the first experimental results which show the failure of the traditional

mode expansion. The thermal fluctuations evaluated from the measured transfer func-

tions were consistent with the motions of the leaf spring measured by the interferometer.

Thus, it was confirmed that the measured motions were the thermal fluctuations. The

parameters for the estimation of the mode expansion and these experimental results are

summarized here.

6.5.1 Parameters for the estimation

In order to obtain the spectra from the advanced and traditional mode expansion,

all the parameters, mn, ωn, Qn(n=1,2), and α12, were estimated7 from the measurements

because these experimental values are slightly different from the calculated values in Ta-

bles.6.3, 6.4, 6.5, and 6.6. The angular resonant frequencies, ωn, were measured directly.

The Q-values, Q1 and Q2, were derived from the measurements of the width of the res-

onant peak and the decay time of the resonant motion, respectively. The effective mass,

mn, is defined by Eq.(6.12). In this experiment, the point illuminated by the laser beam

7Since the dissipation was dominated by the eddy current damping, the loss angle was given by

Eq.(6.13) and the measured Q-values.
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was slightly different from the points A and B in Fig.6.2. The correction of the effective

mass is considered here. Between the resonant frequencies, there is an anti-resonant fre-

quency. At this frequency, the absolute value of the transfer function, H(ω), of the leaf

spring is a local minimum. The angular anti-resonant frequency, ωanti, between the first

and second modes is expressed as [62, 63, 64]

ωanti =

√
m2

m1
ω2. (6.60)

The frequencies, ωanti and ω2, were evaluated from the measurement of the transfer

function. From Eq.(6.60) and these measured values, ω2 and ωanti, the ratio of m2 to m1

was calculated. The point, xo, illuminated by the laser beam was obtained from m2/m1

because m2/m1 depends on xo. Putting the estimated xo into Eq.(6.12), m1 and m2 were

given. The coupling coefficient, α12, was obtained from multiplying the calculated value,

α12/|α12|max, in Table.6.6 times the maximum amplitude of α12,
√

m1ω1
2φ1m2ω2

2φ2,

derived from the measured values, mn, ωn, and Qn.

The resonant frequencies8, effective masses9, and Q-values derived from the experi-

ments are summarized in Tables.6.7, 6.8, and 6.9. The measured Q-values in Table.6.9

were about the same as the calculated values in Table.6.5. Thus, the thermal motions

of the leaf spring in this experiment were roughly comparable to the evaluated spectra

in Fig.6.7. The leaf spring was sufficiently damped for this experiment. The Q-values of

the leaf spring without the eddy current damping were about 1000; Table.6.9 then shows

that the original loss of the leaf spring was negligible.

6.5.2 Test of new methods of estimation

The measured and evaluated thermal motion spectra for all of four configurations are

shown in Fig.6.17. The positions of the magnets and the observation point are indicated

above each graph. Each graph contains the spectrum of the measured thermal motion

(thick solid line), the estimated spectra obtained by the advanced (thin solid line) and

8The measured resonant frequencies in Table.6.7 are smaller than the calculated resonant frequencies

in Table.6.3. Since the dimensions of the leaf spring was measured precisely, we conclude that the

effective Young’s modulus is smaller than that in Table.6.2.
9From the correlation of the effective masses, the distance between the observed point and points A

and B in Fig.6.2 are about 1 mm. In all cases, the observation points were shifted toward the free end.
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Table 6.7: Resonant frequencies of the leaf spring (measurement).

f1 f2

AdAo 60.5 Hz 360.6 Hz

BdAo 61.2 Hz 361.2 Hz

AdBo 61.3 Hz 361.9 Hz

BdBo 61.3 Hz 361.2 Hz

Table 6.8: Effective masses of the leaf spring (measurement).

m1 m2

AdAo 13.2 mg 17.7 mg

BdAo 13.5 mg 20.7 mg

AdBo 35.9 mg 94.7 mg

BdBo 38.2 mg 67.8 mg

Table 6.9: Q-values of damped leaf spring (measurement).

Q1 Q2

AdAo 3.5 31

BdAo 6.0 67

AdBo 3.2 27

BdBo 6.2 77

traditional (thin dashed line) mode expansions, and the shot noise level (thin long dashed

line) of the interferometer. Figure 6.17 shows that the measured spectra in the frequency

range between the first and second modes agreed with the spectra estimated from the

advanced mode expansion in all cases. Therefore, the validity of the advanced mode

expansion was proved. It was also proved that the traditional mode expansion is not a

correct estimation method when the loss is distributed inhomogeneously. These were the

first experimental results which show the failure of the traditional mode expansion.

The fluctuation spectra obtained from the direct measurements and evaluation based

on the measured transfer function are shown in Fig.6.18. Each graph contains the spec-
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trum of the directly measured motion (thick solid line), the estimation from the measured

transfer function using the fluctuation-dissipation theorem (open circles), the spectrum

obtained from the advanced mode expansion (thin solid line), and the shot noise level

(thin long dashed line) of the interferometer. Figure 6.18 shows that the measured mo-

tions agreed well with the FDT-based estimation in the frequency region between the

first and second modes. Thus, it was confirmed that the measured spectra corresponded

to the thermal fluctuations. Consequently, Figs.6.17 and 6.18 prove that the advanced

mode expansion is valid even when the dissipation is not homogeneous. In addition, the

failure of the traditional mode expansion was shown experimentally.
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Figure 6.17: Results of measurements. The positions of the magnets and the observation point are

indicated above each graph. The thick solid line is the measured spectrum of the thermal motion. The

thin solid and dashed lines are estimation using advanced and traditional mode expansions, respectively.

The thin long dashed line is the shot noise level of the interferometer.
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Figure 6.18: Results of measurements. The positions of the magnets and the observation point are

indicated above each graph. The thick solid line is the measured spectrum of the thermal motion.

The open circles are the spectrum evaluated from the measured transfer function using the fluctuation

dissipation theorem. The thin solid line is estimation using the advanced mode expansion. The thin

long dashed line is the shot noise level of the interferometer.
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Figure 6.18 shows that the evaluation from the measured transfer function was well

consistent with the calculation of the advanced mode expansion10. However, there were

discrepancies between the directly measured spectra and those obtained from the mea-

sured transfer function near 300 Hz in AdAo and BdBo. These differences were attributed

to the contribution of the shot noise of the interferometer. Fig.6.19 shows that the mea-

sured thermal fluctuation (thick solid line) was consistent with the summation (black

dots) of the estimation obtained from the transfer function and the shot noise.
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Figure 6.19: The spectra including the contribution of the shot noise of the interferometer. The positions

of the magnets and the observation point are indicated above each graph. The thick solid line is the

measured spectrum of the thermal fluctuation. The open circles are the thermal motion given from

the measured transfer function. The black dots represent the summation of the thermal fluctuation

evaluated from the transfer function and the shot noise. The thin solid line is the estimation derived

from the advanced mode expansion. The thin broken line is the shot noise of the interferometer.

In no case the measured spectra of the thermal motion agreed with the evaluation

from the measured transfer function below 100 Hz although the spectra derived from the

measured transfer function were consistent with the estimation of the advanced mode

10There were slight differences between the spectrum obtained from the measured transfer function and

the estimation from the advanced mode expansion near 300 Hz in AdAo and BdBo. These discrepancies

corresponded to the thermal fluctuations caused by the original loss in the leaf spring.
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expansion. In this frequency range, the motion of the leaf spring was not dominated by

the thermal motion. Figure 6.20 show the fluctuation of the leaf spring with (thick line)

and without (thin line) the eddy current damping. Even though the magnets for the

eddy current damping were removed, the fluctuation in the motion below 100 Hz did not

diminish. Thus, the motion in this frequency region was dominated by other than the

thermal motion. Probably, this fluctuation was caused by seismic motion.
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Figure 6.20: The fluctuation of the leaf spring with and without the eddy current damping. The solid

and thin lines correspond to the motion with and without eddy current damping, respectively.
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Chapter 7

Mirror with inhomogeneous loss:

Estimation

From the discussions in Chapter 4, it has been shown that the traditional mode ex-

pansion used frequently to estimate the thermal noise is not correct when the dissipation

is inhomogeneous. On the other hand, the new methods, the advanced mode expansion

in Chapter 4 and the direct approaches described in Chapter 5, appear to be valid even

when the loss is not homogeneous as confirmed by the experiments in the previous chap-

ter. In this chapter, the new methods are applied to the evaluation of the thermal noise

of mirrors with inhomogeneous losses in the interferometric gravitational wave detectors.

In the next chapter, this estimation will be checked experimentally in an aluminum drum.

The thermal noise of the mirrors has been estimated using the traditional mode ex-

pansion [50, 51, 52]. However, in general, the dissipation in mirrors are inhomogeneous.

For example, the measurements of Q-values suggest that the loss is localized near the

magnets [80] and stand-off’s [53] glued on the mirrors and on the surfaces of the mirror

[54, 82, 83]. If the loss is concentrated in a small volume, the thermal noise of the mirrors

is largely different from the estimation of the traditional mode expansion as discussed in

Chapter 4; since the thermal fluctuation of the mirror consists of contributions of many

modes, the correlations caused by highly inhomogeneous losses yield large contributions.

Moreover, the thermal noise derived from the traditional mode expansion is already the

limiting factor of sensitivity around few hundreds Hz in all current projects. Thus, the
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large discrepancy from the estimation of the traditional mode expansion will have large

effects on the strategy to handle the thermal noise in the interferometric detectors. Nev-

ertheless, the thermal noise of mirrors caused by the inhomogeneous loss was seldom

studied1. In this chapter, the difference between the thermal noise estimated from di-

rect approach and the calculation of the traditional mode expansion are investigated

quantitatively.

7.1 Qualitative consideration

In order to understand the outline of the thermal noise of the mirror with inhomoge-

neous loss, the discrepancy between the actual thermal noise and the estimation obtained

from the traditional mode expansion are first considered qualitatively [68]. In the tradi-

tional mode expansion, the thermal noise is derived from Q-values of resonant modes. On

the other hand, the observation band of the gravitational wave detectors is lower than the

first resonant frequency of the mirror. Therefore, it is discussed how an inhomogeneous

loss contributes to the Q-values and to the thermal noise in the observation band.

Figure 7.1 shows the deformation of a mirror when the oscillatory pressure is applied

on it. The arrows correspond to the pressure. The profile of the pressure is the same as

the beam profile. In the left and right sides of Fig.7.1, the frequency of the pressure is

at the mirror’s first mechanical resonance and in the observation band, respectively. The

Q-values represent dissipated energy in the left-hand side of Fig.7.1. The thermal noise

in the observation band is related to the loss in the right-hand side of Fig.7.1 governed by

the fluctuation-dissipation theorem. The left-hand side of Fig.7.1 suggests that every part

of the mirror has strain on resonance. This implies that the energy is distributed over

the mirror. Thus, the inhomogeneous loss decrease Q-values almost independently from

its location. The right-hand side of Fig.7.1 shows that below resonance only the parts

near the beam spot have strain. The strain energy is concentrated near the beam spot.

Thus, if the localized loss is near the beam spot, the loss contributes to the thermal noise

in the observation band more efficiently than to the Q-values. On the other hand, when

1Logan et al. has researched the loss of the mirror with stand-off’s (lugs) [84]. Gillespie has studied

the effects of the loss in spacers between a mirror and magnets [85]. Levin has estimated roughly the

thermal noise of the mirror in which the loss is concentrated on the reflective coating [68].
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(1) At resonant frequency

energy : homogeneous

(2) In observation band
      (<< resonant frequency)

energy : inhomogeneous

Figure 7.1: The deformation of a mirror when the oscillatory pressure is applied on the mirror. The

arrows correspond to the pressure. The profile of the pressure is the same as the beam profile. The

frequency of the oscillatory pressure is the resonant frequencies (left-hand side) and in the observation

band which is lower than the resonant frequencies (right-hand side).

the concentrated loss is far from the beam spot, the loss has a far smaller effect on the

thermal noise in the observation band than on Q-values. Consequently, the loss near the

beam spot generates the thermal noise larger than what estimated with the traditional

mode expansion. On the contrary, if the loss is far from the beam, the thermal noise will

be smaller.

The thermal noise is much different from the estimation obtained from the traditional

mode expansion when the loss is localizes in a small volume in the mirrors. From the

discussion in Chapter 4, the large inhomogeneity of the dissipation causes a lot of large

correlations between the fluctuations in the motions of the modes. Since the thermal

motion of the mirror includes contributions of many modes, the large correlations cause

large discrepancy between the actual thermal noise and the estimation of the traditional

mode expansion. Therefore, it is important to investigate this discrepancy quantitatively.
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7.2 Distribution and property of loss

The distributions and properties of loss in the mirror are introduced here.

7.2.1 Distribution

There are three categories of the models for the distribution of the dissipation: Ho-

mogeneous, Surface, and Point-like2.

Homogeneous loss corresponds to the intrinsic dissipation of the material of the mirror.

The thermal noise caused by the homogeneous loss is consistent with the evaluation

obtained from the traditional mode expansion. Thus, this model is used to check the

validity of the estimation of new methods: the direct approaches and the advanced mode

expansion.

Front
surface

Back
surface

Cylindrical
surface

Surface

Figure 7.2: The three models in the category of Surface loss. The shadows show surfaces on which the

dissipation is localized. The arrows represent the laser beams.

Surface loss models corresponds to the surface damage caused by the inadequate polish

or the loss of the dielectric reflective coating or simply surface accumulation of substrate

stress. Figure 7.2 shows the three main models of Surface loss distributions considered

here. The shadows show the surfaces on which the dissipation can be localized. The

arrows represent the laser beams. The left side of Fig.7.2 corresponds to the mirror

2In this thesis, the dissipation induced by wires is not considered.
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with the dissipation localized on the beam reflecting surface. This model is called Front

surface loss. The right side of Fig.7.2 represents the mirror with loss concentrated on

the opposite surface. This distribution is called Back surface loss. The middle of Fig.7.2

shows that the cylindrical surface is damped. This model is called Cylindrical surface

loss.

Stand-offFront magnet Back magnet

Point-like

Figure 7.3: The three models in the category of Point-like loss. The black point are the position of the

drive magnets. The small cylinders are the suspension stand-off’s. The arrows represent the laser beams.

The models in the Point-like loss category correspond to mirror with dissipation local-

izing at points. The losses in this category are typically caused by attachments to mirrors.

For example, the thin magnets are glued on the mirrors back to control their positioning.

The stand-off’s, thin short bars, are glued on the cylindrical surface to fix the suspension

wires to the mirror. The experiments show that the adoption of the stand-off’s increases

the Q-value of a violin mode [55]. Figure 7.3 shows the three models of Point-like loss

distributions taken into consideration here. The arrows represent the laser beams. The

left and center parts of Fig.7.3 show the mirrors with drive magnets. The black points

indicate the positions at which the magnets are glued. On the left side, magnets are

glued on the flat surface illuminated by the beam. This model is called Front magnet.

The center part represents magnets glued on the opposite flat surface. This model is

called Back magnet. The configuration of the Back magnet model is the same as that

of the mirror in TAMA300 and most other interferometers. The right part of Fig.7.3

corresponds to a mirror with suspension stand-off’s. The cylinders in Fig.7.3 represent

131



CHAPTER 7. MIRROR WITH INHOMOGENEOUS LOSS: ESTIMATION

the stand-off’s. This model is called ”Stand-off”. Since the mirrors in TAMA300 are

suspended by two-loop wires, four stand-off’s are glued on a mirror. All stand-off’s are

on a horizontal plane which includes the center of the mirror.

7.2.2 Properties

It is supposed that the mirrors are subject to inhomogeneous structure damping. This

dissipation is described using the complex Young’s modulus as Eq.(4.18):

E = E0[1 + iφ(r)], (7.1)

where φ is the loss angle. The loss angle is independent of the frequency. However, φ

depends on the position, r. In order to simplify the consideration, φ is not zero only in

the damped region. In addition, the loss angle is assumed to be a constant in the damped

volume. Thus, the loss angle is defined by

φ(r) =

{
φ (r in the damped region)

0 (otherwise)
. (7.2)

7.3 Method of estimation

In order to study quantitatively the discrepancy between the actual thermal noise

of the mirror with inhomogeneous losses and the evaluation of the traditional mode

expansion, one of the direct approaches was used. The advanced mode expansion was

not adopted because it would be necessary to take many modes into account. The detail of

the calculation of the direct approach and the traditional mode expansion are considered

here.

7.3.1 Direct approach

In order to calculate the actual thermal noise of mirrors with inhomogeneous losses, a

direct approach was used. In this study, Levin’s approach was adopted. In this method,

the fluctuation-dissipation theorem is expressed as Eq.(5.1):

GX(f) =
2kBT

π2f 2

Wloss

F0
2 . (7.3)
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The function, GX , is the power spectrum of the fluctuation of the observed coordinate,

X, and f is the frequency. Since the deformation of the surface of the mirror is monitored

with the interferometer, X is defined by

X(t) =

∫
surface

uz(r, t)P (r)dS, (7.4)

where uz is the z-component of the displacement, u, of the mirror. The z-axis is parallel to

the optical axis. The weighting function, P , represents the beam profile. Since the beam

profile is Gaussian and the center of the mirror is on the optical axis in interferometers,

the beam profile can be written in the form,

P (r) =
2

πr0
2

exp

(
−2r2

r0
2

)
, (7.5)

where r0 is the beam radius, r is the distance from the optical axis.

The value, Wloss, in Eq.(7.3) is the average dissipated power when the oscillatory

pressure, F0 cos(2πft)P (r), is applied on the mirror. The dissipated power, Wloss, is

written in the form

Wloss = 2πf

∫
E(r)φ(r)dV, (7.6)

where E is the elastic energy density when the strain is maximum, and φ is the loss angle

in Eq.(7.1). The elastic energy density, E , is described as

E(r) =
E0

2(1 + σ)


 3∑

i,j=1

uij
2 +

σ

1 − 2σ

(
3∑

i=1

uii

)2

 , (7.7)

where E0 is the Young’s modulus and σ is the Poisson ratio. The strain tensor, uij, is

defined by

uij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
, (7.8)

where ui is the i-th component of the displacement, u. Since φ(r) is given as Eq.(7.2), the

problem on the estimation of Wloss in Eq.(7.6) is the calculation of E(r). The observation

band of the gravitational wave detectors is lower than the first resonant frequency of

mirrors. Thus, it is an appropriate approximation that the static pressure, F0P (r), is

applied on the surface to estimate E(r).
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Since a static pressure is applied on a mirror, the center of the mirror is accelerated

uniformly. This accelerated motion is a difficulty in the calculation of the strain of the

mirror. Inertial relief is a method to avoid this difficulty. In this method, an inertial force,

which cancels the static pressure, is applied on the mirror. Thus, the accelerated motion

vanishes. This situation corresponds to that the observer moves at the same acceleration

as that of the mirror. Therefore, the strain of the mirror is the same as that of the mirror

supported by the pressure, P (r), in an uniform gravitational field.

The analytical evaluation of E(r) of a finite elastic cylinder is difficult. ANSYS, a

common program for the finite element numerical analysis method (FEM), was used.

Fig.7.4 shows a solution derived from ANSYS. In the FEM, a mirror is divided into small

meshes. Test functions are used to describe motions of these meshes. Parameters of the

test functions are derived from the equation of motion and boundary conditions. The

dissipated power, Wloss, is derived from the elastic energy density, E , of each mesh. In

this estimation, the tetrahedron meshes were adopted. The size of the mesh was ten

times smaller than the radius of the mirror. The number of the meshes was about twenty

thousands. In order to confirm that the estimation of the thermal noise did not depend

on how to divide a mirror into meshes, the thermal noise was evaluated from three kinds

of meshing. The results proved that the estimated value was independent of the meshing.

7.3.2 Traditional mode expansion

The dissipation is described using the structure damping model. In addition, the ob-

servation band is lower than the resonant frequencies of the mirror. Thus, from Eq.(3.77),

the formula of the thermal noise derived from the traditional mode expansion is written

as

Gmirror(f) =
∑

n

4kBT

mnωn
2Qn

1

ω
, (7.9)

where mn, ωn, and Qn are the effective mass, angular resonant frequency, and Q-value of

the n-th mode, respectively. Thus, the problem is reduced to the calculation of mn, ωn,

and Qn.

The method proposed by Hutchinson [49] is the most convenient to calculate the

parameters in Eq.(7.9). This method is a semi-analytical algorithm to simulate the
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Figure 7.4: A solution derived from ANSYS.

resonant modes of an isotropic elastic cylinder. The resonant angular frequency, ωn, and

the displacement, wn, of the n-th mode are derived from this method. From Eq.(3.78),

the effective mass, mn, is expressed as

mn =

∫
volume

ρ|wn(r)|2dV∣∣∫
surface

wn,z(r)P (r)dS
∣∣2 , (7.10)

where ρ is the density, wn,z is the z-component of wn. The Q-value, Qn, is written as

Qn =

∫ En(r)dV∫ En(r)φ(r)dV
, (7.11)
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where En is the elastic energy density of the n-th mode. This elastic energy density,

En(r), is derived from substituting the i-th component of the displacement of the n-th

mode, wn,i, for ui in Eq.(7.7). Thus, all the parameters in Eq.(7.9) are derived from the

Hutchinson’s method.

7.4 Results

The results of the quantitative research of the discrepancy between the evaluated

thermal fluctuations from Levin’s approach and from the traditional mode expansion are

summarized here. The mirror in this discussion was the same of the TAMA project. The

material was fused silica. The mirror was 50mm in radius and 60mm in height. The

center of the beam spot was on the center of the flat surface of the mirror. Since the

selection of the Fabry-Perot cavity geometry affects the beam radii at the mirrors, the

dependence of the amplitude of the thermal noise on the beam radius were investigated3.

7.4.1 Homogeneous

The thermal noise caused by the homogeneous loss is consistent with the traditional

mode expansion. Thus, the mirror with the homogeneous dissipation was used to confirm

the validity of Levin’s approach and ANSYS. Figure 7.5 shows the estimation of the

amplitude of the thermal noise at 100 Hz on the beam radius. Black dots and open

squares represent the results of Levin’s approach and the traditional mode expansion,

respectively. In this calculation, the loss angle, φ, is 10−6. The results of Levin’s approach

agree with those of the traditional mode expansion. Therefore, Levin’s approach and

ANSYS do not have serious problems.

7.4.2 Surface

The thermal noise caused by the loss concentrated on surfaces are considered here.

3The beam radius of TAMA300 is 8mm at the front mirror and 15mm at the end mirror.
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Figure 7.5: Thermal noise caused by homogeneous loss. This graph shows the dependence of the am-

plitude of the thermal noise at 100 Hz on the beam radius. Black dots and open squares represent the

results of Levin’s approach and the traditional mode expansion, respectively.

Front and Back surface

The thermal fluctuations of the Front and Back surface models in Fig.7.2 are discussed.

In this estimation, the loss layer was 15µm in thickness, the same as the dielectric coating

in TAMA. In the loss layer, φ was assumed to be 1.2 × 10−2. From this distribution of

losses and Eq.(7.11), the resulting Q-values were of the order of 105. These numbers were

the same as those observed in the suspended mirror of TAMA [80, 81].

The results are shown in Fig.7.6. Closed and open circles and open squares represent

the thermal motions of Front and Back surface models calculated from Levin’s approach

and the estimation of the traditional mode expansion, respectively. The results of the

traditional mode expansion for Front and Back surface models are the same because

the Q-values are the same in both cases. These results show that there is the large

discrepancy between the values derived from Levin’s approach and the traditional mode

expansion. The thermal noise of the Front surface model is two or three times larger

than the evaluation from the traditional mode expansion. On the contrary, the thermal
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Figure 7.6: Thermal fluctuations caused by losses localized on the mirror’s flat surfaces. This graph

shows the beam radius dependence of the amplitude of the thermal noise at 100 Hz. Closed and open

circles and open squares represent the thermal motions of the Front and Back surface models calculated

from Levin’s approach and the estimation of the traditional mode expansion, respectively. The results of

the traditional mode expansion for the Front and Back surface models are the same because the Q-values

are the same in both cases.

motion of Back surface model is three or four times smaller. Levin predicted that the

amplitude of the thermal noise of Front surface model is at least
√

R/r0 times larger

than what calculated with the traditional mode expansion [68], where R is the radius of

the mirror. Levin’s conclusion is consistent with Fig.7.6.

The beam radius dependence of the values estimated from Levin’s approach is different

from what derived from the traditional mode expansion. The traditional mode expansion

predicts that the amplitude is inversely proportional to the square root of the beam radius.

However, the amplitude of noise in the Front surface model is inversely proportional to

the beam radius. This result is also consistent with Levin’s discussion [68]. On the

contrary, the amplitude of noise in the Back surface model is independent of the beam

radius. This is because the loss is far from the the beam spot and the elastic energy

density at the lossy areas is independent of the beam radius.
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The thermal fluctuations of the Front and Back surface models calculated from the

traditional mode expansion are the same. Instead, Levin’s approach predicts that the

thermal noise of the Front surface is larger than that of Back surface. This is an evidence

which shows that the traditional mode expansion is not a appropriate method when the

loss is inhomogeneous. Levin predicted that the thermal noise caused by the loss which

is near the beam spot is larger than that caused by the loss which is far from the beam

spot [68]. This prediction agrees with Fig.7.6.

Cylindrical surface

The thermal noise of the mirror of the Cylindrical surface loss model are described. In

this estimation, the loss layer was 0.1 mm in thickness. In the loss layer, φ was assumed

to be 1 × 10−3. From this distribution of the loss and Eq.(7.11), the estimated Q-values

were of the order of 105 as observed in the suspended mirror of the TAMA [80, 81].
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Figure 7.7: Thermal noise caused by the loss localized on cylindrical surface. This graph shows the

dependence of the amplitude of the thermal noise at 100 Hz on the beam radius. Dots and open squares

represent the results of Levin’s approach and the traditional mode expansion, respectively.

The results are shown in Fig.7.7. Dots and open squares represent the estimated values

of Levin’s approach and the traditional mode expansion, respectively. These results show
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that there is a large difference between the values obtained from Levin’s approach and

the traditional mode expansion. The thermal noise calculated with the Levin’s approach

is about five times smaller than the evaluation of the traditional mode expansion.

The beam radius dependence of the thermal fluctuations estimated from Levin’s ap-

proach is different from that obtained from the traditional mode expansion. The tra-

ditional mode expansion predicted that the amplitude is inversely proportional to the

square root of the beam radius. However, the noise amplitude calculated with Levin’s

approach is independent of the beam radius. Since the loss is far from the the beam spot,

the elastic energy density near the loss is independent of the beam radius.

7.4.3 Point-like

The thermal noise caused by point-like losses are considered here.

Front and Back magnet

The thermal motions of the Front and Back magnet models are discussed. In this

estimation, the magnets were 45 mm away from the center of the flat surface. The

radius of a magnet was 0.5 mm. The distances from the center and the dimensions of

the magnets in this model were the same as in TAMA. The thickness of the equivalent

loss layer was 0.1 mm. In these damped regions, φ was assumed to be 1. From this

distribution of losses and Eq.(7.11), the calculated Q-values were of the order of 105, the

same as in the mirror with magnets of TAMA [80, 81].

The results are shown in Fig.7.8. Closed and open circles and open squares represent

the thermal fluctuations of the Front and Back magnet models evaluated from Levis’s

approach and the estimation of the traditional mode expansion, respectively. The esti-

mated values derived from the traditional mode expansion in both cases are the same

because the Q-values are the same. In the Front and Back magnet models, the amplitude

estimated from Levin’s approach is about ten and twenty times smaller than the evalu-

ation from the traditional mode expansion, respectively. Thus, the discrepancy between

the calculations of Levin’s approach and the traditional mode expansion is larger than

that of the Surface models in Fig.7.2. The thermal noise induced by the loss localizing in

small regions is greatly different from the estimation derived from the traditional mode

expansion.
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Figure 7.8: Thermal motions of the Front and Back magnet models. This graph shows the dependence

of the amplitude of the thermal noise at 100 Hz on the beam radius. Closed and open circles and

open squares represent the thermal noise of the Front and Back magnet models evaluated from Levin’s

approach and the estimation of the traditional mode expansion, respectively. The computations of the

traditional mode expansion for the Front and Back magnet models are the same because the Q-values

are the same in both cases.

The beam radius dependence of the thermal noise derived from Levin’s approach

is different from that obtained from the traditional mode expansion. The traditional

mode expansion predicts that the amplitudes in both cases are inversely proportional to

the square root of the beam radius. However, noise amplitudes calculated with Levin’s

approach are independent of the beam radius. Since the loss is far from the the beam

spot, the elastic energy near the loss is independent of the beam radius.

The thermal motions of the Front and Back magnet models calculated from the tradi-

tional mode expansion are the same. However, Levin’s approach predicts that the thermal

noise of the Back magnet model is smaller than that of the Front magnet model. This

is an evidence which shows that the traditional mode expansion is not an appropriate

method when the loss is inhomogeneous. Levin predicted that the thermal noise caused

by the loss which is near the beam spot is larger than that caused by the loss which is

141



CHAPTER 7. MIRROR WITH INHOMOGENEOUS LOSS: ESTIMATION

far from the beam spot [68]. Levin’s conclusion agrees with Fig.7.8.

Stand-off

The thermal noise caused by the stand-off’s are described here. In this calculation, all

four stand-off’s were on a horizontal plane which included the center of the mirror. The

distance between a stand-off and a flat surface of the mirror was 20 mm. The radius and

length of a stand-off were 1 mm and 4 mm, respectively. This specification was the same

as of TAMA. The thickness of the equivalent loss layer was 0.1 mm. In these damped

regions, φ was assumed to be 0.08. From this distribution of the loss and Eq.(7.11), the

calculated Q-values were of the order of 105, the same as observed with stand-off’s of

TAMA [80, 81].
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Figure 7.9: Thermal noise caused by the stand-off’s. This graph shows the dependence of the amplitude

of the thermal noise at 100 Hz on the beam radius. Dots and open squares represent the computations

of Levin’s approach and the traditional mode expansion, respectively.

The results are shown in Fig.7.9. Dots and open squares represent the results of

Levin’s approach and the traditional mode expansion, respectively. These results show

that there is the large difference between the values obtained from Levin’s approach and
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the traditional mode expansion. The thermal noise estimated with Levin’s approach

is about twenty times smaller than the evaluation of the traditional mode expansion.

The discrepancy between the calculations of Levin’s approach and the traditional mode

expansion is larger than that of the Surface models in Fig.7.2. The thermal noise induced

by the loss localizing in small regions is greatly different from the estimation derived from

the traditional mode expansion.

The beam radius dependence of the thermal motions obtained from Levin’s approach

is different from what derived from the traditional mode expansion. The traditional

mode expansion predicts that the amplitude is inversely proportional to the square root

of the beam radius. However, the noise amplitude calculated with Levin’s approach is

independent of the beam radius. Since the loss is far from the the beam spot, the elastic

energy density near the loss is independent of the beam radius.

7.5 Inverse problem

The inverse problem shown in Fig.1.2 is to derive the information of the distribution

and properties of the losses separately from the thermal noise. The discussion in Chap-

ter 4 suggests that the measurements of the spectrum of the thermal noise at various

points should give clues of this inverse problem. The inverse problem of the mirror with

inhomogeneous losses are discussed here.

One of the ways to address the inverse problem is the observation of the motions at

the centers of the two flat surfaces. The computations of the traditional mode expansion

at both points are the same because the effective mass of all modes at both points are

the same. However, if the distribution of the loss is not symmetric, the fluctuation

at the center near the localized loss is larger. For example, a mirror with dissipation

concentrated on one flat surface is considered. The thermal motions at the centers of the

two flat surfaces correspond to those of the Front and Back surface models in Fig.7.6. The

thermal motion at the center of the surface on which the loss is concentrated is expected

to be ten times larger than that of the opposite surface. Consequently, the comparison

between the thermal motions at centers of the two flat surfaces suggests which flat surface

is plagued by the losses.

The observation of the fluctuations at points other than the centers of the flat surfaces

can indicate the distribution of the losses. As an example, the dependence of the thermal
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Figure 7.10: The direction of the displacement of the beam spot. The large open circle and small black

closed circles represent the mirror and the magnets, respectively. The arrow shows the direction of the

displacement of the beam spot.

noise on the distance between the beam spot and the center of the mirror is discussed

in the Front and Back magnet models. The direction of the displacement of the beam

spot is shown in Fig.7.10. The dependence of the thermal noise on the distance between

the beam spot and the center is shown in Fig.7.11. Closed and open circles represent

the thermal noise of the Front and Back magnet models, respectively. The parameters

are the same as those in Fig.7.8. The beam radius is 10 mm. The results derived from

the traditional mode expansion in both cases are the same because the effective masses

and Q-values are the same. Nevertheless, the thermal fluctuations in the Front and Back

magnet models are different from each other. Since the beam spot and the magnets are

on the same surface in the Front magnet model, the thermal noise is substantially larger

near the edge. On the contrary, the thermal noise has weak dependence on the distance

from the center in the Back magnet model because the distance between the magnets

and the beam spot is larger than the thickness of the mirror. Therefore, the observations

at various points on the flat surfaces may indicate the distance between the localized loss

and the beam spot.

Even without moving the beam spot, it is possible to obtain clues of the inverse

problem. The dependence of the thermal noise on the beam radius is investigated. From

the consideration in this chapter, the evaluation of the traditional mode expansion is
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Figure 7.11: Dependence of the thermal noise on the distance between the beam spot and the center of

the flat surface in the Front and Back magnet models. Closed and open circles represent the thermal

noise of the Front and Back magnet models, respectively. The parameters are the same as those in

Fig.7.8. The beam radius is 10 mm. The calculations of the traditional mode expansion in both the

models are the same because the Q-values and the effective masses are the same.

always roughly inversely proportional to the square root of the beam radius when the

beam spot is on the center of the flat surface. However, from Fig.7.6, the amplitude

of the thermal noise caused by the loss concentrated on the surface illuminated by the

laser beam is inversely proportional to the beam radius. On the other hand, the thermal

motions induced by losses far from the beam spot have weak dependence on the beam

radius. Thus, the dependence of the thermal noise on the beam radius indicates the

distance between the loss and the beam spot.

From the these consideration, the dependence of the thermal noise on the mirror

parameters shows the distribution of the dissipation. Levin’s approach and ANSYS are

useful methods to connect the dependence of the thermal noise to the distribution of the

loss.
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Chapter 8

Mirror with inhomogeneous loss:

Experiment

In the previous chapter, it was proved theoretically that there is large differences be-

tween actual thermal fluctuations of mirrors with inhomogeneous loss and computations

of the traditional mode expansion. These results have large impacts on the research of

the thermal noise of gravitational wave detectors. Therefore, these theoretical predic-

tions were checked experimentally. The thermal noise of a mechanical model of mirrors

with inhomogeneous losses was derived from the measured mechanical response using the

fluctuation-dissipation theorem. The results obtained from this experiment supported the

calculations in the previous chapter. The details of this experiment are described in this

chapter.

8.1 Outline of experiment

In order to test the theoretical predictions in the previous chapter, a mechanical model

of the mirror with exaggerated loss characteristics was used because the measurement

of the real mirror is too difficult for a small experiment. This model was called drum.

The drum was made of aluminum. Permanent magnets were positioned near one of

the drum membranes to introduce inhomogeneous dissipation through localized eddy
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current. Although the loss caused by the eddy current was large, direct measurement of

the thermal noise was still too difficult. Therefore, the thermal motion was evaluated from

the application of the fluctuation-dissipation theorem to the measured transfer function.

This experimental results were compared with the evaluation of both the advanced and

the traditional mode expansions.

8.2 Drum

Al

Observation
           point

40 mm

106 mm

Figure 8.1: Shape and dimensions of the drum. The drum was made of aluminum alloy (Al5056). The

shape of the drum was a hollow cylinder: 106 mm in diameter and 40 mm in height.

The drum is shown in Fig.8.1. The drum was made of aluminum alloy (Al5056). The

shape of the drum was a hollow cylinder: 106 mm in diameter and 40 mm in height.

Figure 8.2 shows the cross section of the drum. The shell of the cylindrical surface was

3 mm thick. The membranes of the drum were 0.5 mm thick. Thus, in practice, in

the resonant modes of the drum, only the flat surfaces vibrate. Since the drum was a

mechanical model of interferometer mirrors, the thermal fluctuation of the center of the

membrane was investigated. The frequency range of this measurement was lower than

the first resonant frequency (about 500 Hz) of the drum, just as observation band of the

gravitational wave detectors is lower than the first resonant frequency of mirrors.
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100 mm

40 mm

3 mm

0.5 mm

Figure 8.2: Cross section of the drum. The shell of the cylindrical surface was 3 mm thick. The

membranes were 0.5 mm thick.

Figure 8.3 shows the configurations of magnets used in order to introduce the desired

inhomogeneous dissipation. The arrows represent the probe laser beams. The small

squares correspond to the magnets. In both cases, only one side of the drum has large

dissipation induced by eddy current. In the left-hand side of Fig.8.3, the magnets are

positioned near the flat surface measured by the laser. This configuration is called Front

disk. In the right-hand side of Fig.8.3, the other flat surface has large losses. This

configuration is called Back disk. The distributions of the losses in Fig.8.3 correspond to

the models of Front and Back surface in Fig.7.2. The magnets in this experiment were

strong neodymium permanent magnets. The shape of each magnet was a disk: 5 mm in

diameter and 2 mm in thickness. The number of magnets was 100 with checker board

alternating field direction. A region within a radius of about 30 mm from the center

faced these magnets. The gap between the magnets and the drum was about 1mm.

In order to show that the drum was an appropriate mirror model, the thermal fluctua-

tions of the drum and a mirror are compared qualitatively. Figure 8.4 shows the shape of

some of the displacements of the mirror and the drum. An oscillatory pressure which has

the same profile as the laser beam is applied on the beam spot. The arrows correspond

to this pressure. In the upper and lower parts of Fig.8.4, the frequencies of the pres-

sure are at resonance and in the observation band, respectively. The observation band
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magnets

beam

Front disk Back disk

Figure 8.3: Configurations of magnets in order to introduce inhomogeneous dissipation caused by eddy

current. The arrows represent beams of laser. Small squares correspond to the magnets. In the left-hand

side, the magnets are put near the flat surface which reflects the beam. This configuration is called Front

disk. In the right-hand side, another flat surface has large loss. This configuration is called Back disk.

is lower than all resonant frequencies. In the left and right sides of Fig.8.4, vibrations

of the mirror and the drum are shown, respectively. It shows that the displacement of

the drum is similar to that of the drum. On the resonance, all parts of the mirror and

both the disks of the drum vibrate. On the other hand, in the observation band, only

the parts of the mirror and the drum near the beam spot vibrate. From this similarity

of displacement and the fluctuation-dissipation theorem, the dependence of the thermal

noise of the drum on the distribution of the loss is transferred to that of the mirror. In

order to further check this consideration, the thermal noise of the drum is evaluated in

the next subsection.

8.3 Estimation of thermal noise of the drum

Figure 8.4 suggests that the dependence of the thermal noise of the drum on the

distribution of loss is similar to that of mirrors. In order to confirm the validity of this

assertion, the thermal motions of the drum were calculated. In practice, in the resonant

modes of the drum, only the two thin flat disks oscillate. Thus, the resonant modes of the

disk were researched. Based on this research of resonant modes of disks, a simple model

was adopted to estimate the thermal noise of the drum. The results of the calculations
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(1) At resonant frequency

(2) In observation band (<< resonant frequency)

mirror drum

mirror drum

Figure 8.4: The comparison between displacement of a mirror and that of the drum. An oscillatory

pressure which has the same profile as the laser beam is applied on the beam spot. The arrows correspond

to this pressure. In the upper and lower parts, the frequencies of the pressure are at resonance and in

the observation band, respectively. The observation band is lower than all resonant frequencies. In the

left and right sides, vibrations of the mirror and the drum are shown, respectively.

proved that the dependence of the thermal noise of the drum on the distribution of loss

is similar to that of mirrors. Thus, the drum was an appropriate mechanical model for

the mirror behavior. The details of the consideration are described here.
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8.3.1 Modes of disk

The resonant modes of the disk are investigated here. The cylindrical coordinates

are used. Since the motion of the center was observed, only axially symmetric modes

are considered. It is supposed that the edge of the disk is fixed because the shell of

the cylindrical surface of the drum is rigid and heavy. From Eq.(3.65), the observed

coordinate, X, is defined as

X =

∫
u(r, t)P (r)dS, (8.1)

where u is the transverse displacement of the disk and P is the weighting function.

Since the beam radius is much smaller than the radius of the disk in this experiment

and the motion of the center of the disk is observed, the weighting function, P , can be

approximated as

P (r) = δ(r), (8.2)

where δ(r) is the δ-function.

The displacement, wn, of the n-th mode of the disk is the solution of the eigenvalue

problem expressed as [48]

− h2E

12(1 − σ2)
∆2wn(r) = −ρωn

2wn(r), (8.3)

where h, E, σ, ρ are thickness, Young’s modulus, Poisson ratio, and density of the disk,

respectively. Since only axial symmetric modes are calculated, The Laplacian is defined

by

∆ =
d2

dr2
+

1

r

d

dr
. (8.4)

Since the edge of the disk is fixed, the boundary conditions are written in the form [48]

wn(a) = 0, (8.5)

dwn

dr

∣∣∣∣
r=a

= 0, (8.6)

where a is the radius of the disk.

From Eqs.(8.3), (8.5), and (8.6), the n-th angular resonant frequency, ωn, is given by

ωn =
αn

2

a2

√
Eh2

12ρ(1 − σ2)
, (8.7)
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where αn is the n-th solution of the equation expressed as

J1(αn)I0(αn) + J0(αn)I1(αn) = 0. (8.8)

The functions, Jn and In, are the n-th Bessel function of the first kind and modified Bessel

function of the first kind, respectively. The values of αn (n = 1, 2, 3, 4) are summarized

in Table.8.1. The displacement of the n-th mode, wn, is written in the form

wn(x) = J0

(
αn

r

a

)
+ ΦnI0

(
αn

r

a

)
(8.9)

where Φn is the function of αn defined by

Φn = −J0(αn)

I0(αn)
. (8.10)

The dependence of the displacement, wn, of the n-th mode on the distance, r, from the

center are shown in Fig.8.5.

Table 8.1: αn of disk.

n αn

1 3.19622

2 6.30644

3 9.4395

4 12.5771

Introducing Eqs.(8.2) and (8.9) into Eq.(3.78), the effective masses are obtained. The

formula, Eq.(3.78), is rewritten as

mn =
2π

[wn(0)]2

∫ a

0

ρh[wn(r)]2rdr. (8.11)

The effective masses, mn (n = 1, 2, 3, 4), are summarized in Table.8.2, normalized to the

real mass of the disk, mdisk.

The observation band in this experiment was lower than the first resonant frequency.

Thus, the transfer function and the thermal noise of the disk in the low frequency region

are considered. From Eq.(3.76), the transfer function, HdiskDC, in the low frequency range

can be expressed as

HdiskDC(ω) ≈
∑

n

1

mnωn
2
. (8.12)
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r

w1 first mode

r

w2 second mode

r

w3 third mode

r

w4

fourth mode

Figure 8.5: Shapes of modes of the disk. The dependence of the displacement, wn, on the distance, r,

from the center are shown.

Table 8.2: mn/mdisk of disk.

n mn/mdisk

1 0.182834

2 0.101896

3 0.0675435

4 0.0506647

From Eqs.(3.77) and (3.35), the thermal noise, GdiskDC, caused by the viscous damping

in the low frequency range is written as

GdiskDC(f) ≈
∑

n

4kBT

mnωn
3Qn

. (8.13)

From Eq.(3.36), Qn in Eq.(8.13) is proportional to ωn. From Eqs.(8.12), (8.13), (8.7),

and Tables.8.1 and 8.2, it can be seen that the transfer function, HdiskDC, and the thermal

noise, GdiskDC, of the disk in the low frequency range are dominated by the contribution

of the first mode. Therefore, in this experiment, it was a good approximation to take

into account only the contribution of the first mode of the disk.
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8.3.2 Thermal noise of drum

M

w0

m m

w0u1 u2
u3

Figure 8.6: A simple model for the drum. The middle part of this model is a heavy rigid body. Equivalent

harmonic oscillators are attached to both ends of this body. The heavy rigid body and the harmonic

oscillators correspond to the thick cylindrical shell and the thin flat disks of the drum, respectively. The

mass of the heavy rigid body, M , is the mass of the cylindrical shell. The angular resonant frequency,

ω0, of the harmonic oscillators is the angular resonant frequency of the first mode of the disks. In this

discussion, it was supposed that the mass of the harmonic oscillator, m, is a half of the mass of the

disk This was because the difference between the first and second resonant frequencies of this model

agreed with the measured value of the drum when m was a half of the mass of the disk. The arrow

represents the probe laser beam. The friction force caused by eddy current is applied on only a mass

point of a oscillator. The values, ui (i = 1, 2, 3), are the displacement of the left, middle, and right mass,

respectively.

In resonant motions of the drum, only the flat disks oscillate. Moreover, from the

previous discussion, the transfer function and the thermal noise of the drum in the low

frequency region are dominated by the contribution of the first mode. Thus, a simple

model shown in Fig.8.6 was used to calculate the thermal noise of the drum. To simplify

the consideration, no other sources of the dissipation were taken into account except the

applied eddy current friction.

The thermal noise of the drum was calculated using this model. The estimation of the

advanced mode expansion was compared with that of the traditional mode expansion.

In addition, it was confirmed that the results of the advanced mode expansion were

consistent with those of the direct approach. The details of these calculations and the

results are summarized here.
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Estimation of traditional mode expansion

From Eq.(3.65), the observable coordinate, X, is defined as

X =
3∑

i=1

Piui, (8.14)

where ui (i = 1, 2, 3) are the displacement of the left, middle, and right mass in Fig.8.6,

respectively. The parameter, Pi, is the i-th weighting factor. Since the displacement of

the left mass in Fig.8.6 are observed, the weighting factor, Pi, is expressed as

Pi = δi1, (8.15)

where δij is the Kronecker’s δ symbol.

The displacement, wn,i, of the i-th mass in the n-th resonant mode is the solution of

the eigenvalue problem expressed as


−mω0
2 mω0

2 0

mω0
2 −2mω0

2 mω0
2

0 mω0
2 −mω0

2






wn,1

wn,2

wn,3


 = −ωn

2




m 0 0

0 M 0

0 0 m






wn,1

wn,2

wn,3


 . (8.16)

The n-th angular resonant frequency, ωn, is given by1

ω1 = ω0, (8.17)

ω2 = ω0

√
1 +

2m

M
. (8.18)

The displacement of the n-th mode, wn,i, is written in the form


w1,1

w1,2

w1,3


 =




1

0

−1


 , (8.19)




w2,1

w2,2

w2,3


 =




1

−2m
M

1


 . (8.20)

The shapes of the modes of the drum are shown in Fig.8.7.

1There is another solution, ωn = 0. However, this solution is neglected in this discussion because this

mode corresponds to the translation motion of the drum.
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first mode second mode

Figure 8.7: Shapes of the first and second resonant modes of the drum.

From Eqs.(8.15), (8.19), (8.20), and (3.78), the effective masses are obtained. The

expression, Eq.(3.78), is rewritten as

mn =
1

[wn,1]2
[m(wn,1)

2 + M(wn,2)
2 + m(wn,3)

2]. (8.21)

The effective masses, mn (n = 1, 2), are reduced as

m1 = 2m, (8.22)

m2 = 2m

(
1 +

2m

M

)
. (8.23)

In this experiment, the drum is damped strongly by eddy current. The loss angle, φn,

is described as

φn(ω) =
ω

ωnQn

. (8.24)

The Q-value, Qn, of the n-th mode is evaluated from Eqs.(8.27), (8.28), (8.19), (8.20),

and (4.7). The results are described as

Q1 =
2ω1

Γ
, (8.25)

Q2 =
2ω2

Γ

(
1 +

2m

M

)
. (8.26)

The definition of Γ is in Eq.(8.28).

157



CHAPTER 8. MIRROR WITH INHOMOGENEOUS LOSS: EXPERIMENT

Estimation of advanced mode expansion

The formula of the coupling coefficient, α12, is derived from Eq.(6.14) because the

source of the loss in the drum is only eddy current. From Eq.(8.15), Eq.(6.14) is rewritten

as

αnk =
ω

wn,1wk,1
[mΓ1wn,1wk,1 + MΓ2wn,2wk,2 + mΓ3wn,3wk,3]. (8.27)

The parameter, Γi, in Eq.(8.27) represents the friction force applied on the i-th mass

in Fig.8.6. The friction force caused by the eddy current is the product of the mass, Γi,

and the velocity. The coefficient, Γi, in this experiment is written as

Γi =

{
Γδi1 (in Front disk)

Γδi3 (in Back disk)
. (8.28)

Inserting Eqs.(8.28), (8.19), and (8.20) into Eq.(8.27), α12 is obtained:

α12 =

{
|α12|max =

√
m1ω1

2φ1m2ω2
2φ2 (in Front disk)

−|α12|max = −√m1ω1
2φ1m2ω2

2φ2 (in Back disk)
. (8.29)

The value, |α12|max, is the maximum of the absolute value of α12 in Eq.(4.40).

Estimation of direct approach

The thermal noise of the drum is calculated using Tsubono’s approach. Since the

observation point is at the end of the model in Fig.8.6, the boundary condition includes

the generalized force applied on the observation point. Thus, the generalized force is not

treated as the external force, i.e. the transfer matrix is the same type as that of the

matrix in Eq.(5.13).

The calculation is based on the transfer matrices of a mass point and a spring. The

transfer matrix, Tmass(m, Γ), of the mass point with eddy current damping (The param-

eter, m, is the mass and Γ is in Eq.(8.28).) is described as [63, 72, 73]

(
X

F

)
1

=

(
1 0

−mω2 + imΓω 1

)(
X

F

)
0

. (8.30)

158



8.3. ESTIMATION OF THERMAL NOISE OF THE DRUM

The transfer matrix, Tspring(m, ω0), of the spring (The value, m, is the mass and ω0 is

the resonant angular frequency.) is similarly written as2

(
X

F

)
1

=

(
1 1

mω0
2

0 1

)(
X

F

)
0

. (8.31)

The transfer matrix, Ttotal, of the total system is derived from Eqs.(8.30) and (8.31).

The matrix of the total system is written in the form

Ttotal =

{
Tmass(m, Γ)Tspring(m, ω0)Tmass(M, 0)Tspring(m, ω0)Tmass(m, 0) (in Front disk)

Tmass(m, 0)Tspring(m, ω0)Tmass(M, 0)Tspring(m, ω0)Tmass(m, Γ) (in Back disk)
.

(8.32)

An end of this model is the observation point. The other end is free. The state vectors

of both ends are connected by the total transfer matrix, Ttotal. This relation is expressed

as (
X

F

)
obs

= Ttotal

(
X

0

)
free

, (8.33)

where obs and free represent the observation point and the free end, respectively. The

matrix, Ttotal, is rewritten as

Ttotal =

(
t11 t12

t21 t22

)
. (8.34)

From Eq.(8.34), the transfer function, H(ω), is derived as

H(ω) =
X

F

∣∣∣∣
obs

=
t11
t21

. (8.35)

The thermal noise spectrum is calculated from the application of the fluctuation-dissipation

theorem, Eq.(3.9), to this transfer function, Eq.(8.35).

Results of the estimation

From above consideration, the thermal noise of the drum is evaluated using each

method. The parameters of the disk of the drum are summarized in Table.8.3. Also,

the parameters of the drum are summarized3 in Table.8.4. The distribution of the loss
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Table 8.3: Parameters of disk in drum.

parameter

radius (a) 50 mm

thickness (h) 0.5 mm

density (ρ) 2.67 g/cm3

Young’s modulus (E) 7.03 ×1010 Pa

Poisson ratio (σ) 0.345

Table 8.4: Parameters of drum.

parameter

mass of the rigid shell (M) 0.183 kg

mass of the harmonic oscillator (m) 5.24 g

resonant frequency of the harmonic oscillator (f0) 513 Hz

strength of damping (Γ) 38.1 /sec

Table 8.5: fn, mn, Qn of the drum.

n fn mn Qn

1 513 Hz 10.5 g 169

2 528 Hz 11.1 g 184

induced by eddy current is described as Eq.(8.28). The thermal noise is estimated from

these data.

The parameters in the mode expansion, resonant frequency (fn), effective mass (mn),

Q-value (Qn), and coupling coefficient (α12), were calculated. The resonant frequencies,

the effective masses, and Q-values of the drum are summarized in Table.8.5. The coupling

coefficient, α12, was obtained from Eq.(8.29) and Table.8.5.

The thermal noise obtained from each method are shown in Fig.8.8. The upper and

2If the original loss of the spring is considered, the complex spring constant, mω0
2(1 + iφ), is substi-

tuted for the spring constant, mω0
2, in Eq.(8.31).

3The mass of the harmonic oscillator, m, is a half of the mass of the disk.
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8.4. EXPERIMENTAL METHOD

lower graphs in Fig.8.8 show the evaluation of the Front and Back disk models in Fig.8.3,

respectively. The thick and thin dashed lines are the computations based on the advanced

and traditional mode expansions, respectively. The solid line represents the calculation

of the direct approach. Figures 8.8 and 7.6 prove that the dependence of thermal noise of

the drum on the distribution of the loss is similar to that of the mirror. In the Front disk

model, the thermal noise estimated from the advanced mode expansion is larger than

that from the traditional mode expansion. On the contrary, in the Back disk model, the

thermal noise evaluated from the advanced mode expansion is smaller than that from

the traditional mode expansion. Consequently, the drum is an appropriate mechanical

model of mirrors.

The estimation of the direct approach agrees with that of the advanced mode expan-

sion. These results prove that the direct approach is consistent with the advanced mode

expansion.

8.4 Experimental method

Apparatus and methods in this experiment are almost the same as those in the mea-

surement4 of the leaf spring in Chapter 6. The transfer function, H(ω), of the drum was

measured in order to evaluate the thermal noise using the fluctuation-dissipation theorem.

In this measurement, a force was applied on the drum using an electrostatic actuator.

The motion of the drum caused by the actuator was monitored by a Michelson inter-

ferometer. Q-values were also measured for the estimation of the mode expansion. The

details of the Experimental apparatus and the methods of measurement of the transfer

function and Q-values are introduced here.

8.4.1 Experimental apparatus

A schematic view of the experimental apparatus is shown in Fig.8.9. The drum mem-

brane was one of the end mirrors of a differential Michelson interferometer. In order to

measure the transfer function, H(ω), the drum was excited by an electrostatic actuator

4Since the principle of the apparatus and methods are described in Chapter 6, they are omitted from

the explanations.
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Figure 8.8: The evaluation of the thermal noise of the drum. The upper and lower graphs show the

evaluation of the Front and Back disk models in Fig.8.3, respectively. The thick and thin dashed lines

are the computations of the advanced and traditional mode expansions. The solid line represents the

calculation of the direct approach.

placed inside it. All apparatus, except for a laser source, were put in a vacuum chamber.

The details of each experimental apparatus are introduced here.
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Figure 8.9: Schematic view of the experimental apparatus. BS, RM, Mag, PD, and SG stand for the beam

splitter, the reference mirror, the magnets, the photo detector, and the signal generator, respectively.

The sensor was a differential Michelson interferometer. To keep the interferometer at an operation point,

the output signal of the interferometer was used to control the position of the reference mirror. The

drum and the reference mirror were suspended for seismic isolation. An electrostatic actuator was used

to excite the drum. All apparatus, except for the laser source, were put in a vacuum chamber.

Michelson interferometer

The schematic configuration of the interferometer used in this experiments is shown

in Fig.8.9. This Michelson interferometer was almost the same as that used in the mea-

surement of the leaf spring in Chapter 6. The light source was helium-neon laser (λ=633
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nm). The main part of the interferometer was comprised of a beam splitter, a drum, and

a reference mirror with coil-magnet actuators. The drum and the reference mirror were

suspended for seismic isolation. Moreover, since mirrors in interferometric gravitational

wave detectors are also suspended, the treatment of the drum in this measurement was

the same as that of mirrors in detectors. The suspension systems for the drum and the

reference mirror were double pendulums. The principle of the suspension system is the

same as that of the stack used in the measurement of the leaf spring. From Eq.(6.50),

the seismic vibration in the frequency range higher than the resonant frequencies of the

suspension system is not transferred to the drum and to the reference mirror. In order

to suppress the motion at the resonant frequencies of the suspension, the intermediate

masses of the double pendulums were damped by eddy current induced by strong perma-

nent magnets [29, 86, 87]. The disks of the drum was polished or coated with aluminum

by vacuum evaporation to increase its reflectivity. The fringe contrast of the interferom-

eter was about 30%. The output signal of the interferometer was sent to the coil-magnet

actuators of the reference mirror through filters and drivers to keep the interferometer at

an operation point. The principle of the coil-magnet actuator is that the magnetic field

induced by the coils applies a force on magnets glued on the reference mirror. Thus, the

force applied on the reference mirror is proportional to current in the coils. The output

signal of the interferometer and the voltage of the signal generator for the electrostatic

exciter were recorded by a spectrum analyzer to evaluate the transfer function, H(ω).

Electrostatic actuator

The schematic configuration of the electrostatic actuator used in this experiment is

shown in Fig.8.9. This electrode was mounted on the inside of the drum and faced the

center of the disk. Thus, the actuator applied force on the observation point without

intercepting the laser beam. The size of the electrode was 8 mm × 8mm. The gap

between the electrode and the disk of the drum was about 1 mm.

The actuator was calibrated based on Eq.(6.47). In this experiment, HDC was calcu-

lated as the static response of the disk. It was assumed that the edge of the disk was fixed

because the disk was fixed on the rigid heavy cylindrical shell. Thus, HDC was described

as [48]

HDC =
3(1 − σ2)a2

4h3πE
, (8.36)
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where a, h, E, and σ are radius, thickness, Young’s modulus, and Poisson ratio of the

disk5.

Vacuum chamber

All apparatus, except for the helium-neon laser source, were put in a vacuum tank.

The vacuum chamber was evacuated by a rotary pump; the pressure was about 5 Pa.

This pump was stopped during measurement. When the pressure was smaller than 20

Pa, the Q-values of the drum without eddy current damping was independent of the

pressure. Thus, the loss caused by the residual gas was smaller than the original loss of

the drum.

8.4.2 Measurement of the transfer function

Using the electrostatic actuator, the oscillatory force was applied at the center of the

disk of the drum. The vibration of this center was observed with the interferometer.

The voltage of the actuator and the output of the interferometer were recorded by the

spectrum analyzer. From this measurement, we obtained the transfer function of the

drum, H(ω), which is the ratio of the displacement, X̃, to the applied force, F̃ . Equation

(6.59) was used in order to remove the effects of the feedback of the interferometer, The

measured open loop gain, G, of this experiment is shown in Fig.8.10.

8.4.3 Measurement of Q-values

In the estimation of the mode expansion, measured Q-values were used. These Q-

values of the drum were derived from the decay time of the resonant motions excited by

the electrostatic actuator and Eq.(3.49). The results are summarized in Table.8.8.

5The order of magnitude of Hexciter evaluated from Eqs.(6.47) and (8.36) was the same as that of the

estimation obtained from Eq.(6.44).
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Figure 8.10: The open loop gain, G, in this experiment. The upper and lower graphs represent the

amplitude and the phase of G, respectively.

8.5 Results

The thermal noise of the drum was derived from the measured transfer function and

compared with the calculations of the advanced and traditional mode expansions. The

experimental results agree with the advanced mode expansion predictions. Therefore,

this experiment suggested that the estimation of the thermal noise of the mirror with

inhomogeneous loss in the previous chapter is correct. Parameters for the mode expansion

and the results of this experiment are summarized here.
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8.5.1 Parameters for the estimation

In order to obtain the spectrum from the advanced and traditional mode expansions,

angular resonant frequencies (ωn), effective masses (mn), Q-values (Qn), of the first and

second modes, and the coupling coefficient, α12, were estimated from the experiment. In

the simple model of the drum in Fig.8.6, it was supposed that the resonant frequencies

of two harmonic oscillators (disks) were the same. However, in reality, there was a slight

difference between the two resonant frequencies. Since the parameters, ωn, mn, Qn, and

α12, depend strongly on this difference between the resonant frequencies of the disks,

these parameters were obtained from the experiment.

The angular resonant frequencies, ωn, were measured directly. The effective masses,

mn, were evaluated from the measured anti-resonant frequency between the first and sec-

ond modes and the calculated absolute value of the transfer function in the low frequency

range. At the anti-resonant frequency, the absolute value of the transfer function is the

local minimum. The anti-resonant angular frequency, ωanti, is expressed as Eq.(6.60):

ωanti =

√
m2

m1

ω2. (8.37)

Since the electrostatic actuator was calibrated using Eq.(8.36), the transfer function in

the low frequency region, Eq.(6.45), is rewritten as

HDC =
3(1 − σ2)a2

4h3πE
=

1

m1ω1
2

+
1

m2ω2
2
. (8.38)

Inserting the measured resonant and anti-resonant frequencies and the calculated transfer

function in the low frequency range into Eqs.(8.37) and (8.38), mn were derived. The

Q-values were calculated from the measured decay time of the resonant motion and

Eq.(3.49). In order to evaluate the contribution of the eddy current damping to the Q-

values, the Q-values of the n-th mode of the drum with (Qtotal,n) and without (Qori,n) the

eddy current damping were measured. The contribution of the eddy current damping,

Qeddy,n, is written in the form

1

Qeddy,n
=

1

Qtotal,n
− 1

Qori,n
. (8.39)

The resonant frequencies6, effective masses7, and Q-values derived from the experiment
6The measured resonant frequencies in Table.8.6 are smaller than the calculated resonant frequencies

in Table.8.5. Since the dimensions of the drum was measured precisely, the Young’s modulus is assumed

to be smaller than that in Table.8.3.
7The effective masses derived from the measurements in Table.8.7 are about the same as the calculated
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are summarized in Tables.8.6, 8.7, and 8.8. Table.8.8 shows that the original loss of

the drum was comparable to the eddy current damping. Thus, it is expected that the

discrepancy between the actual thermal noise and the evaluation of the traditional mode

expansion will be smaller than that in Fig.8.8 where the original loss of the drum is not

taken into account.

Table 8.6: Resonant frequencies of the drum (measurement).

f1 f2

Front disk 455.0 Hz 472.5 Hz

Back disk 455.6 Hz 471.2 Hz

Table 8.7: Effective masses of the drum (measurement).

m1 m2

Front disk 3.11 g 5.53 g

Back disk 3.03 g 5.83 g

Table 8.8: Q-values of the drum (measurement).

Qtotal,1 Qtoltal,2 Qori,1 Qori,2 Qeddy,1 Qeddy,2

Front disk 56 82 140 165 93 163

Back disk 114 85 180 190 310 154

The loss angle, φn(ω), of the n-th mode of this drum is the sum of the loss angles of

the eddy current damping and the original loss of the drum,

φn(ω) = φori,n(ω) + φeddy,n(ω). (8.40)

The term, φeddy,n, is the loss angle of the n-th mode of the eddy current damping:

φeddy,n =
ω

ωnQeddy,n

. (8.41)

values in Table.8.5.
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The Q-values, Qeddy,n, of the eddy current damping are summarized in Table.8.8. The

loss angles of the original loss, φori,n, are explained in the next subsection. This orignal

loss was homogeneous. Thus, the original dissipation has no effects on the coupling

coefficient, α12. The formula of α12, Eq.(8.29), are rewritten as

α12 =

{ √
m1ω1

2φeddy,1m2ω2
2φeddy,2 (in Front disk)

−√m1ω1
2φeddy,1m2ω2

2φeddy,2 (in Back disk)
. (8.42)

Inserting the values in Tables.8.6, 8.7, 8.8 into Eq.(8.42), the coupling coefficient, α12,

was derived.

8.5.2 Original loss of drum

From Table.8.8, the original loss of the drum was as large as the dissipation induced

by eddy current. In order to investigate the original dissipation of the drum, the transfer

function of the drum without the eddy current damping was measured. From this mea-

sured transfer function, the thermal noise without the eddy current damping was derived

using the fluctuation-dissipation theorem. This result is shown in Fig.8.11. The open

circles are the spectrum evaluated from the measured transfer function. The solid line

in Fig.8.11 is the thermal noise induced by the thermoelastic damping in the disks of

the drum. Figure 8.11 proves that the original loss of the drum was dominated by the

thermoelastic damping.

The details of the thermoelastic damping is discussed here. The estimation of the

thermal noise caused by the thermoelastic damping in Fig.8.11 was derived from the

traditional mode expansion. This was because the strength of the thermoelastic damping

in both the disks were the same. The loss angles of the original loss of the drum, φori,n,

are the same as that of the thermoelastic damping in disks [88]. Thus, the loss angles,

φori,n, is described as Eq.(3.58):

φori,n(ω) = ∆
ωτ

1 + (ωτ)2
. (8.43)

When the displacement of the disk is axially symmetric, the strength of the damping, ∆,

is expressed as [88]

∆ =
Eα2T

Cρ

1 + σ

1 − σ
, (8.44)
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Figure 8.11: The thermal noise of the drum without the eddy current damping. The open circles are the

spectrum evaluated from the measured transfer function using the fluctuation-dissipation theorem. The

solid line represents the thermal noise caused by the thermoelastic damping in the disks of the drum.

The original loss of the drum was dominated by the thermoelastic damping.

where E is Young’s modulus, α is the linear coefficient of the thermal expansion, T is

the temperature, C is the specific heat, ρ is the density, and σ is Poisson ratio. The

frequency, f0, which corresponds to the relaxation time, τ in Eq.(8.43), is written as [88]

f0 =
1

2πτ
=

π

2

κ

Cρh2
, (8.45)

where κ is the thermal conductivity, h is the thickness of the disk. The parameters for

the estimation of the thermoelastic damping are shown in Table.8.9.

8.5.3 Comparison between measurement and estimation

The evaluated thermal motion spectra from the measured transfer functions are shown

in Fig.8.12. The upper and lower graphs show the results of the Front and Back disk

models in Fig.8.3, respectively. Each graph contains the estimation of thermal noise from

the measured transfer function using the fluctuation-dissipation theorem (open circles),
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Table 8.9: Parameters for the estimation of the thermoelastic damping.

parameter

Young’s modulus (E) 7.03 ×1010 Pa

linear coefficient of the thermal expansion (α) 23.1 × 10−6 /K

temperature (T ) 300 K

specific heat (C) 0.903 J/g/K

density (ρ) 2.67 g/cm3

Poisson ratio (σ) 0.345

thermal conductivity (κ) 2.37 W/cm/K

thickness (h) 0.5 mm

the estimated spectra obtained by the advanced (solid line) and traditional (dashed line)

mode expansions. Figure 8.12 shows the spectra evaluated from the measured transfer

functions agreed with the calculations of the advanced mode expansion in both the cases.

The actual thermal noise in the Front disk model was larger than the estimation of the

traditional mode expansion. On the other hand, the comparison between Figs.8.11 and

8.12 proves that the thermal noise of the Back disk model in the lower frequency range

was dominated by the contribution of the original loss of the drum in spite of the existence

of the eddy current damping. Therefore, it was proved that the thermal motions of the

drum, which was a representative mechanical model of mirrors, were calculated correctly

using the advanced mode expansion and the direct approaches. Consequently, the results

of this experiment suggested that the estimation of the thermal noise of the mirror with

inhomogeneous dissipation in the previous chapter is correct.
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Figure 8.12: Results of measurements of the drum. The upper and lower graphs show the results of the

Front and Back disk models in Fig.8.3, respectively. The open circles are the spectrum evaluated from

the measured transfer function using the fluctuation-dissipation theorem. The solid and dashed lines

represent the estimation of the advanced and traditional mode expansions, respectively.
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Chapter 9

Discussion

The experiments in Chapters 6 and 8 proved that the traditional mode expansion used

frequently to evaluate the thermal noise is wrong when the dissipation is distributed in-

homogeneously. Moreover, these experiments showed that new methods (advanced mode

expansion and direct approaches) are valid even when the loss is not homogeneous. These

new methods showed that the actual thermal noise of the mirrors1 with inhomogeneous

losses in the gravitational wave detectors is largely different from the computation of

the traditional mode expansion (Chapter 7). This is a serious problem because the re-

search of reducing thermal noise is based on the estimation of the the traditional mode

expansion. Therefore, the required upper limits of the losses of the mirrors are evaluated

using the results of the calculation in Chapter 7. In addition, the future works about the

estimation of the thermal noise caused by inhomogeneous losses are considered.

9.1 Required upper limit of loss in mirrors

The results in Chapter 7 show that the actual thermal noise of the mirror with inho-

mogeneous losses is at least two or three times larger or smaller than the estimation with

the traditional mode expansion. This is a large discrepancy because it is expected that

1The discrepancy between the actual thermal noise of the suspension systems in the gravitational

wave detectors and the estimation derived from the traditional mode expansion is negligible (Chapter

4).
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the number of the detectable sources are inversely proportional to the cube of the mirror

displacement sensitivity for gravitational wave detectors2 [13]. The actual required limits

are evaluated from the results of the direct approach in Chapter 7.

9.1.1 Coating

A flat surface of each mirror in the gravitational wave detectors is coated with dielectric

layers. The loss in the coating is represented by the front surface model in Fig.7.2. Fig.7.6

shows that the actual thermal noise of Front surface model is about three times3 larger

than the computation of the traditional mode expansion. Since the amplitude of the

thermal noise is proportional to the square root of the dissipation, the required upper

limit of the loss in the coating becomes ten times severer. Nevertheless, the loss of the

coating has been seldom investigated. It is an important issue to measure the dissipation

in the coating.

The upper limit of the loss in the coating is evaluated here. The upper limit is defined

as following; the contribution, Gcoating [m2/Hz], of the loss in the coating to the thermal

noise must be at least ten times smaller than the contribution, Gintrinsic, of the intrinsic

loss of the mirror,

Gcoating <
1

10
Gintrinsic. (9.1)

The spectrum, Gintrinsic, is proportional to the loss angle of the intrinsic loss, φintrinsic. The

spectrum, Gcoating, is about ten times larger than the result derived from the traditional

mode expansion. In the traditional mode expansion, the thermal fluctuation caused

by the coating loss is inversely proportional to the contribution of the coating loss to

Q-values, Qcoating. Equation (9.1) is rewritten as

10 × 1

Qcoating
<

1

10
φintrinsic. (9.2)

Since the elastic energy is distributed almost homogeneously in resonance, Qcoating is

expressed as

Qcoating ≈ l

δl

1

φcoating

, (9.3)

2This is because the maximum distance of the detectable sources is inversely proportional to the

sensitivity.
3The beam radius of TAMA300 is 8 mm at the near mirror and 15 mm at the end mirror.
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where l and δl are the thicknesses of the mirror and the coating layer, respectively. The

angle, φcoating, is the loss angle in the coating. Introducing Eq.(9.3) into Eq.(9.2), the

requirement of the coating loss is obtained as

φcoating <
1

100

l

δl
φintrinsic. (9.4)

In most cases, the thickness, l, of the mirror is about 10 cm. The thickness, δl, of the

coating layer is about 10 µm. Thus, the upper limit of the loss in the coating is expressed

as

φcoating < 100φintrinsic. (9.5)

The required upper limits of φintrinsic in current and future projects are 10−6 and 10−8,

respectively. The required φcoating is described as

φcoating <

{
10−4 (in current projects)

10−6 (in future projects)
. (9.6)

Figure 7.1 shows that the actual thermal motion is larger than the results derived

from the traditional mode expansion when the dissipation is localized near the beam

spot. Since the reflective coating is nearest part in the mirror, Fig.7.6 suggests that the

maximum ratio of the actual thermal noise to the estimation of the traditional mode

expansion is about three4.

9.1.2 Polished surface

The loss is concentrated on the surfaces of the mirrors [54, 82, 83] because of the polish

and so on. From Figs.7.6 and 7.7, the requirement on the loss angle, φfront, on the surface

illuminated by the laser beam is the severest. This requirement is the same as that of

the coating loss, Eq.(9.4). Since the value derived from the experiment is the product of

the loss angle on the surface and the depth, d, of the loss layer [54, 82, 83], Eq.(9.4) is

rewritten as

φfrontd <
1

100
lφintrinsic. (9.7)

4If loss is concentrated unfortunately near the center of the flat surface illuminated by the laser beam,

this ratio becomes about ten.
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The thickness of the mirror, l, is about 10 cm. Equation (9.7) is reduced as

φfrontd < φintrinsic × 10−3[m]. (9.8)

The required upper limits of φintrinsic in current and future projects are 10−6 and 10−8,

respectively. The required φfront is described as

φfrontd <

{
10−9 [m] (in current project)

10−11 [m] (in future project)
. (9.9)

The measurement of the Q-values of a polished fused silica mirror [54] shows that φfrontd

is 10−9 m at most. Thus, in current projects, the loss caused by the polish on the

surface illuminated by the laser beam is not a serious problem. In the future project, it

is necessary to investigate this loss.

The requirements of the loss angles of the cylindrical surface, φcylindrical, and of the

opposite flat surface, φback, are less sever than that of the coated surface. From Figs.7.6

and 7.7, the actual amplitudes of the thermal noise caused by the loss in the cylindri-

cal surface and in the opposite surface are about six and four times smaller than the

estimation of the traditional mode expansion, respectively. Equation (9.8) is rewritten

as

φcylindricald < φintrinsic × 3 × 10−1[m], (9.10)

φbackd < φintrinsic × 10−1[m]. (9.11)

Since the required upper limit of φintrinsic in future projects are 10−8, φcylindricald and φbackd

must be smaller than 10−9 m. The loss in the cylindrical and opposite surfaces are not

a serious problem even in future projects because the measurement of the polished fused

silica mirror [54] shows that these values are smaller than 10−9 m.

9.1.3 Magnet and stand-off

In order to control the positions of the mirrors, coil-magnet actuators are used in

TAMA300. The magnets of these actuators are glued on the mirrors back. The stand-

off’s, thin short bars, are glued on the cylindrical surface to fix wires to the mirror. The

experiments show that the adoption of the stand-off’s increases the Q-value of a violin

mode [55].
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Figure 9.1: The estimations of the thermal fluctuation of the mirrors with magnets in TAMA300. The

solid and long dashed lines are the contributions of the loss at the magnets to the thermal noise derived

from the direct approach and from the traditional mode expansion, respectively. The dashed lines are

the contributions of the intrinsic loss of the mirrors. The Q-values of the thick and thin dashed line are

3 × 106 (TAMA) and 108 (future projects), respectively.

Figs.7.8 and 7.9 show that the thermal fluctuations of magnets and stand-off’s are

similar. Only the magnets are considered. The estimations of the thermal fluctuation

of the mirrors with the magnets in TAMA300 are shown in Fig.9.1. The solid line is

the actual contribution of the magnet loss to the thermal noise derived from the direct

approach5 in Fig.7.8. The long dashed line represents the contribution of the magnet loss

obtained from the traditional mode expansion. The actual amplitude is 15 times smaller

than the traditional estimation. Since the intrinsic loss of the mirror was not taken into

account in the calculations in Fig.7.8, it is considered. The dashed lines in Fig.9.1 are

the contributions of the intrinsic loss in the mirrors to the thermal fluctuations. The Q-

5The mirrors with magnets are the same as the Back magnet model in Fig.7.3. The beam radius of

TAMA300 is 8 mm at the near mirror and 15 mm at the end mirror.
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values of the thick and thin dashed lines are 3 × 106 (TAMA) and 108 (future projects),

respectively.

It was thought that the loss at the magnets increase the thermal noise. The initial

intrinsic Q-values, Qintrinsic, of the mirrors of TAMA is 3 × 106 [54]. The Q-values of the

mirrors decrease to about 105 when the magnets are glued on them [79, 80, 81]. Since the

estimation of the traditional mode expansion is inversely proportional to the square root

of Q-values, this increase of the thermal noise due to the glued magnets was expected

to be a serious problem in the improvement of the sensitivity of the interferometer.

Fig.9.1 shows that the traditional estimation of the thermal motion caused by the loss

at the magnets is three times larger than the thermal noise caused by the intrinsic loss

(Qintrinsic = 3 × 106). However, the actual thermal noise caused by the magnet loss

is much smaller than the estimation of the traditional mode expansion. Fig.9.1 shows

that the actual contribution of the magnet loss should be five times smaller than the

contribution of the intrinsic loss. The thermal noise of the mirror with the magnets

should be dominated by the intrinsic loss in spite of the large decrease of the Q-values

caused by the glued magnets. Consequently, the thermal noise induced by the magnets

is expected to be negligible in TAMA project.

The required intrinsic Q-values in future projects are about 108. The thin dashed

line in Fig.9.1 represents the contribution of the intrinsic loss in future projects. Figure

9.1 shows that the thermal noise caused by the glued magnets is comparable to the

fluctuations induced by the intrinsic loss of the mirrors for future projects. Therefore,

it is necessary to decrease the loss induced by the magnets or to develop other type

actuators with low loss. The upper limit of the loss caused by the magnet is evaluated.

The upper limit is defined as that of the coating loss; the contribution of the loss at the

magnets, Gmagnet [m2/Hz], must be at least ten times smaller than the contribution of

the intrinsic loss, Gintrinsic, of the mirror,

Gmagnet <
1

10
Gintrinsic. (9.12)

The spectrum, Gintrinsic, is inversely proportional to the Q-values of the intrinsic loss,

Qintrinsic. From Fig.9.1, Gmagnet is about two hundreds times smaller than the result

derived from the traditional mode expansion. In the traditional mode expansion, the

thermal motion of the magnets is inversely proportional to the contribution to Q-values,
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Qmagnet. Based on above discussion, Eq.(9.12) is rewritten as

1

200
× 1

Qmagnet
<

1

10
× 1

Qintrinsic
. (9.13)

This expression is reduced as

Qmagnet >
1

20
Qintrinsic. (9.14)

Therefore, in future projects, Qmagnet must be larger than 5 × 106.

9.2 Future works

In this thesis, the new methods, the advanced mode expansion and the direct ap-

proaches, to estimate the thermal noise were checked experimentally using the oscillators

with the inhomogeneous losses. The thermal noise of the gravitational wave detectors was

evaluated using the new methods. However, there are a few remaining problems in the

estimation of the thermal noise induced by the inhomogeneous losses in interferometric

gravitational wave detectors. These problems are considered here as future works.

9.2.1 Measurement of dissipation

In the calculation of the thermal noise of the mirror in Chapter 7, it was assumed

that the frequency dependence of the dissipation is described by the structure damping

model. This supposition was not based on the measurement of real mirrors although the

structure damping is frequently used model when the thermal noise is calculated. Thus,

the measurement of the frequency dependence of the losses is an important issue in future

works.

For example, the measurement of the dissipation of the reflective coating which is a

serious problem is considered here. The loss angle, φcoating, of the coating is derived from

the measured Q-values of the thin disk with and without the coating. The relationship

between the loss angle and the Q-values is expressed as

φcoating =
1

Qwith

− 1

Qwithout

, (9.15)
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where Qwith and Qwithout are the Q-values of the disk with and without the coating,

respectively. A merit of this experiment is that the resonant frequencies of the disk is

lower than those of the mirror. It is possible to measure the loss angle, φcoating, near the

observation band which is lower than the resonance of the mirror. Another merit is that

the effect of the coating loss is large. The contribution of the coating loss to the Q-values

of the disk is large because the ratio of the volume of coating layer to that of the disk

is large. From the requirement of the loss of the coating in Eq.(9.5), if the thickness of

the disk is about a hundred times larger than that of the coating, the accuracy of the

measurement is sufficient. Since the thickness of the coating of the mirror is about 10

µm, the appropriate thickness of the disk is about 1 mm. This is a reasonable size for

making. This disk is useful in the measurement of the loss of the magnets and so on.

9.2.2 Experimental check

The experimental check of the estimation of the thermal noise derived from the mea-

sured frequency dependence of the loss in real mirrors is an important subject of future

works. In this experimental test, the thermal noise of a real or similar mirror, not a

model, should be investigated. There are two kinds of the experiments: the direct mea-

surement of the thermal noise and the estimation from the measurement of the imaginary

part of the transfer function using the fluctuation-dissipation theorem, Eq.(3.9).

When the thermal noise is measured directly, a highly sensitive sensor must be de-

veloped. There are a few projects [89, 90] for the development of the interferometer in

order to observe the thermal noise directly. In addition, the interferometric gravitational

wave detectors themselves are excellent sensors. For example, Fig.9.2 shows that the

comparison between the estimations6 of the thermal noise of the mirror with magnets

and the sensitivity of TAMA300. In this estimation, the intrinsic loss of the mirrors was

taken into account. The dashed line represents the evaluation of the thermal noise de-

rived from the direct approach. The long dashed line is the estimation of the traditional

mode expansion. The thick and thin solid lines are the current and goal sensitivity of

TAMA300, respectively. Figure 9.2 shows that the estimation of the thermal noise of

the mirror with magnet can be checked when the sensitivity near 300 Hz is one hundred

times better than the current sensitivity.

6These estimations are derived from the results in Fig.9.1.
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Figure 9.2: The estimation of the thermal noise of the mirrors with magnets and the sensitivity of

TAMA300. The dashed line represents the evaluation of the thermal noise derived from the direct

approach. The long dashed line is the estimation of the traditional mode expansion. The thick and thin

solid lines are the current and goal sensitivity of TAMA300, respectively.

In the measurement of the imaginary part of the transfer function, the required sen-

sitivity of a sensor is not as high as that of the direct measurement. However, since the

imaginary part of the transfer function is much smaller than the real part, the require-

ment of the phase delay in the measurement system is severe. Ohishi has suggested that

the imaginary part can be measured precisely at the anti-resonant frequencies because

there the real part vanishes. In addition, she proved the validity of this idea experimen-

tally [62, 63, 64]. This method is helpful in the experimental test of the estimation of the

thermal noise caused by the inhomogeneous losses.
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Chapter 10

Conclusion

The thermal fluctuation is one of the most important subjects in the development of

the interferometric gravitational wave detectors. The normal-mode expansion commonly

adopted as the method to estimate the thermal noise appears to fail. Some theoreti-

cal arguments suggested that this method is not valid in oscillators with the dissipation

distributed inhomogeneously. Although the loss is generally not homogeneous, the ther-

mal noise caused by the inhomogeneous loss has been seldom investigated. The thermal

noise induced by the inhomogeneous dissipation were researched to obtain the correct

estimation.

We have developed the new estimation method replacing the mode expansion. This

new estimation method is called the advanced mode expansion because this method is

a modification of the traditional mode expansion. The advanced mode expansion shows

the clear physical interpretations of the thermal noise caused by the inhomogeneous

dissipation. In the traditional mode expansion, the thermal noise is equivalent to the sum

of the fluctuations in the motions of the resonant modes. The advanced mode expansion

proves that the inhomogeneity of the losses causes much important correlations between

the fluctuations in the motions of the modes. Since these correlations are not considered in

the traditional mode expansion, this method fails when the loss is not uniform. Although

the results of the direct approaches which are other new estimation methods are consistent

with the evaluation of the advanced mode expansion, these approaches do not give the

clear physical interpretation.

The new estimation methods, the advanced mode expansion and the direct approaches,
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were tested experimentally. The thermal noise of the leaf spring with inhomogeneous loss

was measured. Those results proved that the advanced mode expansion and the direct

approaches are valid. On the other hand, the estimation of the traditional mode expansion

does not agree with the measured thermal motions. This is the first experimental evidence

which showed the failure of the traditional mode expansion.

The thermal motion of the internal modes of the mirror with inhomogeneous losses

in interferometric gravitational wave detectors were evaluated using the direct approach.

The results showed that the actual thermal noise is greatly different from the estimation

of the traditional mode expansion. For example, the amplitude of the actual thermal

noise caused by the loss in the reflective coating is two or three times larger than the

old estimations. Therefore, more investigations on the losses in the dielectric coating

are important. Several parts, magnets and stand-off’s, are attached to mirrors for the

operation of the interferometric detectors. It was thought that the losses introduced

by these attachments increases greatly the thermal noise of the mirror. However, the

calculation using the direct approach proved that the amplitude of the actual thermal

noise is at least ten times smaller than that obtained from the traditional mode expansion.

In the TAMA project, the contribution of the loss at the attachments to the thermal

fluctuation is now expected to be much smaller than that of the intrinsic loss of the

mirror. Thus, the loss of the attachments is a negligible problem in TAMA300.

This estimation of the thermal noise of the mirror with inhomogeneous dissipation were

tested experimentally. Since the measurement of the real mirror is difficult, a mechanical

model of mirrors was used. The measured values are consistent with the estimation of

the advanced mode expansion and the direct approach. This results suggested that the

estimation of the mirror is valid. The investigation of the frequency dependence of the

loss in the real mirror and the experimental test of the estimation using the real mirror

are the issues of the future study.

The studies in this thesis solved almost all the problems of the estimation method of

the thermal noise caused by the inhomogeneous losses. Several important conclusions of

the thermal noise of the interferometric gravitational wave detectors are obtained. This

research will yield useful methods and reliable strategy in the research on thermal noise

of the interferometric gravitational wave detectors.
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Appendix A

Circuits

The circuits used in these experiments are shown.

+

68 kW

LF356
S1223-01

Figure A.1: The photo detector of the interferometer. This photo detector was used in the experiments

of the leaf spring (Chapter 6) and the drum (Chapter 8).
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+

10 kW

LF356

10 kW

10 kW

10 kW

Figure A.2: The differential amplifier of the interferometer. This amplifier was used in the experiments

of the leaf spring (Chapter 6) and the drum (Chapter 8).

+

1 kW

LF356

1 kW

10 kW

1 kW

+
LF356

2.1mF

+15 V

-15 V

In

Out

Figure A.3: The offset circuit of the interferometer. This circuit was used in the experiments of the leaf

spring (Chapter 6) and the drum (Chapter 8).
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100 kW

LF356

33 W

1 mF

4.7 kW

   or

22 kW

1 mF

Figure A.4: The low pass filter to lock the interferometer in the experiments of the leaf spring (Chapter

6). The PZT was connected to the output of this filter.

+

6.8 kW

LF356

50 kW

+
LF356

Out

1000 pF

33 kW

440 pF

47 kW

15 kW

0.1mF

Figure A.5: The filter to lock the interferometer in the experiments of the drum (Chapter 8).
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HA5002
+

OP27

3.3 kW

1000 pF

1 kW 470 W
10 W 9.1 W

Figure A.6: The driver to lock the interferometer in the experiments of the drum (Chapter 8). The coil

was connected to the output of this driver.
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