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Abstract

Thermal noise generated from mechanical loss in torsion pendulums creates a hard limit
in the sensitivity of any measurement utilising them. Characterising and mitigation of
this noise source would allow for more accurate measurements in a variety of experiments.
Here, the torsional Q of 1 mm thick sapphire fibres were measured, with the maximum
value of Q = 1.3 × 105 at 1.31 Hz measured for an unpolished fibre. This is in line with
the expected value extrapolated from previous studies for Q limited by surface losses, and
is the highest ever measured value for a sapphire fibre at room temperature, as far as the
author knows.
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Chapter 1

Introduction

This work, as the title suggests, is about mechanical loss in torsion pendulums, specifically

that of from the suspension. This mechanical loss leads to thermal noise, which limits the

sensitivity of precision experiments.

1.1 Torsion Pendulums

The torsion pendulum, also known as the torsion balance, is a pendulum that oscillates by

twisting about its wire, as compared to the standard pendulum which swings in response to

gravity. The general underlying motivation behind using such a device is simple; the desire

to eliminate (or at least reduce significantly) the effects of Earth’s gravity on whatever

force being measured.

This device has a long and storied history in classical physics, with most famous ex-

amples being the usage by Charles-Augustin de Coulomb and Henry Cavendish [1] to

establish Coulomb’s law and the universal gravitational constant (G) respectively. These

are the first two recorded usage of the torsional pendulum for metrology, with Cavendish

attributing the invention to Rev. John Michell (of the Royal Society of London), even

with Coulomb’s experiments being published first. This suggest that it was independently

invented by Coulomb. In recent years, notable uses of the torsion pendulum include the

ground-based testing of Laser Interferometer Space Antenna (LISA) gravitational sensors

[2], as well as for ever more accurate measurements of G, which has eluded the accuracy

of most other physical constants [3].

1
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1.1.1 Torsion-Bar Antenna (TOBA)

The main motivation behind this work, the Torsion-Bar Antenna (TOBA) is a proposed

ground based gravitational wave detector [4]. It is a torsion pendulum with nominally has

10 m long bars, which rotate via tidal forces caused by gravity waves. In order for the

design to successful, noise must be sufficiently lowered to be able to detect the faint signals

of gravitational waves. One of the main noise sources is that of thermal noise, which this

work focuses on. The aim is to lower the suspension thermal noise to below the quantum

noise, and thus remove it from being a limiting noise source in the sensitivity. This work

is essentially a proof of concept in achieving the properties required for TOBA to reach

its target sensitivity.

1.2 Thermal Noise

Thermal noise manifests from dissipative systems (including mechanical loss), and is a

consequence of the second law of thermodynamics. This creates a limit in sensitivity

in mechanical systems, and for torsion pendulums, is caused by loss mainly though the

suspension wire due to energy being dissipated as it turns from potential to kinetic energy.

Of cause, the torsion mass itself will also have thermal noise associated with it, but in

general will be much smaller and less less of an issue. In order to reduce it, choosing the

appropriate material is essential. To quantify mechanical loss and thus thermal noise, we

use a dimensionless figure of merit Q, in which the higher it is, the lower the loss (outside

of resonance).

In this quest to lower mechanical noise, the quest to measure the intrinsic Q of materials

were started. Most metals have an intrinsic Q of 104 before annealing and 105 after

annealing [5, 6], while crystalline materials, such as quartz, sapphire, silicon were found

to have higher Q of around 108 [7, 8]. For the use as fibres in suspension systems, much

research were carried out, mainly for pendulum systems. Much of the progress in the field

was carried out in the effort to reach the target noise sensitivity for the suspension system.

In particular, fused silica, which is currently used as for suspending the test masses at

aLIGO [9] and Advanced Virgo, received much attention. Most of these studies involved

the flexural modes of cantilevers. Unfortunately, there have only been a few studies done

for torsion pendulums, leading to a gap in knowledge. This problem is especially acute

in the case of TOBA, where the required Q to hit the target sensitivity has not been

demonstrated in any previous experiment. This unfortunate state of affairs stem form two
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main reasons; firstly, there is no simple way to excite the torsion mode of a simple beam,

and secondly, there has not been a big push on R&D in this specific area.

1.3 Experiment

While there have been many studies on the intrinsic values of internal friction of various

materials [7, 10, 11], there is a lack of data on actual measurements on torsion modes,

especially with respect to fibres. In particular, there is a lack of measurements at low

frequencies and in the presence of loads.

The experiments done here are therefore to experimentally verify if crystalline suspen-

sion fibres would live up to their promise on high Q factors, and to verify if they are useful

for use with torsion pendulums, with a special focus on TOBA. The experiments here also

provide a basic setup for the usage of crystalline fibres in the use of torsion pendulums,

and provide a quantitative idea of their usefulness in precision experiments. A common

problem in Q factor experiments is the difficulty of separating the intrinsic Q of the sample

with the loss from the setup. Of cause, this problem is faced here as well. On the other

hand, as our setup is that of a torsion pendulum, we can say with confidence that the

values achieved here will be achievable with a similar setup, which will be very useful as

we adapt it for use with TOBA. In a sense, these experiments are also experiments in

clamp design and setups, and not simply measurements of intrinsic values.
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The Torsion Pendulum

The basic theory behind the humble torsion pendulum is as follows. Restoring torque is

generated by the suspension fibre as it is twisted. The nature of this torque originates

from the mechanics of materials, and is derived below. The following derivation assumes

a suspension by a single fibre.

The shear stress at any point inside the fibre τs, is related to the strain angle γ via the

shear modulus µ as follows:

τs = µγ. (2.1)

As an aside, the shear modulus µ is related to the more famous Young’s modulus Y

and Poisson’s ratio ν via the relation

µ =
Y

2 (1 + ν)
, (2.2)

with the assumptions of a isotropic and homogeneous material.

We now note that the strain angle is related to the angle of twist of the fibre θ, with

γ = r
θ

L
, (2.3)

with r being the distance away from the centre of the fibre, and L being the length of the

fibre. This relation is a geometric one, assuming that the twist that occurs is linear, which

would be reasonable for a homogeneous material undergoing a small twist.

By relating the two equations, we obtain

τs = µr
θ

L
. (2.4)

4
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The moment (torque) M generated by the fibre can then be calculated by via the

integration over the cross sectional area A, leading to

M = −
∫ R

0
τsrdA

= −µ
θ

L

∫ R

0
r2dA

= −µ
θ

L
J, (2.5)

with R being the radius of the fibre, and the identification of J as the second moment of

area. The negative sign comes from the recognition that the torque generated is in the

opposite direction from the angle of twist.

The second moment of area for the geometry of fibre, i.e. an cylinder, is given by

J =

∫ R

0
r2dA

=

∫ R

0
r2d(πr2)

=

∫ R

0
2πr3dr

=
πR4

2
=

πD4

32
, (2.6)

with D the diameter of the fibre.

We can now identify the torsional constant, by relating (2.5) to an angular version of

Hook’s law,

M = −κθ, (2.7)

giving

κ =
µJ

L

=
µ

L

πR4

2
=

µ

L

πD4

32
. (2.8)

Starting from the relation between torque and angular acceleration for a body with a

fixed moment of inertia I,
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M = Iθ̈, (2.9)

which combined with Hook’s law gives

Iθ̈ = −κθ, (2.10)

which we identify as simple harmonic motion, giving an angular resonance frequency ω0

of

ω0 =

√
κ

I
, (2.11)

with κ identified above and I =
∫
r2dm depending on the geometry of the pendulum, with

I =
1

12
ml2 (2.12)

for a thin rod, and

I =
1

2
mr2 (2.13)

for a solid disc.

This completes the basic theory behind torsion pendulums. In practice, there are

many complicating factors, which have been subjected to research over the years, such as

dissipation (which leads to thermal noise, which we will discuss in detail in this work),

the the actual resonance frequency would differ, due to many complicating factors, such

as anisotropy in the fibre, etc.

2.1 Torsion-Bar Antenna (TOBA)

The recent direct detections of gravitational waves, starting from GW150914 [12] has

brought forth a new era of astronomy. By these detections of black holes, we have discov-

ered a population of black holes that were previously unknown to mankind. Unfortunately,

the current ground based interferometric based detectors such as aLIGO, AdVirgo and KA-

GRA, are limited in the range of frequencies in which they can detect gravitational waves

[13]. The given sensitivity curves for these detectors are generally given from 10 Hz to

7000 Hz.
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As mentioned in the introduction, TOBA is a proposed gravitational wave detector

[4] that uses a torsion pendulum in its design. As compared to standard ground based

interferometric based detectors, it targets a lower frequency band, that of 0.1 Hz to 10 Hz.

The two perpendicular bars spanning the horizontal plane that make up TOBA will nom-

inally be 10 m long, suspended by a fibre from their centre of mass. When gravitational

waves pass though, tidal forces from the waves will cause angular movement, which will be

measured with a sensor. There are already sub-meter scale prototypes of TOBA already

demonstrating proof of concept and setting bounds on the gravitational wave stochastic

background in the band of interest [14].

Pendulum based detectors have a resonance frequency of ω0 =
√

g
L , with g being fixed

due to the detectors being located on Earth, L has a practical range of up to the order of

10 m, leading to resonance generally being between 0.1 Hz to 10 Hz. This sets the lowest

frequency in which these detectors can be accurate. Of cause, space based detectors,

not being subjected to the Earth’s gravitational field, do not have this limit, and indeed,

both LISA and DECIGO targets a lower frequency band [15, 16]. Obviously, space based

detectors, being free from Earth bound constrains, can achieve a much better sensitivity

than TOBA. On the other hand, a much lower cost and much greater accessibility means

that it is complimentary to space based detectors, not unlike the situation with earth

based telescopes and the Hubble space telescope.

Other uses for TOBA would be for an early warning system for earthquakes [17], and

by the same token, an early warning system for tsunamis as well. It can also be used

to measure gravity gradient noise — noise generated by moving Newtonian noise sources.

Essentially, changing positions of masses nearby would cause their Newtonian gravitational

force to change with respect to the detector, generating noise1.

TOBA targets the range in between LISA and aLIGO, and can thus observe intermedi-

ate mass black holes mergers, with the frequency of this allowing us to test super massive

black hole formation theories. At the target sensitivity, with a signal to noise ratio of 5, it

will have an observation range of 10 Gpc for black hole binary mergers with a total mass

of 105 solar masses [4].

The targeted Q is that of Q & 108, which is required to ensure that thermal noise is

not a limiting factor in the final TOBA [4].
1Technically, these also generate gravitational waves, but are many orders smaller in magnitude that

we do not even need to give them even a moment of consideration.
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2.2 Measurement of G

The universal gravitational constant, G is one of the least precise physical constants known

to mankind [18]. This is not for lack of trying, but rather due to the nature of gravity, which

unlike other forces, cannot be shielded from, and there is a rather strong gravitational field

on Earth that all gravitational experiments have to contend with. The torsion pendulum,

with its degree of freedom being orthogonal to Earth’s gravity, is a natural choice for such

experiments. The celebrated use by Henry Cavendish for the measurement of the mean

density of the Earth [1], now more commonly interpreted in terms of G, is one of the

earliest recorded uses of the torsion pendulum for precision measurements.

One of the most popular method utilising torsion pendulums to measure G is via

something known as the time of swing. This method has been used over the years [19, 20],

and is still popular to this day [3, 21]. One of the biggest issues preventing further accuracy

of this method is known as the Kuroda bias [22], which suggests that the results is biased

by the anelasticity of the fibre, which will be smaller as Q increases. To this end, the use

of cryogenic systems have been deployed [3, 23], and fused silica has been used [21].



Chapter 3

Thermal Noise

The nature of mechanical systems is that thermal noise becomes a limit of sensitivity in

measurements. This occurs to every system, from the basic spring block system to the

intricate systems of the mechanical watch. Simply put, thermal energy leads to vibration,

and thus noise.

3.1 The Fluctuation-Dissipation Theorem

The fluctuation-dissipation theorem gives us an understanding of how thermal noise affects

a system. It essentially states that in the same way that a system loses “useful” energy

via dissipative mechanisms which turns into thermal energy, thermal noise is generated

by the same route, in which thermal energy turns into noise via the opposite direction.

This was first formulated by Harry Nyquist in the context of Johnson noise in circuits

[24], but was generalised in 1951 by Herbert B. Callen and Theodore A. Welton [25].

It quantitatively links the linear response to external forces to the fluctuations arising

from thermodynamic equilibrium. This link between dissipative systems and spontaneous

fluctuations was shown to have much flexibility, reproducing results from Brownian motion,

the Plank radiation law among other effects.

The theorem is given by

⟨F 2⟩ = 2

π

∫ ∞

0
ℜ(Z(ω))E(ω, T )dω, (3.1)

9
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with ⟨F 2⟩ being the mean square of a generalised force, ℜ(Z(ω)) being the real part of a

generalised impedance and with the energy E(ω, T ) being

E(ω, T ) =
1

2
~ω + ~ω(e

~ω
kBT − 1)−1, (3.2)

the mean energy of an oscillator of angular frequency ω at temperature T .

At high temperatures (kBT ≫ ~ω), this simplifies to

E(ω, T ) ≃ 1

2
~ω + ~ω(1 +

~ω
kBT

− 1)−1 ≃ kBT, (3.3)

which matches the result from equipartition theory, giving

⟨F 2⟩ = 2

π
kBT

∫ ∞

0
ℜ(Z(ω))dω, (3.4)

or the more familiar form

⟨F 2⟩df = 4kBTℜ(Z(f))df, (3.5)

where 2πf = ω and ⟨V 2⟩df is the mean square of the force within the frequency interval

df . If we then let F be voltage and remember that the real part of impedance is resistance,

we recover the Nyquist relation.

If we are interested in the displacement of the system, we note that in frequency space,

x = ẋ
iω and x = − ẍ

ω2 . Furthermore, we also note that the impedance is defined by

F = Z(ω)ẋ, (3.6)

where ẋ would be the generalised velocity, giving the velocity version of the fluctuation-

dissipation theorem to be

⟨ẋ2⟩ = 4kBTℜ(Z(ω))

|Z(ω)|2
= 4kBTℜ(Y (ω)), (3.7)

and the displacement version would be

⟨x2⟩ = 4kBT

ω2
ℜ(Y (ω)), (3.8)

with the admittance defined by Y = 1
Z . This is the thermal noise spectrum for a generic

system.
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3.2 Q Factor

The Q factor, also known as the quality factor, is a dimensionless parameter, that char-

acterises how underdamped a system at resonance is. The higher the Q factor, the longer

a system will oscillate. It is usually defined1 by the resonance frequency f0 divided by

the full width half maximum of the resonance peak in frequency space ∆f (with the peak

measured in energy),

Q =
f0
∆f

. (3.9)

The Q factor in general is dependent on the frequency, but in practice is rather insen-

sitive over a rather large range of frequencies [7, 27]. In the case of torsion pendulums,

there is also a dependence on amplitude [23, 28], among other possible properties.

We point out here that you can get Q from the thermal noise spectrum, as resonance

also occurs there, as will be shown later.

3.2.1 Viscous Damping

There are two simplified models of damping, that of viscous damping and structural damp-

ing. Viscous damping is damping that is proportional to the velocity of the system, giving

a damped harmonic oscillator equation of motion

F = mẍ+ bẋ+ kx, (3.10)

with b being the damping coefficient. This type of damping is also known as classical

damping, because it is the most studied form of damping (analytically), even if most real

life damping do not correspond exactly to it.

We justify using the harmonic oscillator by pointing out that for it is a good approxi-

mation to most potential wells, especially if kept to small perturbations.

To link the Q factor and the fluctuation dissipation theorem, we first start out with

applying the fluctuation dissipation on this system.

The admittance is then
1Q was initially coined by K.S. Johnson in 1920 as the ratio of reactance to effective resistance in a coil

or capacitor, and the story of how it evolved to its current day definition is chronicled in [26].
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Y (ω) =
1

Z(ω)

=
ẋ

F

=
1

iωm+ b+ k
iω

=
1

b+ i(ωm− k
ω )

, (3.11)

where we use the fact that in frequency space,

iωx = ẋ (3.12)

and

iωẋ = ẍ. (3.13)

The real part of the admittance is

ℜ (Y (ω)) = ℜ

(
1

b+ i
(
ωm− k

ω

))

=
b

b2 +
(
ωm− k

ω

)2 (3.14)

Then applying the fluctuation-dissipation theorem, we now have

⟨x2⟩ = 4kBT

ω2
ℜ (Y (ω))

=
4kBT

ω2

b

b2 +
(
ωm− k

ω

)2 . (3.15)

Solving for the maximum, we find out that it occurs at

ω0 =

√
−b2 + 2mk√

2m
, (3.16)

and in the case of b2 ≪ mk,

ω0 ≃
√

k

m
, (3.17)

where the slightly damped case has the same resonance frequency as the simple harmonic

oscillator, as we expect it to be.
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In order to obtain the Q factor, we now need the full width half maximum (FWHM),

meaning the difference in the solutions to

1

2

4kBT

ω2
0

b

b2 +
(
ω0m− k

ω0

)2 =
4kBT

ω2

b

b2 +
(
ωm− k

ω

)2 . (3.18)

The solutions are

ω+ =

√√
−b2m4(b2−4km)

m4 − b2

m2 + 2k
m√

2
(3.19)

and

ω− =

√
−
√

−b2m4(b2−4km)

m4 − b2

m2 + 2k
m√

2
(3.20)

with ω+ and ω− referring to the larger and smaller solutions respectively.

The difference is then

√√
b2m4 (4km− b2)− b2m2 + 2km3 −

√
−
√

b2m4 (4km− b2)− b2m2 + 2km3

√
2m2

≃ b

m
,

(3.21)

where we assume again that b2 ≪ mk and only deal with first order in b.

We thus end up with a Q factor of

Q ≃ ω0m

b
, (3.22)

which becomes accurate for large Q.

We have now derived Q using the fluctuation dissipation theorem, for a system with

viscous damping.

Rewriting the fluctuation dissipation theorem in terms of Q, we have, for the case of

ω ≪ ω0,

⟨x2⟩ = 4kBT

ω2

b

b2 +
(
ωm− k

ω

)2
≃ 4kBTb

k2
=

4kBTω0m

k2Q
, (3.23)
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Figure 3.1: Loglog plots of the thermal noise spectrum of various viscous damped
system with parameters k = 1 and m = 1, leading to resonance at ω = 1 with various Q
factors. The higher the Q, the higher the response at resonance, and lower everywhere
else. Both TOBA and second generation ground based gravitational wave detectors have
an operating sensitivity to the right of the suspension’s resonance, where thermal noise is

low.

and for the case of ω ≫ ω0,

⟨x2⟩ ≃ 4kBTb

ω4m2
=

4kBTω0

ω4mQ
. (3.24)

This leads us to the understanding that at frequencies far away from resonance, with

everything else being equal, a higher Q leads to lower thermal noise. The corollary to this

is that at frequencies near resonance, noises are amplified drastically, with

⟨x2⟩ ≃ 4kBT

ω2
0b

=
4kBTQ

ω3
0m

(3.25)

at ω ≃ ω0.

The utility of Q comes from it being a measurable quantity, especially at resonance.

In a significantly underdamped oscillator, the response is known to be

x = e−
b

2m
ta cos (ω0t), (3.26)

and the time independent part of the exponent can be rewritten as

b

2m
=

ω0

2Q
, (3.27)

which means that we can calculate the Q from the decay envelop and the resonance

frequency in practice, with the equation
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Q =
τω0

2
= πτf0, (3.28)

where τ is the time constant of the decay envelop and given by τ = 2m
b . This, as we will

see later, is essential in experimental measurements of Q.

3.2.2 Structural Damping

Now, if we consider structural damping, which is modelled by

F = mẍ+ k(1 + iϕ)x, (3.29)

where ϕ is known as the loss angle.

This is a generalised version of Hook’s law, where the restoring force is not instanta-

neous, but out of phase by the loss angle ϕ.

As can be inferred from its name, the loss angle is linked to the amount of energy

dissipated out of the system.

To apply the fluctuation-dissipation theorem to this model, we repeat ourselves by first

calculating the admittance,

Y (ω) =
1

Z(ω)

=
ẋ

F

=
1

iωm+ k(1+iϕ)
iω

=
1

kϕ
ω + i

(
ωm− k

ω

) , (3.30)

and then calculating the real part of it,

ℜ (Y (ω)) =
kϕ
ω(

kϕ
ω

)2
+
(
ωm− k

ω

)2 . (3.31)

We now have

⟨x2⟩ = 4kBT

ω2
ℜ (Y (ω))

=
4kBT

ω2

kϕ
ω(

kϕ
ω

)2
+
(
ωm− k

ω

)2 . (3.32)
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Assuming a constant2 ϕ, we solve for the maximum, which happens with a frequency of

ω0 =

√
3km+

√
k2m2(4− 5ϕ2)

5m2
, (3.33)

and as we have come to expect,

ω0 ≃
√

k

m
, (3.34)

in the case of ϕ2 ≪ 1.

We now note that the mean fluctuation equations (3.15) and (3.32) differ only by the

replacement of b → kϕ
ω . This means that the FWHM can be approximated (to first order)

by

b

m
→ kϕ

ω0m
= ω0ϕ, (3.35)

where the usage of ω0 is justified by noting that the FWHM is small with respect to the

magnitude of ω0, and thus approximately constant over the range in question.

This leads us to the conclusion that for structural damping, the relationship between

the Q factor and the loss angle is exceedingly simple, and given by

Q =
1

ϕ
, (3.36)

with the oft repeated caveat that it only holds true for large Q.

Rewriting the fluctuation dissipation theorem in terms of Q, we have, for the case of

ω ≪ ω0,

⟨x2⟩ = 4kBT

ω2

kϕ
ω(

kϕ
ω

)2
+
(
ωm− k

ω

)2
≃ 4kBTϕ

kω(ϕ2 + 1)
≃ 4kBT

kωQ
, (3.37)

while for the case of ω ≫ ω0,

⟨x2⟩ ≃ 4kBTkϕ

ω5m2
=

4kBTk

ω5m2Q
. (3.38)

2Technically another maximum occurs at 0 Hz with a constant ϕ, so what we mean is a constant ϕ over
the range that we do care about, similar to white noise, where a similar infinite energy problem appears if
you blindly apply the concept over all frequencies. To be specific, as ω tends to zero, it means that that
the time lag for the restoring force tends to infinity, which is patently unphysical. In [29], it is pointed out
that this term needs to be an odd function of frequency, i.e. be zero at 0 Hz. The same article also goes
into detail why this divergence is not a practical issue for real systems, and is worth a read.
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Figure 3.2: loglog plot of thermal fluctuation spectrums of (blue) viscous damping
and (red) structural damping, illustrating the different behaviour at frequencies away
from resonance. Parameters are Q = 104, with ω0 = 1. Of particular interest is the
ω−5 dependence in the structural case versus the ω−4 dependence in the viscous case
at frequencies larger than resonance. Of cause, in reality, the loss factor for structural
damping is not a real constant with respect to frequencies, but it generally is stable within
a band of an order of magnitude across many orders of magnitude of frequencies [30], and

thus the overall trend does hold.

Yet again, it peaks at resonance at ω ≃ ω0, with

⟨x2⟩ ≃ 4kBT

ω0kϕ
=

4kBTQ

ω0k
. (3.39)

We now justify our earlier assumption of a constant loss angle by pointing out again

that literature has shown that the loss angle is (somewhat) independent of frequency,

at least for a large variety of materials, over a large range of frequencies [27]. There

is, however, some evidence that there is some frequency dependence, at least for some

configurations.

We note here that as a result of structure based damping, the thermal noise falls of

faster with respect to frequencies at frequencies higher than resonance.

In any case, given how similar structural damping behaves as compared to viscous

damping at resonance, the relation between the ringdown and Q holds true here too.
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3.2.3 An Intuitive Definition of Q

A different way to define Q is by relating it to the energy stored in a system and the energy

dissipated in one cycle at resonance. Specifically, it is given by

Q = 2π
E

∆E
, (3.40)

where E is the energy stored in the system and ∆E is the energy loss by one cycle of the

system.

We will see how this is equivalent to the initial definition, at least in the context of

high Q, by using eq. 3.26.

Consider that the energy of a system is proportional to the square of the amplitude of

the generallised amplitude (think spring block). We then have the ratio E
∆E for one cycle

(using eq. 3.26) given by

E

∆E
=

12

12 −
(
e
− b

2m
1
f0

)2
=

1

1− e
− b

mf0

≃ 1

1− 1 + b
mf0

=
mf0
b

, (3.41)

where the approximation is justified as b2 ≪ mk (high Q) is equivalent to b
mf0

≪ 1.

By referencing eq. 3.22 ,Q ≃ ω0m
b , we see that eq. 3.40 is consistent with previous

definitions of Q. We justify the extension to systems with structural damping by pointing

out that a system at resonance is only moving at f0, and thus the argument will hold with

the replacement b → kϕ
ω0

.

This is a more physical intuitive definition of Q, and easier to keep in mind as the

motivation for the experiments that follow.

3.3 Thermal Noise for Torsion Pendulums

Now, we can apply this knowledge to torsion pendulums. We shall focus our attentions

onto structural damping, where the thermal fluctuation spectrum of eqn 3.32 becomes
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⟨θ2⟩ = 4kBT

ω2

kϕ
ω(

κϕ
ω

)2
+
(
ωI − κ

ω

)2 , (3.42)

with the simple replacement of m → I and k → κ.

For the case of ω ≫ ω0,

⟨θ2⟩ ≃ 4kBTκ

ω5I2Q
=

kBTµπD
4

8ω5I2LQ
, (3.43)

where eqn 2.8 was brought in.

This signifies that with all else being equal, the fibre used should be as long as possible,

Q as high as possible, and D as small as possible, with the dependence on D being a

staggering fourth power. This explains the popularity of tungsten for the use in torsion

pendulum experiments, due to its high tensile strength, leading to a smaller diameter

required.

If we assume a fixed weight mg to carry along with a fixed safety factor s, the minimum

diameter will be related to the tensile strength St by

smg = Stπ
D2

4
, (3.44)

leading to

⟨θ2⟩ ≃ m2

I2
2kBTµs

2g2

ω5LSt
2πQ

. (3.45)



Chapter 4

Material Selection, Experimental

Concerns

4.1 The Quest for High Q

Seeing that Q is one of the free parameters in the thermal noise spectrum, the hunt for

high Q begin. Another reason to study high mechanical Q materials in the gravitational

wave community was for use in Weber bars [31–33], which required a high Q for resonance

with passing gravitational waves. This was a big motivation behind bulk Q measurements.

4.1.1 Bulk Q

These resonant mass detectors (Weber bars) utilised the fact that the high Q is, the larger

the resonance becomes. Aluminium alloy 5056 was given much attention, due to studies

finding it to be the aluminium alloy with the highest Q at 4 K [34], with detectors built

all over the globe. These detectors were large, usually weighting over a ton. Selected bulk

Q measurements are summarised in table 4.1, which showcases how bulk Q changes with

temperature, and the gap between metals and crystals. Weber bars were not build with

crystals, as current technology does not allow for fabrication of large crystals weighting

over a ton.

4.1.2 Fibre Q

While table 4.1 showcases the bulk Q, measured Q in fibres have historically been quite a

little lower. For simplicity, flat cantilevers will also count as fibres for the purposes of this

work. Effects such as thermoelastic loss, surface loss, clamp loss and recoil loss conspire

20
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Table 4.1: Table of bulk Q for various materials, from metals to amorphous fused silica
to single crystals. The asterisk next to fused silica and quartz indicates data taken from
fibres or cantilevers, rather than a bulk resonator. Data taken from [5–8, 10, 34–39]. There
are many other works on bulk Q, with many works showing results orders of magnitude
smaller. In general, these results are very dependent on annealing and surface properties,
along with the experimental setup. Note that lower temperatures generally lead to higher
Q, with fused silica being an exception. The cryogenic value of Q for sapphire [10] is

actually the current world record in the literature for mechanical Q.

Table 4.2: High torsion Q values of torsion pendulums, taken from literature. From left,
values taken from [3],[3],[23],[41], and [42]. The torsion pendulum in [42] does not have a
uniform fibre thickness. Note that all of them fall short of the requirement for TOBA of
Q & 108. In this work, torsion measurements of bulk resonators are counted as bulk Q

measurements, due to the aspect ratio of the resonators.

to reduce the measured Q. The details of these effects will be detailed later, but suffice to

say that Q measurements is harder with fibres than with bulk. Most fibre measurements

are done via clamped-free samples, i.e. a fibre clamped at one end. The highest fibre Q

value is in table 4.1, and a good reference to various fibre Q can be found in [30].

4.1.3 Torsion Q in Fibres

The current literature on high Q torsion pendulums is summarised in table 4.2. We see

that similar to fibre measurements, the highest value belongs to fused silica. Metal wires

used at room temperature for G measurements typically have a value of ∼ 103 [28, 40]
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4.2 Crystal Fibres and Torsion Pendulums

In this work, we focus on the measurement of crystal fibres, especially sapphire. Crystals

have been shown in literature to have high intrinsic Q [7, 8], with about two to three

orders of magnitude higher than that of metals, which typically reach 105. See Table 4.1

for details. Given the requirement for TOBA, in which suspension thermal noise does

not become a limiting noise source, the only reasonable choice is to consider crystalline

fibres. If we refer back to 3.43, we note that the tensile strength for crystalline materials

depend drastically on their finish, with a high quality surface providing a higher tensile

strength than metals, even that of tungsten and piano wire [43, 44]. On the flip side, poor

surface quality will lead to over an order of magnitude decrease in tensile strength. With

a higher tensile strength, higher Q, and similar Young and shear moduli compared to

metals, crystalline materials are the best choice to lower thermal noise in both pendulums

and torsion pendulums.

This was first implemented for gravitational wave detectors by GEO 600 (fused silica)

[45], and has since applied to aLIGO (fused silica fibres), KAGRA (sapphire fibres) and

AdVirgo (fused silica fibres). However, these are pendulum systems, and not torsion

pendulums. Research on torsion pendulums using crystalline wires is scarce, with the only

known data (in my knowledge) for sapphire, coming from [23], in a graph, at 4.2 K no

less, showing the dependence of Q factor with amplitude. Unfortunately, no other data is

provided in this graph, with the details behind the experiment unknown. Although the

graph showed that sapphire provided the highest Q factor among the materials tested,

with a value on the order of 106, it is firstly technically insufficient for the use in TOBA

and secondly has a severe lack of details on the experiment. For example, details like

which crystal axis was the sapphire tested on as well as the dimensions of the sapphire

used are completely unknown.

On the other hand, there is more information on silica, with Q = 7.4×105 for a torsion

pendulum to study the free fall mode of LISA [46], Q ∼ 5 × 104, for a torsion pendulum

used to measure G [21] and Q = 7×106 for a torsion pendulum used to study the viability

of silica fibres as the suspension for gravitational wave detectors [42].

Unfortunately, silica is known to be not suitable for cryogenic cooling, with the quality

factor falling to below metals [38] at cryogenic temperatures. This is the reason why

sapphire is being used in KAGRA and sillicon is being studied for possible use in 3rd

generation gravitational wave detectors. With the selection of sapphire as a material
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Table 4.3: Measurements of sapphire Q over the years. From top: [10], [8], [47], [7], [48],
[23], [49], and [30]. We can see that at room temperatures, flexural modes are limited by
thermoelastic damping. Note the lack of data on low frequency torsion, which would be

the quantity of interest for torsion pendulums.

to study, we first must look at past measurements of sapphire, tabulated in Table 4.3.

Sapphire has the current world record for the highest ever measured mechanical Q of

5× 109 [10], and even has a room temperature value of 2.7× 108 [8].

Despite these limitations, this provides motivation to work with crystal fibres, as it

provides evidence that even for torsional modes, they surpass metal wires in terms of Q.

4.3 Surface Loss and Q

There is a growing body of evidence that high Q measurements of fibres are almost always

limited by surface loss. In this case, we distinguish fibres from simple bulk measurements

where the samples have dimensions that are of the same order with each other. Surface

losses are caused by the surface being damaged compared, with the bulk, with absorbed

molecules, irregularities leading to a lower Q then the bulk.

This can be seen clearly in [50], where a fused silica sample had its Q factor falling by

a factor of four just from hitting against a copper rod. [51] shows a clear trend between

size and thus energy stored by surface to volume ratio for silicon, and similar relations

have been shown for fused silica [41, 52, 53]. This relation has been shown even on the

nano scale, with [54] having nanometre silicon wires following the same trend.

There is a simplified model which we can use to quantify the loss from the surface. The

effective Q depends on not just the Q of the bulk, but also of any other energy dissipation

mechanism. The effective Q is thus also related to the Q of the other mechanisms, but not

directly, as the amount of energy loss though other mechanisms is related to the amount
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of energy stored in them. Using the alternate definition of Q is given by Q = 2π E
∆E (eq.

3.40), we can see that

Qeff = 2π
E1 + E2 + ...

∆E1 +∆E2 + ...
, (4.1)

where E1 and E2 represents the energy from the various mechanisms.

Limiting our discussion to bulk and surface loss, we can rewrite this equation as

1

Qeff
=

1

2π

∆Ebulk +∆Esurface

Ebulk + Esurface
. (4.2)

We now assume that the energy stored in the surface is insignificant compared to what

is stored in the bulk,Ebulk ≫ Esurface, giving

1

Qeff
≃ 1

2π

∆Ebulk +∆Esurface

Ebulk

=
1

Qbulk
+

1

2π

∆Esurface

Ebulk

=
1

Qbulk
+

1

2π

∆Esurface

Esurface

Esurface

Ebulk

=
1

Qbulk
+

1

Qsurface

Esurface

Ebulk
. (4.3)

Now, if we further assume that the surface layer has a characteristic thickness h in which

Qsurface exists, which in other words means a damaged layer with a (presumably) lower

Q, we can rewrite the term Esurface

Ebulk
as h

∫
S ϵ2dS∫
V ϵ2dV

, where we recall that the potential energy

per unit volume is given by 1
2Y ϵ2 for a simple strain, and use a further approximation that

the surface layer has the same Young’s modulus as the bulk.

The realised Q of a sample can then be approximated by the following equation for a

simple strain,

1

Qeff
∼ 1

Qbulk
+

1

Qsurface
h

∫
S ϵ2dS∫
V ϵ2dV

. (4.4)

In the case of torsion, the term
∫
S ϵ2dS∫
V ϵ2dV

is replaced as we note that the energy stored

per unit volume via shear is given by 1
2µγ

2, leading to the effective Q for samples with

pure shear to be
1

Qeff
∼ 1

Qbulk
+

1

Qsurface
h

∫
S γ2dS∫
V γ2dV

, (4.5)

where we once again assume the same shear modulus for both the surface and the bulk.
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With respect to torsion pendulums, we evaluate

∫
S γ2dS∫
V γ2dV

=

∫
S

(
Rθ
L

)2
dS∫

V

(
rθ
L

)2
dV

=

∫ L
0

(
Rθ
L

)2
2πRdl∫ L

0

∫ R
0

(
rθ
L

)2
2πrdrdl

=

(
θ
L

)2
2πR3L(

θ
L

)2
2πR4

4 L

=
4

R
=

8

D
. (4.6)

This gives us the simple result that the surface losses get more dominant the thinner the

wires are, which is in line with previous studies on the subject [41, 51–53], which includes

not just torsional modes (of which there isn’t much data), but also that of flexural modes

This also points to the way forward: tackling surface losses would be the key to achieving

high Q for fibres, once clamp losses have been taken care of.

While eq.4.6 is not applicable to other modes of resonance, the direct inverse propor-

tionality with the characteristic length of the samples still hold, which can be easily seen

by dimension analysis.

In terms of values measured, [37] is the current record holder. Fused silica fibres have

been shown to have higher Q than competing materials at room temperature, and my per-

sonal analysis of the situation is that these high Q fibres are drawn with a flame, resulting

in an impeccable flame polished surface. This is not done with sapphire and silicon in

existing literature (to my knowledge), possibly due to the higher melting temperatures.

In addition, annealing was always applied, which helps to improve the bulk Q.

Cryogenic temps result in higher Q in general, with Al5056 [34] being a popular choice

for metals. This has lead to the usage of Al5056 in cryogenic Weber bars, with high Q

being a necessity for detection. As an aside, high Q is required for Weber bars precisely

because the transfer function peaks higher at resonance, which is the opposite reasoning

from lowering thermal noise with high Q.

4.4 Thermoelastic Damping

Sapphire is often not considered a suitable material for high Q fibres at room temperatures,

with measured values for flexural modes generally being lower than silica by at least an

order of magnitude [30, 49]. This is generally attributed to the thermoelastic effect. The
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Figure 4.1: loglog plot of thermoelastic Q for various diameters of sapphire fibres,
undergoing flexural motion. The values Y = 350GPa, α = 5 × 10−6K−1, and λ =
23W m−1 K−1 were used. Note that while different diameters shift the curve in the
graph, it does not change the minimum Q of ≃ 2× 103. This graph is consistent with the

Q measured for sapphire wires at room temperatures, as seen in [30, 49].

damping from this effect has been shown to provide a upper limit on the Q of the fibres over

a variety of materials [49]. As we will later see, this limit does not apply to the torsion

modes. Nonetheless, Q from thermoelastic damping will be derived here, for analysis

purposes.

For thermoelastic damping in flexural modes [55, 56], the loss angle for structure

damping is given by

ϕ (ω) =
∆rωτr

1 + (ωτr)
2 , (4.7)

where ∆r is known as the relaxation strength and τr is known as the relaxation time and

is given by

∆r =
Y α2T

c
(4.8)

and

τr =
cD2

2.16 (2π)λ
(4.9)

for circular rods, with α being the coefficient of thermal expansion, c the volumetric heat

capacity and λ the thermal conductivity.

Inputting the values, for sapphire and considering a 1 mm thick fibre, the Q from the

thermoelastic effect peaks at ω = τ−1
r , and is right in the TOBA band, as shown in figure

4.1.
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[49] suggests that at least for tungsten, the thermoelastic effect provides a celling for

Q, but the loss angle is approximately independent of frequency, suggesting that the ther-

moelastic effect cannot simply explain internal friction. On the other hand, [30] suggests

that for most metals, the loss angle can be modelled by

ϕ (ω) = ϕ0 +
∆rωτr

1 + (ωτr)
2 , (4.10)

i.e. a frequency independent term added to the thermoelastic damping, but with fitted

values of ∆r and τr significantly deviating from theory.

Note that while thermoelastic damping’s frequency dependence changes with thickness,

it does not change the minimum thermoelastic Q. It therefore cannot explain the surface

to volume ratio dependence of Q that the surface loss hypothesis can.

4.5 Experimental Concerns

In doing a ringdown experiment to measure Q, there are many possible loss mechanisms

that can interfere with the energy dissipation, thus obscuring the true value of the internal

friction of the samples being tested.

4.5.1 Gas Damping

Gas damping is the reason why the experiments are done in vacuum. As stated in the

earlier sections, there are multiple mechanisms for energy dissipation, and they all affect

the measured Q.

The Q from gas damping at low pressures is given by [57] as

Qgas = πf0
m

4S

1

n
√
mmoleculekBT

, (4.11)

where S is the surface area of the oscillator, n the number density of of the gas molecules,

and mmolecule the mass of the individual gas molecule. Presumably, S is the effective

surface area in which the system is moving against the gas. This is taken into account in

[29], where the relevant equation is modified to

Qgas = 2πf0Cρl
1

n
√
mmoleculekBT

, (4.12)
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where C is a dimensionless constant that defers by shape, ρ is the density of the oscillator,

and l is the characteristic length of the oscillator. This equation essentially replaces m
4S

with 2Chρ, and thus are more or less equivalent to an order of magnitude.

4.5.2 Clamp Loss

Once gas damping is taken care of via putting the system in vacuum, the biggest limiting

factor is that of clamp loss. This is generally the reason why the measured Q is lower than

what is expected, across a wide variety of experiments. The equivalent to this for bulk

measurements is that of the suspension system used to hold the resonator, where a simple

change can affect Q drastically, for example, see [8], where a switch from silk to tungsten

suspension fibres almost doubles Q. Unfortunately, there is no real way to calculate the

extent of clamp losses, and can only be inferred.

4.5.3 Recoil Damping

Some energy in the system will also be transferred to the support via recoil. This is a

area in which measurements of bulk Q via resonators have an advantage, as they can be

supported at their nodal points, eliminating recoil to a great extent [5–7, 11, 35]

The effective Q from considering recoil damping is given by[29]

1

Qeffective
=

1

Q
+

1

Qsupport

m

msupport

ωsupportω0
3

(ωsupport
2 − ω0

2)2
, (4.13)

with ωsupport being the resonance frequency of the support. This equation comes about

from modeling the support structure as another oscillator coupled with the first. This

means that when the support structure has a resonance frequency close to that of the

system, the effective Q becomes much lower. In the case where ωsupport ≫ ω0, as in the

case of a larger rigid structure, the Q limit from recoil damping becomes

Qrecoil ≃ Qsupport
msupport

m

(
ωsupport

ω0

)3

, (4.14)

as seen in [58].

Interestingly, there appears to be a dissenting opinion, with Qrecoil given as [59, 60]

Qrecoil = Qsupport
ksupport
mω0

2
, (4.15)
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where ksupport is the spring constant of the support. If we apply the relation ω2 = k
m , we

end up with

Qrecoil = Qsupport
msupport

m

(
ωsupport

ω0

)2

, (4.16)

differing from the earlier model by a factor of ωsupport

ω0
. Unfortunately, there is no expla-

nation of this equation, so we cannot evaluate the reasoning behind this difference1.

Converting the equations for use with torsion, we simply replace the mass ratio with

that of the ratio of the moment of inertia, giving

Qrecoil ≃ Qsupport
Isupport

I

(
ωsupport

ω0

)n

, (4.17)

where n is either 2 or 3.

A point to note about recoil losses is that the actual thermal noise profile away from

resonance will be very different than what would be expected from a direct application of

the measured Q at resonance to the equations found earlier in this chapter [29].

4.5.4 Coupling with Pendulum Mode

Due to the imperfection of the system used, there will be some coupling with the pendulum

mode. This will lead to energy being transferred, and lost via this mode. A model for this

is currently being developed.

4.5.5 Amplitude Dependence of Q in Torsion Pendulums

An amplitude dependence of Q has been observed for torsion pendulums, for a variety of

materials [3, 23, 28] at both room and cryogenic temperatures. In particular, [23] shows

that while metals have a linear relation between Q−1 and amplitude, sapphire does not.

While this will not affect TOBA as it is operated only at small amplitudes, this will affect

the measured Q in ringdown measurements. [23] suggests that at 4.2 K, a peak shear

strain of less than γ0 < 1× 10−4, Q drops by less than half.

4.5.6 Q Corrections from Noise Floor

In any real experiment, noise enters from seismic motion of the ground. To understand

the effect this has on the data, we shall construct two simplified models to quantify this

effect.
1Further muddying the waters we have a case of ωsupport

2ω0
2

(ωsupport
2−ω0

2)2
in [61], but simply cites [29].
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4.5.6.1 Energy Based Noise Floor

The first uses an energy argument. We assume that the energy enters the system at a

constant rate, given by ∆Es per cycle. This means that the measured Q is related to this

term by

Qmeasured = 2π
E

∆E
= 2π

E

∆Ed −∆Es
, (4.18)

where ∆Ed is the energy dissipated by the setup. Note that this is not the net energy

dissipated, which is given by ∆Ed −∆Es.

This can be rewritten as

1

Qmeasured
=

1

Qsetup
− 1

2π

∆Es

E
. (4.19)

We now consider the case in which the system has reached the noise floor. In this case,

∆Ed = ∆Es. We shall call the system energy in this steady state Ess. We can now rewrite

the above equation to

1

Qmeasured
=

1

Qsetup
− 1

2π

∆Es

Ess

Ess

E

=
1

Qsetup
− 1

Qsetup

Ess

E

=
1

Qsetup

(
1− Ess

E

)
. (4.20)

Finally, we note that energy is proportional to the square of the amplitude (of any

simple harmonic motion system), so

Qmeasured =
Qsetup

1− ass2

a2

, (4.21)

where a is the amplitude and ass is the amplitude at steady state. This equation allows

us to evaluate qualitatively at which point above the noise floor the measurements can be

trusted. Note that the measured Q shows up as proportional to the gradient in a semi

log plot of amplitude to time, so strictly speaking, Qmeasured in the above argument only

applies to the gradient at a specific point, and not the best fit line that would be used to

measure Q, as that will depend on the initial amplitude.

Putting our model in action, if we take a 10% change in the term 1− ass2

a2
as the limit,

we have
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ass
a

=
√
0.1 ≃ 0.316, (4.22)

meaning that as long as we take data above 3 times the noise floor, the noise floor isn’t

an issue.

4.5.6.2 Amplitude Based Noise Floor

The second model simply models the noise floor as an additional constant to the ringdown

amplitude. This is an argument from a force based noise, as force is proportional to

amplitude. The amplitude is now

a = e
πf0
Q

t
+ ass, (4.23)

as compared to the case without noise of a = e
πf0
Q

t.

4.5.6.3 Comparisons of the Two Models

In order to do a comparison of the two models, we need to rewrite the energy based noise

floor model into a amplitude equation like we have for the amplitude based noise floor.

We start out with

a = e
πf0

Qmeasured
t
= e

πf0
Q

(
1−ass

2

a2

)
t
, (4.24)

where Q is Qsetup. This is then solved, giving

a =

√√√√√ ass22πf0t

W

(
2ass2πf0t

Q e
πf0
Q

t
)
Q

, (4.25)

where W () is the Lambert W function.

We now can evaluate the two approaches on an equal footing. Figure 4.2 shows how

the two models compare with each other.
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Figure 4.2: Logplot of the amplitude with time for the two noise model, coupled with
the no noise ideal line and the noise floor (dashed). Note that the amplitude model
reaches the noise floor much faster, but the overall look of both models are similar, and
are probably fairly approximates the noise situation to a similar accuracy empirically.
Considering that Both models suffer from not modelling the noise realistically, especially

sudden spikes, which would actually affect the data above the noise floor.



Chapter 5

Experimental Setup

5.1 Experimental Overview

The torsional Q factor for fibres were measured via the ringdown method, which was

explained in detail in the previous chapter. Simply put, a system is allowed to resonate and

then left alone, with the resonance frequency and decay in amplitude measured. A more

direct measurement would be to measure the thermal noise directly in the off resonance

region, but that is unfeasible because of the sensitivity required.

For our experiments, 1 mm fibres were used. 15 mm sapphire fibres were procured

from Orbe Pioneer and Impex, while 10 m of Copper Beryllium fibre was obtained from

Nilaco. Both a C-axis and a A-axis fibre from Orbe Pioneer were measured, while only a

C-axis fibre from Impex was measured. Sapphire was chosen because of its low internal

friction, and its excellent performance at cryogenic temperatures [10].

5.2 Experimental Setup

The first experimental setup was a generic torsion pendulum setup. A disc was chosen

instead of a bar so as to reduce the asymmetry of the system, reducing possible loss via

the setup.

Care was taken to handle the fibres as delicately as possible, both to prevent breakage

as well as unnecessary surface damage, which has been seen to lower Q [50]. Nonetheless,

some damage was unavoidable, and this could have lead to lower Q then what the original

samples had.

33
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Figure 5.1: Schemetic of the setup, side view

Figure 5.2: Schemetic of the setup, top view

5.2.1 Clamps

The clamps (for the 1 mm fibres) were designed with a 1 mm radius hole, but with a gap

of 0.2 mm. This ensured adequate leeway for clamping, while maintaining good contact

with the fibre. This design was conceived as a way to deal with crystalline wires that do

not deform, which implies that standard flat clamps would provide poor contact and thus

poor clamping strength when used with crystalline wires. In addition, using flat clamps

would most likely lead to deformation of the metallic clamps, leading to lower clamping

strength with time [48].

Contrast this with clamping thin metal fibres with flat clamps; the fibre deforms and

this deformation drastically reduces slipping. Naturally, a larger clamp strength and lower

contact area would lead to greater deformation, reducing friction losses from the clamp,

as seen in [62]. This is but one of the challenges faced in dealing with crystal fibres.

The clamps were clamped onto the stage via m4 screws.
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Figure 5.3: Picture of the experimental setup, with a C-axis sapphire fibre from Orbe
Pioneer.

(a) (b)

Figure 5.4: Schematics for the different parts of the clamps. Note the hole in the centre
to accommodate the sapphire fibre. The clamp is designed to have a 0.2 mm gap when
clamped, to allow for variance of the fibre diameter, as well as manufacturing inaccuracy.
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Table 5.1: various setup dimensions

5.2.2 Test Mass

The test mass was made from copper beryllium, with a diameter of 10 cm and thickness

of 1 cm, and is attached to the clamp via 2 m4 screws. It also has 8 holes equidistant

from the edge for mounting purposes. These holes were used to mount the coils used for

driving torsion resonance.

5.2.3 Stage

The stage was built by combining two adjustable adapter kits UP-2030 from Sigma Koki,

with 100 mm tall posts. These kits are made up of two anodized aluminium plates, 300

mm long, 200 mm wide, and 10 mm thick with four stainless steel posts. The stage was

designed with 2 levels to test a design we would like to call dual clamp mode.

5.2.4 Dual Clamp Mode

Dual clamp mode was designed for a few reasons; firstly, it good at suppressing the pen-

dulum mode, as it is held on both ends. Secondly, it allows for a larger effective angular

spring constant of

κeffective = κu + κl, (5.1)
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Figure 5.5: Picture of the experimental setup in dual clamp mode. The top clamp is
also visible here. In this picture, the pairing sets of coils have not yet been added. The

mirror on the left side of the clamp is clearly visible.

where κu and κl represent the angular spring constant of the upper and lower sections of

the fibre respectively. These two effects mean that the noise floor in this mode is much

suppressed.

This larger angular spring constant, coupled with the shorter fibre provided, allows us

to study higher angular frequencies, which can help with studying the frequency depen-

dence, or lack thereof of the measured Q. This mode will be studied further, as it will

be expected to help provide further insights into unwanted loss mechanisms, and provide

different frequency data.

5.2.5 Low Mass Mode

Low mass mode is a configuration that does away with the test mass, and let’s the clamp

itself be the torsion pendulum. Being lighter, it reduces the clamp losses.

5.2.6 Coil-Coil Actuators

Coil-coil actuators were used to excite the setup for the ringdown measurement to take

place. The wires were physically disconnected after excitation to prevent noise from the

wires from effecting the ringdown by providing additional energy. The output was set at
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Figure 5.6: Picture of the experimental setup in low mass mode. In this mode, the
clamp itself is the torsion pendulum, and only two sets of coils are used.

1500 Hz, at 2 V, which was connected to a circuit that converted it to a .2 A output. It

was found to provide a force of about 2 × 10−4 N for each set of coils, which was enough

to excite the system if pulsed at a the resonance frequency. Four sets were used in the

normal mode, while two sets were used in the low mass mode. They can be seen clearly

in fig 5.3.

5.2.7 Optical Lever

The setup uses a optical lever for the data readout, and data is recorded via Moku:Lab

by Liquid Instruments. The sensor used was a laser positional sensor, and was positioned

approximately 1 m away from the crystal fibre. The sensor hole has a size of 1.3 cm,

allowing for the measurement of around 1 cm worth of movement, corresponding to about

10 microrad, and thus an angular amplitude of 5 microrad.

5.2.8 Clamp Strength

A hex key was used on the m4 screws to fix the fibres to the clamps. The screw torque

was varied via choosing the length of the lever arm of the hex. A torque wrench was not

used due to the geometry of the setup, leading to clearance issues preventing it from being
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Figure 5.7: Picture of the optical table used. The position of the mirror and the position
sensor is not fixed, and is adjusted every time the configuration changes, because there is

no way to adjust the position of the test mass once clamped.

used. However, comparison outside the setup quantifies high strength to be ∼ 1.5N m,

with low strength being ∼ 0.5N m

5.3 Experimental Details

A Copper Beryllium fibre was first used in the the standard setup, at high clamp strength,

for setup testing. Q = 1.4× 104 was measured, and tallied with cantilever measurements

of Q seen in [30]. Unfortunately, the rest of the experiments did not go as smoothly.

An Orbe Pioneer C-axis sapphire fibre was used in the the standard setup, at high

clamp strength. This fibre was unpolished, and had its diameter measured with a mi-

crometre screw gauge at 4 points, ranging from 1.008 mm to 1.030 mm. This resulted in

the largest measured Q of Q = 1.3 × 105. Unfortunately, this also resulted in the fibre

snapping at the clamp points, which means that this is rather too destructive for bud-

getary reasons. While this was still unbeknownst, the dual clamp setup was tested, and
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Figure 5.8: Picture of pieces of the Orbe Pioneer C-axis sapphire fibre.

the Q was found to be Q ∼ 4 × 104. The reason why the fibre snapping was not known

at this point was due to the top clamp remaining clamped and the broken piece from the

test mass clamp was so tiny as to be not noticeable without looking for it. It is believed

that the low Q for this set of measurements were due to improper handling.

This led to testing with the low clamp strength mode, and led to Q ∼ 2×104, but it was

found that the longest remaining fibre fragment at about 9 cm long used did not snap.

This was then tested with an Orbe Pioneer A-axis sapphire fibre, at both a standard

pendulum mode at approximately 5 cm fibre length and dual clamp mode, to produce

Q ∼ 2× 104 for both. This fibre was similarly unpolished, with a similar diameter.

At this stage, the clamp loss was the biggest suspect in terms of Q limiting losses, and

it was decided that lowering the load might help with it. It was then set to low clamp

strength low mass dual clamp mode, but the resonance frequency became too high to excite

via the current system, and thus was then reset to a standard mode (but at low mass),

where Q = 9× 104 was measured. This suggested that the clamp losses were reduced by a

lower load, reducing stick/slip losses. This setup was then repeated with a polished C-axis

fibre from Impex, which resulted in Q ∼ 2 × 104. The clamps were then tighten to high

strength mode, increasing Q to 7× 104, but this resulted in the fibre snapping.



Chapter 6

Results and Discussion

All data analysis was done via Mathematica 10.4. An exponential curve was fitted to the

amplitude of the ringdown, which coupled with the resonance frequency as measured by

the Fourier transform, gives us the measured Q via Q = πf0τ . Figure 6.1 shows a typical

ringdown curve for each of the values tabulated in table 6.1.

From the ringdown curves, we can see that it is well modelled by an exponential decay,

especially if we ignore the noise floor and some noise spikes.

The copper beryllium measured Q was in line with previous measurements of CuBe

wire [30], suggesting that the setup was working as designed. However, the CuBe wire

Table 6.1: Table of torsion Q values. At least three ringdowns were collected for each
entry in the table. The uncertainties were estimated from the spread of values of the
various ringdowns, with all measured values fitting into the error bars. The values in
red are the highest values for each sample. Ironically, the sample that is polished ended
up with a lower Q than the unpolished ones. This is likely due to a lower coefficient of

friction between the clamps and the fibre, leading to greater clamp losses.

41
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Figure 6.1: Sample logplots all the data in table 6.1. Notice how the background noise
fluctuate greatly, but is not allowed the ringdown fit noticeably by only considering the

high amplitude region.
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had a quirk that the sapphire fibres did not; it was slightly curved. Weights were added

to correct for this curve, in order to have the torsion pendulum approximately parallel to

the ground. This could have lead to greater coupling between pendulum modes and the

torsion mode, due to further symmetry breaking.

A c-axis sapphire fibre from Orbe Pioneer was measured with the torsion pendulum

setup to have Q = 1.3× 105 at 1.31 Hz. This is the highest Q measurement for a sapphire

fibre at room temperature (as far as this author knows), with only cryogenic measurements

being up to two orders of magnitude higher [48] and room temperature measurements

being one order of magnitude smaller [30, 49]. On the other hand, a bulk measurement of

sapphire at room temperature shows values up to Q = 6.4× 107[7] and 2.7× 108[8], which

suggests that we are far from unlocking the true potential of sapphire. Refer to Table 4.3

for other sapphire Q measurements.

The significance of this achievement can be seen by comparing it with initial LIGO’s

use of steel music wires, with an estimated Q = 3 × 103 [63, 64]. Having surpassed this

result by two orders of magnitude without any treatment of of the sapphire showcases the

potential of crystal fibres.

While it is unfortunate that the clamp strength required for this caused the fibre to

snap, it must be noted that the suspension did not fail, and is perfectly viable as an

experimental system.

This result can be interpreted as surface loss dominant, and suggests that sapphire is

usable for TOBA, as long as the surface loss is reduced to the extent that Q increases by

three orders of magnitude via cryogenic cooling and other techniques.

In cantilever modes, the existing literature shows an increase of 5 × 103 to 107 via

cryogenic cooling, but due to different methodologies, it cannot be stated for certain how

accurate the measured values are compared with the actual sample quality. In general,

experiments tend to understate Q, due to various dissipative mechanisms that increase

the energy loss, leading to a lower measured Q than that of the actual Q by the internal

friction of the sample.

The other samples achieved lower values, mainly due to lower clamped strength used

to prevent breakage of the sapphire fibres.
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Table 6.2: Table of measured frequencies. Note that there is two frequencies for the
pendulum mode due to the imperfection of the stiff sapphire fibres. There is no pendulum

mode in the dual clamp mode.

6.1 Measured Frequency

The frequencies are measured via the peaks in the Fourier transforms, and are tabulated

in table 6.2. Fig 6.2 shows how the ringdown looks like in frequency space. The measured

values differ from the ones calculated in eqn 2.11 within 10%, using the values µ = 150GPa,

ρCuBe = 8200 kgm−3. This discrepancy can be attributed to the simplifications in the

modelling of the moment of inertia of the system, along with uncertainty over the precise

shear modulus to be used. In any case, this level of discrepancy is in line with other works

that utilise torsion resonance ([5], among others).

6.2 Surface Loss

Surface loss, which is widely believed to be the dominant limiting factor for the internal

friction of fibres, could not be measured properly, due to clamp losses. However, we can

do an estimate of the expected loss by looking at [7], where a torsion mode was measured

with a Q = 9.2×106 for cylinder sample with length of 6 cm and diameter of 10 cm. Using

the values of 1
Qsurface

h = 1.3× 10−9 m and Qbulk = 3.4× 107 from [7], we then apply it to
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(a) Frequency spectrum of a ringdown. This
graph is plotted on a decibel scale, to better

identify peaks.

(b) Same frequency spectrum of a ringdown,
with an absolute scale. Note how difficult it

is to distinguish other peaks like this.

Figure 6.2: Frequency spectrum of a C-axis sapphire fibre ringdown. The peak at 0
Hz correspond to the offset between the neutral position of the system and the zero of
the optical sensor. The peak at 1.31 Hz correspond to the torsion resonance frequency,
and the peak at 1.5 Hz correspond to the pendulum mode. Multiples of these resonances

correspond to the deviation from perfect sinusoidal curves.

eqn 4.5, for a 1 mm thick fibre, we obtain

1

Qeff
∼ 1

Qbulk
+

1

Qsurface
h

∫
S γ2dS∫
V γ2dV

=
1

3.4× 107
+ 1.3× 10−9 8

1× 10−3

=
1

9.6× 104
. (6.1)

This meant that the best results obtained here are in line with the results obtained by

[7], and shows that our result are probably not limited by other loss mechanisms, for the

unpolished fibres. This data also lends credence to the notion that Qsurface is frequency

independent, as the resonant frequencies measured here are in the order of ∼ 1Hz, where

the values in [7] are around ∼ 50 kHz. We note that just like in [7], we have, at the curved

surface, small scratches and pits visible to the naked eye. This suggests a similar amount

of surface damage, and thus justifies the similar values of 1
Qsurface

h. This result is graphed

in fig 6.3.

Unfortunately, clamp loss seems to be larger for the polished fibre, which can be

attributed to a lower coefficient of friction due to surface smoothness.

6.3 Pendulum Mode

For comparison purposes, the Q of the pendulum mode was also measured. This is so

that comparisons between the flexural mode, where thermoelastic loss is a factor, can be

compared with the torsion mode. The pendulum mode is related to the flexural fibre Q via

something known as the dilution factor. The pendulum mode was cannot be activated by
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Figure 6.3: The results from [7], extrapolated to this study’s result. The purple line
comes from setting the bulk Q as infinity, which clearly shows how dominated by surface
loss 1 mm sapphire fibres are. This result suggests that the results currently obtained is

limited mainly by surface loss, and not other damping mechanisms.

the coils, and thus is activated either by delivering an impulse on the vacuum chamber, or

if an earthquake happens to occur during measurement. Due to the stiffness of sapphire,

the low mass setup could not be reasonably excited to a reasonable extend above the noise

floor using these methods.

6.3.1 Gravitation Dilution

In a pendulum, the measured pendulum Q is related to the fibre Q via the relation [29, 65]

Qpendulum = Qfibre
2mgL√
FTY J

, (6.2)

where FT is the tension of the setup, J the second moment of area of the fibre, and m

is the mass of the pendulum. The factor next to Qfibre is known as the dilution factor,

and it comes from the fact that most energy is stored in the gravitational field while the

energy is dissipated in the fibre for a pendulum. Note that there is no equivalent for a

torsion pendulum, and the second moment of area here is J = πD4

64 , half of that of the

polar moment of area used in torsion.

Unfortunately, for our setup, this equation is not valid, as it assumes a effective length

(see fig 6.4) similar to the real length of the pendulum. The difference between the two
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Figure 6.4: The relation between the effective length Le and actual pendulum length L
is shown here. The standard dilution factor, eqn 6.2, assumes Le ∼ L, which is not the

case with the current setup.

lengths is given by

d =

√
Y J

FT
, (6.3)

which for our setup is ∼ 4.2cm for normal and ∼ 7.6cm for the low mass mode. This

means that the standard relation is obviously not applicable, so a form of the dilution

factor without this assumption was then derived for use here. The details can be found in

appendix A.

6.3.2 Pendulum Mode

For our C-axis Orbe Pioneer fibre, the pendulum Q was measured to be ∼ 4× 104.

Applying the dilution factor of 4.1 for our setup to our measured values of ∼ 4 × 104

pendulum Q, we end up with Qflexural ∼ 104, which is consistent with being limited by

themoelastic damping as seen in fig 4.1, and an order of magnitude smaller than the torsion

mode. This is in line with other measurements [30, 49], where the measurements are also

limited by themoelastic damping. This result is plotted in fig 6.5.

There are two peaks for the pendulum resonance, and they are very close. Considering

how stiff sapphire is, and the thickness of fibre used in comparison to the weight, it is
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Figure 6.5: The best result for each sapphire sample is plotted here, along with the
flexural value for the c-axis Orbe Pioneer fibre. The thermoelastic limit for flexural is
also drawn here, where it can be clearly seen that the flexural Q obtained here is clearly

limited by it, similar to [30, 49].

unsurprising that this behaviour also appears in the measurement of flexural modes, and

is often attributed to deviations of the fibre from a perfect cylinder [48].

6.4 Clamp Loss

Clamp loss is probably the biggest loss source in these measurements, and that is due to

the nature of clamps. While Coulomb losses being dominant can be ruled out due to the

lack of a linear amplitude dependent damping [47], in practice clamp losses do not show up

so simply, and is practically indistinguishable from internal damping [66]. This has lead

to a widespread belief that many studies on high Q have been limited by clamp losses,

as mentioned in [67]. For more details on possible clamp loss mechanisms, see [68]. To

get around this issue, for the case of fused silica, making use of the method for drawing

thin fibres via a flame from a thicker rod, the thicker section is often left connected to the

fibre, with only the thicker section being clamped [49]. This essentially removes the need

for clamping thin fibres.

While in our experiments we cannot eliminate the effects of the clamps completely, we

can show the effects of clamp loss from the A-axis unpolished fibre and the C-axis polished

fibre. The A-axis polished fibre had its Q increase when the torsion pendulum mass was

decreased, suggesting that the lower weight reduced the amount of frictional losses. In

the case with unpolished fibres, the lower Q obtained suggests that the smaller friction
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coefficient probably have led to larger clamp loss, due to more slipping and thus energy

loss occurring.

Unfortunately, increasing clamp strength in the current design lead to fibre snapping,

both for the unpolished Orbe Pioneer C-axis fibre as well as the polished Impex C-axis

one. The fragility of these fibres brings to mind the incident with Advanced Virgo, where

the monolithic fused silica suspensions failed due to dust hitting the fibres [69], which

reminds us of the difficulty in working with crystal fibres. The fragility of sapphire is also

mentioned in [30].

6.4.1 Clamp Strength

Tests of clamp strengths were conducted with a snapped piece of the C-axis Orbe Pioneer

clamped by an identical clamp to determine the breaking strength. It was found to snap

when the torque applied on the m4 screws of the clamp were at 1.2N m. This means that

going forward, with this clamp design, the torque applied on these fibres should be limited

to 1N m. This study needs to be applied on the other fibre types, to see if the braking

strength is similar.

6.5 Amplitude Dependence

While technically not a loss mechanism, as it is caused by the sample itself, amplitude

dependence Q might affect wrongly affect the evaluation of samples, due to the effect only

appearing in ringdown experiments and not in the actual thermal noise spectrum of an

actual operational detector.

In this experiment, using the standard setup, we have peak shear strains of γ0 = r θ0
L =

2×10−5, while for the dual clamp mode, that of γ0 = 5×10−5, which are small enough to

not not affect Q significantly, according to [23]. More importantly, the measured ringdowns

exbibit linear behaviour in the logplots, which suggests that a significant change in Q did

not happen as the amplitude decreases. Thus, this factor was considered insignificant

compared to the measured uncertainty.

6.6 Additional Loss Mechanisms

As mentioned in section 4.5, any other energy losses will affect our measured Q. We will

evaluate these concerns with respect to our experimental setup.
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6.6.1 Gas Damping

Using the equation 4.11, and taking the conservative values of the pressure being 10−3 Pa,

a frequency of 1 Hz, and assuming an all nitrogen atmosphere we see that we will easily get

Qgas > 107. As this is at least two orders of magnitude larger that all of our results, it will

be ignored. Additionally, the measured Q does not increase from the first to the remaining

runs of each sample, where the pressure generally drops by an order of magnitude across

the testing of the sample, indicating that Q is not limited by the residual gas.

6.6.2 Recoil Damping

We estimate the properties of the support as Qsupport ∼ 102, Isupport
I ∼ 10 and ωsupport

ω0
∼

102, which gives us a Qrecoil & 107 using equation 4.17 and can be ignored. In practice, it

is often hard to estimate the recoil damping accurately, but the dependence on frequency

means that it should change quite drastically with frequency, so if there is no dependence

with frequency in the measured Q, it can be safely argued to be not recoil damping

limited. In this experiment, a low mass setup with an Orbe Pioneer C-axis fibre at high

clamp strength should be conducted, in order to rule it out conclusively.

6.6.3 Possible Loss Mechanisms

Further loss mechanisms that are not calculated include: possible electrostatic noise and

coupling with pendulum mode. These possible losses should be modelled to ensure that

they are not the limiting loss mechanisms. This will become more critical as Q increases.

6.7 Data Analysis Techniques

This section deals with the data analysis techniques used to extract the data from the raw

signal. The most computationally expensive part of the data analysis was to extract out

the amplitude. The most naive way would be to identify peak positions for each oscillation.

However, this method would be incredibly computationally expensive, considering that the

data collected has up to over 3× 105 oscillations for each measurement. Furthermore, this

method becomes inaccurate when noise becomes a significant percentage of the amplitude.

Thus, a different method was used.

The data was analysed via taking the data and splitting it up into 20 s chunks, which

were than Fourier transformed to extract out the amplitude of the resonance frequency,
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utilising the fact that the magnitude of the Fourier transform is directly proportional to the

strength of the sine plus cosine waves of the frequency in question. The resonance frequency

was extracted via the peaks in the Fourier transform. This method was compared to the

traditional lock in method, and was found to have computational advantages in speed,

without sacrificing accuracy.

6.7.1 Lock in Amplifier

The lock in amplifier works by extracting the amplitude of a frequency via the orthogo-

nality of the sines and cosines. By multiplying a sine wave at the same frequency of the

resonance frequency (or any frequency you want to extract) over a reasonably long period

of time, the other frequencies drop out. Consider the following equations:

X =
1

ta

∫ t+ta

t
sin
(
2πf0t

′)x (t′) dt′
≃ 1

ta

∫ t+ta

t
sin
(
2πf0t

′)x0 (t′) sin
(
2πf0t

′ + β
)
dt′

=
1

ta

∫ t+ta

t
sin
(
2πf0t

′)x0 (t′) (sin (2πf0t′) cosβ + cos
(
2πf0t

′) sinβ
)
dt′

≃ 1

ta

∫ t+ta

t
sin
(
2πf0t

′)x0 (t′) sin
(
2πf0t

′) cosβdt′

≃1

2
x0 (t) cos (β) (6.4)

and similarly

Y =
1

ta

∫ t+ta

t
cos
(
2πf0t

′)x (t′) dt′ ≃ 1

2
x0 (t) sin (β) , (6.5)

where ta ≫ 1
f0

is the averaging time, x (t) the original signal, x0 (t) the amplitude of the

original signal at the frequency f0 and β the phase angle between the signal and the sine

wave. Combining the two equations, we get

x0 (t) = 2
√
X2 + Y 2, (6.6)

which is the amplitude at f0 of the initial signal.

The astute reader may ask for the need to calculate both X and Y ; after all, either X

or Y are directly proportional to x0 (t). Unfortunately, the phase angle β will change from

each set of ta chosen, unless ta is taken as an integer multiple of 1
f0

. However, even if ta
is chosen thusly, the discreteness of the data sampling will guarantee a drift of β, unless
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(a) Plot ta of 20 s using the lock in
method, with interpolation order 0 (rect-
angular method), with fitted exponential

curve, with the calculated Q shown
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(b) plot ta of 20 s using Fourier transform
chunking, with fitted exponential curve, with
the calculated Q shown. Note how there is

less noise here.

Figure 6.6: Plots for the same C-axis sapphire fibre ringdown, comparing the lock
in method with Fourier transform chunking. The ringdown used is the same as in fig
6.2. We see that the two methods are very comparable, but with the ringdown method
being slightly more noisy. As conceptually they are identical, this additional noise can be
attributed to the use of the rectangular method to perform numerical integration, which
was used due to computational ease. ta of 20 s was chosen for both Q. The sample rate

for this data is 100 samples per second.

steps are taken to correct for it. By calculating both X and Y , we are free to choose ta

freely, as long as it is significantly longer than 1
f0

.

In practice, this method is computationally intensive, due to the requirement of inte-

grating a data series, which requires an interpolation function. Considering that our data

sampling of 100 to 400 samples per second, taken over a day, extracting the amplitude

this way is not practical. If interpolation is not done, and a simple summation is used, it

results in a computationally quick calculation, but with some errors.

6.7.2 Fourier Transform Chunking

The method used for analysis shall be called Fourier transform chunking. This method

uses the same orthogonality of the sines and cosines, but leverages on the computational

speed of the fast Fourier transform (FFT) to do the calculation. The data is split into

chunks ta, which has the FFT applied to it. The value corresponding to the frequency of

interest in then picked out, which is proportional to the amplitude of the signal strength,

with the exact proportionality constant depending on the Fourier transform definition

used. To wit,

n = round(f0ta + 1), (6.7)
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where n is the nth number of the FFT and corresponds to the frequency f0, and round()

refers to rounding to the closest integer.

As a refresher, the Fourier transform is given by

x̂(f) =

∫ ∞

−∞
x(t)e−2πitfdt =

∫ ∞

−∞
x(t) (cos(2πtf)− i sin(2πtf)) dt, (6.8)

which, due to the orthogonality of the sines and cosines, gives you a real part corresponding

to the amplitude of the cosine part of the frequency in question and an imaginary part for

the amplitude of the sine part, which means that taking the amplitude gives you something

proportional to the strength of the frequency in question.

Granted, errors can creep in via the edge effects of the truncated signal, and that the

signal frequency resolution is limited to

∆f =
1

ta
. (6.9)

This becomes of great importance when there are peaks close to each other. In those

cases, ta must be chosen large enough so as to remove overlap. Figure 6.6 shows the com-

parison between different ta values for both the lock in method and the Fourier transform

chunking method, using a data set collected. Figure 6.7 shows a ringdown with a large

range of ta applied. We see that the results are very stable and that the choice of 20 s is

as good as any.
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(a) Logplot ta of 5 s, with fitted exponential
curve, with the calculated Q shown
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(b) Logplot ta of 20 s, with fitted exponen-
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(c) Logplot ta of 200 s, with fitted exponen-
tial curve, with the calculated Q shown
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(d) Logplot ta of 2000 s, with fitted expo-
nential curve, with the calculated Q shown

(e) Raw data with the exponential fit from
ta of 20 s overlaid. The individual oscilla-
tions are impossible to see at this scale, as

one cycle is less than a second.

Figure 6.7: Logplots for the same C-axis sapphire fibre ringdown as 6.6 and 6.6, with
different averaging times ta, ranging from 5 s to 2000 s. The frequency of this ringdown
is 1.31 Hz. We see that the results are very robust with the calculated Q barely changing.
ta of 20 s was chosen for the calculation of Q, and is superpositioned apon the raw data

in (E). The sample rate for this data is 100 samples per second.
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Conclusion

7.1 Summary

We have experimentally verified that sapphire fibres in torsion, are not limited by thermoe-

lastic damping like their flexural counterparts. This has allowed for an order of magnitude

increase in measured Q, which shows that sapphire is a viable material for room tempera-

ture torsion pendulums. Nonetheless, fused silica might probably be still the better choice,

due to it being a better studied material. However, this is not an option for cryogenic

temperatures, due to the peak in loss at lower temperatures. We have also demonstrated

here an order of magnitude improvement of Q over metal fibres of similar dimensions [30],

which might prove critical for precision experiments. While the requirement of TOBA is

still three orders of magnitudes away, we have measured the highest fibre Q of sapphire

at room temperature. This is also the highest Q for sapphire measured at low frequencies

of around 1Hz at room temperatures. This measurement is agrees with the data in [7],

and shows that we have likely achieved the limit for an unpolished sapphire fibre. It also

lends credence to the idea that the surface loss is frequency independent over a large range

of frequencies. Unfortunately, for our current measurements of a polished fibre, we were

likely limited by clamp losses, and thus unable to achieve a better result. Improving on

this would be the next step going forward.

7.2 Future Work

The current work done is just a small fraction of what is planned. In order to unlock the

full potential of crystal fibres and increase its viability in use on experiments, further work

has to be done.

55
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7.2.1 Clamp Loss

Clamp loss is a perennial bugbear in terms of thermal noise and Q measurements. It is

also likely to be the cause of the polished fibre not reaching a higher Q than the unpolished

samples. Generally, monolithic system replacing simple clamps is required to achieve a Q

close to that of the crystalline wire bulk. Thus, for TOBA, a monolithic or semi-monolithic

system would probably be required to achieve the goal of Q ∼ 108. There has already

been some studies on bonding for sapphire [70, 71], and KAGRA utilises HCB to achieve

its monolithic suspension. However, for experiments that require a better Q than what

metals can provide but not require such a strict requirement, sapphire is a viable choice,

even with the simple clamps used in this experiment. Note that the actual clamp loss

mechanism in torsion pendulums probably differ from standard pendulums in some way,

and merits a deeper study. The first would be to quantify the clamp loss by measuring

how Q changes with clamp strength. This study would also let us quantify the breaking

strength of current samples, apart from the C-axis samples, which has already been tested

to break at a torque strength of 1.2 Nm for the current clamp design.

7.2.2 Surface Loss Studies

As surface losses are the penultimate limiting factor of Q for crystal fibres, an investigation

to quantify and minimise it is essential. To do so, in addition to the current 1 mm thick

wires, 10 mm long sapphire wires polished to a scratch-dig specification 80-50, which is

a US military specification defining optical quality [72], was sourced from Orbe Pioneer

with thickness ranging from 1 mm to 3 mm. These will be used to measure the relation

between Q and the surface quality via the surface to volume ratio. As all these samples are

sourced from the same company, presumably the differences in the bulk and the surface

quality will be minimal. These samples will be measured once clamp loss has been found

to be reduced till it no longer is a limiting factor.

Following that, surface treatments like chemical etching, further polishing, or even

different growth methods will be studied to see if fibre Q can be increased further. Con-

sidering that surface quality is also the key to the tensile strength of crystals, improving

on the quality would allow for thinner suspensions, thus reducing suspension thermal noise

even further.
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7.2.3 Cryogenic Cooling

As mentioned in chapter 2, TOBA is designed to run at cryogenic temperatures, to lower

thermal noise. In addition to lower temperatures leading directly to lower thermal noise, Q

itself is often improved by orders of magnitude, across a variety of materials [5, 6, 34, 47].

Generally, fibres show even larger improvement, due to a reduction in additional losses

like the thermoelastic effect.

On the other hand, there are materials that show drops in Q at specific temperature

ranges, with the most famous being fused silica [38], which is the reason for its non-

suitability as a low loss candidate material for low loss systems. Sapphire has not shown

any such peaks in loss [10, 47], except small increases at around 150 K and 30 K. Char-

acterising the Q of sapphire fibres as a function of temperature would be a worthwhile

study, once clamp losses can be brought under control, and a comparison can be then

made against [10].

This experiments were designed with cryogenic cooling in mind, with the clamps made

of copper beryllium, which is known to have low internal friction and high strength for

copper alloy and maintains a high Q at cryogenic temperatures.

7.2.4 Different Materials

There are other crystalline materials that offer low loss, with a well studied alternative

being silicon. Cantilever modes of silicon have been studied, and there have been measured

increases of Q from 104 to 107[51] when the sample was cooled to cryogenic temperatures.

Bulk silicon has also shown performance similar to sapphire, and should perform similarly.

There might be advantages in terms on tapping the semi-conductor industry’s expertise

in growing pure silicon, as purity would be a key element in determining bulk Q.

7.2.5 Crystal Properties

Further study of crystal properties should also be conducted. Proper understanding of how

the anisotropy of the crystals affect the mechanical loss of the system deserves a deeper

look, as there are complexities hinted at in [10] on this topic. Understanding the different

loss mechanisms will allow us the understand the limits of crystals, and that would allow us

to study how deviations from the perfect crystal lattice, for example, would lead to changes

in Q. This would allow for analysing how much high temperature annealing (∼ 2000◦C)

would help in improving Q, as this would mainly affect bulk Q.
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Dilution factor

The dilution factor, which is how much the Q of a pendulum relates to the Q of the

suspension fibre, is often given as 2mgL√
FtY J

[29, 65]. Unfortunately, one of the assumptions

embedded in the derivation of the equation is that the length of the pendulum and the

effective length of the pendulum are similar. See fig A.1 for more details. Here, we remove

that assumption, creating a more general form of the dilution factor, one that is applicable

to this work.

Following the work in [65], we first start out with the deformation of the fibre as

y(x) =
Fd

FT

(
e−

x
d +

x

d
− 1
)
, (A.1)

where d =
√

Y J
FT

, x the vertical position, y the horizontal position, FT the downwards

tension and F the displacement force horizontally. The origin for the coordinate used is

the clamp point of the fibre with the celling.

The relation between the projection of the fibre on the vertical axis Lx is given by

L =

∫ Lx

0

√
1 +

(
dy

dx

)2

dx ≃
∫ Lx

0
1 +

1

2

(
dy

dx

)2

dx, (A.2)

which is simply the arc length equation, along with the assumption of small displace-

ments, dy
dx < 1, allowing for a simplification via binomial expansion. To evaluate it, we

first need
dy

dx
=

F

FT

(
1− e−

x
d

)
, (A.3)
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Figure A.1: Illustration of a bending fibre subjected to tension FT and a displace-
ment force F , without the assumption that the effective length Le of the pendulum is
approximately the same as the real length L. Lx is the fibre projected on the vertical (x)

axis.

which we use and get

L ≃
∫ Lx

0
1 +

1

2

(
F

FT

(
1− e−

x
d

))2

dx

=

∫ Lx

0
1 +

1

2

(
F

FT

)2 (
1− 2e−

x
d + e−

2x
d

)
dx

= Lx +

(
F

FT

)2(Lx

2
+ de−

Lx
d − d− d

4
e−

2Lx
d +

d

4

)
= Lx +

(
F

FT

)2(Lx

2
− 3d

4
+ de−

Lx
d − d

4
e−

2Lx
d

)
. (A.4)

Now, the elastic potential energy of a slightly bent rod is given by [65, 73]

Ee =
1

2
EJ

∫ Lx

0

(
d2y

dx2

)2

dx, (A.5)

and in our case,
d2y

dx2
=

F

FTd

(
e−

x
d

)
, (A.6)
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thus giving

Ee =
1

2
EJ

∫ Lx

0

(
F

FTd

(
e−

x
d

))2

dx. (A.7)

The gravitational potential energy is simply given by

Eg = mg(L− Lx) =
T

n
(L− Lx), (A.8)

where n is the number of wires the mass is being held by.

The dilution factor is given by Eg+Ee

Ee
, because

Qpendulum = 2π
E

∆E
= 2π

Eg + Ee

∆Eg +∆Ee

= 2π
Ee

∆Ee

Eg + Ee

Ee
= Qfibre

Eg + Ee

Ee
, (A.9)

where we assume gravity does not dissipate energy to any significant extent.

The above equations can then be simply numerically solved, giving a dilution factor of

4.1 for our standard setup, and 2.1 for the low mass setup. In comparison, the standard

formula, gives a value of 6.0 and 3.3 respectively. Note that F is undetermined, but it

should cancel out, so any reasonably small number (but not too small as to induce floating

point errors) can be chosen. We have determined that the dilution factor is stable for

values of F over many orders of magnitude.

For completeness, we would like to derive the effective length of the pendulum, which

is shown in figure 6.4 to be shorten by ∼ d.

Now, we have

y(Lx) =
Fd

FT

(
e−

Lx
d +

Lx

d
− 1

)
, (A.10)

which is the deflection in the horizontal direction at the end of the fibre, and

dy

dx
(Lx) =

F

FT

(
1− e−

Lx
d

)
, (A.11)

which is the gradient at the end of the fibre.

The projection of the effective length of the fibre on the vertical is then given by

(Le)x =
y(Lx)
dy
dx(Lx)

=
Lx

1− e−
Lx
d

− d, (A.12)
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which means that for small deflections,

Le ≃
L

1− e−
L
d

− d, (A.13)

with the shortening being

L− Le ≃ L− L

1− e−
L
d

+ d, (A.14)

which still holds even if d > L. In the case of L
d ≫ 1, it becomes

L− Le ≃ d. (A.15)

Thus, the need for this more complex form of the dilution factor is only required when

the assumption L
d ≫ 1 does not hold.
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