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Abstract

In recent years, significant improvements in optical and mechanical elements
have led to the development of the field of optomechanics, where mechani-
cal oscillators couple optical fields via the radiation pressure of light. As for
force measurements, such as gravitational-wave (GW) detectors, in which the
mechanical oscillator is used as a probe of external force, its sensitivity has
almost been limited by the standard quantum limit (SQL). Also, theoretical
analysis has proven to be a connection between reaching the SQL imposed on
the free mass (so-called free-mas SQL) and the generation of entanglement
states, even between massive mechanical oscillators, such as suspended mir-
rors. Because of the massiveness, such states might have a key to investigate
both the quantum measurement problem and quantum gravity. Therefore,
optomechanics is not only useful as sensitive probes for the weak force, but
also leads to possibilities of testing fundamental problems.

One of the key milestones toward the SQL is the observation of quantum
back-action, which is a measurement-disturbance derived from the Heisen-
berg uncertainty principle (HUP). Until now, this effect has been observed
below the mesoscopic mass scale using cold atom, NEMS (Nano Electro Me-
chanical Systems) oscillators and a MEMS (Micro Electro Mechanical Sys-
tems) oscillator. However, it had not yet been observed on the macroscopic
scale beyond the Planck mass (∼ 22 µg) because a strong thermal fluctuat-
ing force induced by the environment usually dominates measurements. To
reduce the environmental noise, one can freely suspend a massive mirror in
order to allow the mirror to be isolated from the environment. Although this
isolation largely reduces the noise, a stationary radiation force of the light
exposes the free mass to instability in conventional experiments utilizing a
linear optical cavity. This technical limitation had been a significant issue
because there is a fundamental compromise between the technical limita-
tion and the sensitivity; sufficient tolerance with firm suspension makes the
mass differ from the free mass, which results in an increase of the thermal
fluctuating force.

In this thesis, we describe how by using a triangular optical cavity it is
possible to overcome this limitation, and then describe the first-ever observa-
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tion of quantum back-action imposed on a massive mirror (5 mg) beyond the
Plank mass. The origin of quantum back-action is momentum transferred
to the mirror by light upon its reflection. Concerning the coherent light,
the photon number fluctuates according to a Poisson distribution, which
caused the radiation pressure fluctuation, termed radiation pressure shot
noise (RPSN). The pendulum mode excited by this force fluctuation was
observed.

Based on the isolation method developed in this thesis and the experi-
mental results achieved, the next plans for achieving its ground state and
reaching/beating the free-mass SQL will be proposed.
Keywords: Optomechanics, Quantum back-action, Gravitational-wave de-
tectors, Macroscopic quantum mechanics, Planck mass
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Chapter 1
Introduction

In this chapter, we provide a short history of optomechanical effects. This
chapter presents the historical and physical background of this research.

1.1 Optomechanical effects

Light has momentum, and can thus exert pressure on objects through the
exchange of momentum between the light and the objects. This fact was pos-
tulated by Johannes Kepler, who noted that the dust tails of comets pointed
away from the Sun during a comet transit [1] in the 17th century. James
Clerk Maxwell theoretically predicted radiation pressure by his Maxwell’s
equations in 1873. On the other hand, Adolfo Giuseppe Bartoli predicted
it from the view point of thermodynamics in 1876 [2]. The first experimen-
tal demonstration of the (stationary) pressure of light was made by using a
torsional balance by Peter Lebedew in 1901 [3]. Ernest Nichols and Gordon
Hull also conducted a similar, but advanced, experiment in 1903 [4]. In 1909,
Albert Einstein derived the statistics of the radiation-pressure force fluctua-
tion acting on a movable mirror including the “radiation friction” (frictional
force) [5]. This analysis allowed him to reveal the dual wave-particle nature
of blackbody radiation.

Since then, various types of optomechanical effects have been both theo-
retically and experimentally explored using various types of optomecchanical
devices. Examples are given below.
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Figure 1.1: Basic cavity optomechanical effects. Consider an optical
cavity that consists of fixed and movable mirrors. Left: These figures are
schematic representations of three types of detuning: on-resonance, red-
detuning (i.e., the frequency of the input light is lower than the resonant
frequency of the optical cavity) and blue-detuning (i.e., the frequency is
higher than the resonant). Here, â is a photon annihilation operator and
ĉ is a phonon annihilation operator of the movable mirror (See Chapter 2).
Right: It shows the intracavity power as a function of the detuning normal-
ized by a resonant frequency of the movable mirror. a: The input light is
modulated by the resonant frequency of the movable mirror, such that the
upper (lower) sideband component of the light acquires (sheds) energy from
the mirror. (This is analogous to the generation of Stokes and anti-Stokes
sidebands in Raman scattering.) As a result, there is no exchange of energy
between the light and the mirror. This interaction can be characterized by
(â+ â†)x̂, and thus it can be used as the displacement measurement. Here, x̂
represents the position of the movable mirror. b: The upper sideband com-
ponent is enhanced by the optical cavity, and thus the motion of the mirror
is damped (cooling). This interaction can be characterized by â†ĉ+ âĉ†, and
thus it can be used to coherently transfer the state between the light and
the mirror [56, 57]. c: The lower sideband component is enhanced by the
optical cavity, and thus the motion of the mirror is anti-damped (heating).
This interaction can be characterized by âĉ + â†ĉ†, and thus it can be used
to create the various types of entanglement states [42, 43, 45, 46, 47, 48].
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1 Introduction 1.1 Optomechanical effects

• Cooling
The cooling of an object by a laser is one of the most attractive fea-
tures of optomechanics. This cooling effect mainly occurs due to the
frictional (damping) force of light. Because a laser field is almost in its
ground state (e.g., infrared optical field having an effective tempera-
ture of about 15,000 K), this damping force reduces the velocity of the
object without introducing other thermal fluctuating forces (i.e., this
effect is “cold” damping, similar to that described in Ref. [6]). As a
result, the object is effectively cooled.

So far, the cooling method has been widely used from atom-scale to kg-
scale objects, partially for trapping [7, 8, 9], achieving the ground state
[10, 11, 12] and eliminating technical limitations [13, 14, 15]. Another
aspect of the cooling (or heating) is the optical spring effect [16, 17, 18,
19], which not only changes the damping constant of the mechanical
system, but it also changes the spring constant. This effect is certainly
useful for examining the quantum behavior of mechanical oscillators
free from external control. In our case, the (double) optical spring
effect [20] was one of three technical features of the experiment (See
Chapters 5 & 6).

• Instability
The first cavity optomechanical experiment demonstrated bistability
induced by the radiation-pressure force acting on a macroscopic mir-
ror in the optical domain [21]. Since then, various types of instability,
such as parametric instability [22, 23], have been reported. In our case,
overcoming an optical anti-torsional effect (so-called Siddles-Sigg insta-
bility [24, 25]) was one of three technical features in the experiment.
We realized it by an optical torsional spring effect in a triangular cav-
ity, which was independently shown by Daniel Sigg and myself (See
Chapter 4).

• Measurement limit
Braginsky represented the fundamental consequences of the Heisenberg
uncertainty principle (HUP) [26], and demonstrated that it imposes a
limit on any force measurement since the 1960s [27, 28]. This fun-
damental quantum limit for the measurement sensitivity is called the
standard quantum limit (SQL). SQL is the sum of components derived
from the quantization of light, and of a mechanical oscillator, which

3



1 Introduction 1.1 Optomechanical effects

lead to the generation of inevitable fluctuation, called vacuum fluctua-
tion of the light and zero-point fluctuation of the oscillator, respectively
(details are described in the next subsection). SQL applies universally
to all devices that use a mechanical oscillator as a probe mass.

To overcome this limit, various types of techniques, such as input-
squeezing [29, 30, 31], modification of the dynamics of the mechanical
oscillator by an optical spring [32, 33, 34] and the measurement of
a conserved dynamical quantity of the mechanical oscillator [35, 36],
have been proposed. Today, all of them, which can overcome the SQL
imposed on the free mass (so-called free-mass SQL) within a certain fre-
quency range, are called QND (quantum nondemolition) measurements
[37]. The QND measurement is a stronger necessary condition than the
observation of quantum back-action for the generation of macroscopic
entanglement states (See Chapter 3).

• Squeezing
When an oscillator is fluctuated by quantum radiation pressure fluc-
tuation (i.e., observation of quantum back-action), a quadrature vari-
ance of the light is squeezed due to self-phase modulation, like that of
Kerr squeezing in fibers [38, 39]. This effect is called ponderomotive
squeezing, and has been observed using cold atoms [40], a NEMS oscil-
lator [41] and a MEMS oscillator [14] after the observation of quantum
back-action. Ponderomotive squeeing has a key to perform the QND
measurement (See Chapter 3).

• Entanglement
Entanglement is a physical phenomenon in which multiple subsystems
can only be described with reference to each other. In other words,
entanglement can be considered as to be correlations between small
quantum fluctuations around a carrier field in the frequency domain
[42]. Entanglement is at the heart of physical investigations not just
because of its critical role in marking the boundary between classi-
cal and quantum world, but also because of its key role for realizing
quantum information processing.

Optomechanical coupling via radiation pressure is a promising ap-
proach to generate entanglement states, e.g. entanglement between
mechanical degrees of freedom [42, 43, 44, 45] and entanglement be-
tween a light field and a mechanical oscillator [46, 47, 48, 49].

4



1 Introduction 1.1 Optomechanical effects

In addition, optomechanical effects have been expected to be utilized as an
engine via radiation pressure [50] or a radiometer [51], and as a form of quan-
tum memory [52, 53], and so on [54, 55, 56, 57]. Especially, the former was
excellently realized as a space solar sail. IKAROS (Interplanetary Kite-craft
Accelerated by Radiation Of the Sun) of the Japan Aerospace Exploration
Agency (JAXA) [58] is the first spacecraft to successfully demonstrate the
solar-sail technology in interplanetary space.

As described above, the optomechanical effects have a potential to allow
for breakthroughs in a large variety of fields, such as precise weak-force mea-
surements, quantum information, fundamental tests of quantum mechanics,
and even satellite development. Effects induced by stationary radiation pres-
sure, such as laser cooling, instability and the solar sail have been experimen-
tally realized. However effects induced by quantum fluctuation of radiation
pressure, such as the generation of entanglement states, squeezed states and
reaching/beating the SQL are still challenging to be realized, particularly in
the macroscopic regime.

1.1.1 Quantum noise limit

Measuring weak forces is at the heart of modern physics from the macroscopic
scale to the atomic scale, e.g. gravitational-wave (GW) detectors [59, 60, 61,
62] and atomic-force microscopy [63]. In spite of the progress of lasers, optical
components and mechanical oscillators, no optomechanical systems have yet
reached the free-mass SQL [64]. The free-mass SQL is a next goal after the
observation of quantum back-action, because it not only limits the sensitivity,
but also defines a benchmark noise spectral density at which the door is
opened to experimentally investigate macroscopic quantum mechanics, such
as the generation of macroscopic entanglement states [44]. Here, we show
the details of the SQL.

The force noise (double-sided) spectral density of the SQL, S
(2)
FF,SQL is

given by [65]

S
(2)
FF,SQL(ω) = h̄|χm(ω)|−1 + 2h̄ωmγmm. (1.1)

Here, ω is the angular frequency, h̄ the Dirac constant, m the mass of the
oscillator, γm the amplitude mechanical decay rate (i.e., the mechanical qual-
ity factor Qm is given by Qm = ωm/2γm) and χm the mechanical susceptibil-
ity. The first term arises from the quantization of light and the second term

5



1 Introduction 1.1 Optomechanical effects

arises from mechanical quantization. This equation represents that the effect
of the oscillator’s quantization can be easily removed at above the resonant
frequency [65, 66] if the mechanical decay rate is small (i.e., high mechanical
quality factor), as shown in Fig. 1.2. It is worth pointing out that this is close
to the actual situation of GW detectors, in which a quasi-freely suspended
mirror with eigenfrequencies of around 1 Hz and a very high quality factor
about 107, are monitored of above 10 Hz. Therefore, Eq. (1.1) is usually

written as S
(2)
FF,SQL(ω) = h̄|χm(ω)|−1 in the field of GW detectors; this is just

called “the SQL” in the field (in this thesis, we use the term ‘usual SQL’ as
meaning this). Also, this equation tells us that: (i) both of the components
in Eq. (1.1) are equal at the resonance; and (ii) the usual SQL, the free-mass
SQL, and the SQL are all equal far above the resonance of the mechanical
oscillator.

The part of the SQL derived from the quantization of light is understand-
able, as described below. Light is a continuous electromagnetic wave, and its
energy is delivered in discrete packets, called photon. Concerning the light
emitted by a laser, which is a good approximation to a coherent state and has
Poissonian statistics, the photons arrive randomly on a mirror. This random-
ness, which is called the “vacuum fluctuation”, produces both direct phase
noise and indirect phase noise, called shot noise and radiation pressure shot
noise, respectively. The vacuum fluctuation of the phase quadrature (orthog-
onal to a carrier field) directly gives rise to phase noise (i.e., sensing noise),
which is inversely proportional to the optical power, while the vacuum fluc-
tuation of the amplitude quadrature (parallel to the carrier) creates a random
radiation-pressure force on the mirror (i.e., force noise) that results in optical
phase noise, which is directly proportional to the optical power. In general,
the shot noise dominates at higher frequency and the radiation pressure shot
noise dominates at lower frequency because the mechanical susceptibility of
an oscillator has a frequency dependence of f−2 beyond a resonant frequency
(furthermore, the quantum radiation pressure fluctuation does not have any
frequency-dependence within the cavity linewidth; see Chapter 2). If these
two types of noise are not correlated, they will induce a lower bound on the
detector sensitivity independent of the optical power, which leads to the SQL
[65, 67], as shown in Fig. 1.2.

Another part of the SQL derived from the quantization of an oscillator is
understandable as described below. The oscillator consists of various types of
normal modes, and its energy is delivered in discrete packets, called phonon.

6



1 Introduction 1.1 Optomechanical effects

We now consider the specific normal mode, and naturally assume that the
other modes are sufficiently sparse, such that there is no spectral overlap with
each other. For a specific mechanical mode being sufficiently cooled [e.g.,
by laser cooling and direct cooling], which is a good approximation to the
ground state and has zero-point energy, the oscillator undergoes inevitable
fluctuation. This fluctuation, which is called the “zero-point fluctuation”,
also limits the sensitivity as force noise.

So far, no experiment has yet reached the free-mass SQL, since the ther-
mal fluctuating force induced by a thermal bath is usually far above the
free-mass SQL. In general, reaching the free-mass SQL requires that (i) the
force noise be dominated by quantum back-action, (ii) the readout noise be
dominated by shot noise, and (iii) the readout laser power be optimized such
that their sum is minimized. Therefore, our observation of quantum back-
action imposed on the macroscopic oscillator is the first step toward the free
mass SQL. On the other hand, reaching the SQL on the resonance repre-
sents the ground-state cooling, because the approximate phonon occupation
number kBT/h̄ωm represents the ratio of the thermal fluctuating force to the
SQL (See Eq. (7.1)). On the macroscopic scale, ground-state cooling is very
difficult, because the cavity condition is usually bad (See Chapter 2) due to
the low resonant frequency of the oscillator. This results in an increase of the
quantum back-action, even if the thermal excitation can be removed. The
double optical spring technique [20] (See Chapter 2) and a back-action eva-
sion method (See Chapter 3) might enable the macroscopic mirror to reach
its ground state.

7
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Figure 1.2: Various types of quantum noise. Consider measurement
of weak force imposed on a mirror (the force is encoded in the sequence of
displacements) using an interferometer. Left: Schematic representations,
which are called ball-on-stick pictures, of quantum noise. The amplitude of
the laser is represented as a stick, while the fluctuation of light is repre-
sented as a ball on the stick. Here, X1 is the amplitude quadrature and X2

is the phase quadrature (See Chapter 2). In the conventional scheme, the
displacement fluctuation is read out using information concerning the phase
quadrature. a: Shot noise is drawn. It limits the sensitivity, even if there is
no zero-point fluctuation of the mirror, because it is just the optical effect.
b: Quantum back-action is drawn. It limits the sensitivity even if there is
no zero-point fluctuation because it is the optomechanical effect induced by
the quantum radiation pressure fluctuation through the mechanical suscep-
tibility. Due to the self-phase modulation, the state of light is squeezed such
that the noise level of the phase quadrature increases. This effect is enhanced
at lower frequency according to the frequency dependence of the mechanical
susceptibility. As a result, the noise level of the quantum back-action is equal
to the shot noise and more. c: Zero point-fluctuation is drawn. It limits the
sensitivity even if there is no vacuum fluctuation of light because it is just
the mechanical effect. Right: Shows the amplitude power spectrum of the
quantum noise for a 1-kg test mass. The contribution of the zero-point fluc-
tuation subtracted from the SQL [(usual for the field of the GW detectors)
depicted as a green line], the contribution of zero-point fluctuation (cyan),
quantum back-action (magenta), shot noise (red) and the sum of the shot
noise and the radiation pressure shot noise (blue) are shown. The dotted
magenta and red represent the case of 10-times higher power than the above.
If the sum of the quantum back-action and the shot noise is minimized with
respect to the input power, the minimum noise is equal to the (free-mass)
SQL. 8



1 Introduction 1.2 Observation of quantum back-action

1.2 Observation of quantum back-action

Lastly in this chapter, we provide a short history of the observation of quan-
tum back-action.

The first measurement of quantum back-action was performed using cold
atoms by Dan M. Stamper-Kurn et al. in 2008 [68]. Using copper wires em-
bedded in an atom chip, they magnetically trapped and loaded an ultracold
ensemble of Rb 87 (the number of atoms is 105) into the cavity. They then
transferred the ensemble into a laser trap (wavelength of 850 nm), a very far
detuned longitudinal mode of the cavity. The probe light (wavelength of 780
nm) was coupled to another longitudinal mode, which drives the ensemble
through the optical dipole force. Its transmission was recorded while exiting
the ensemble, because the ensemble behaves similarly to that of a dispersive
piece of glass, changing the effective length of the cavity (i.e., “dispersive”
optomechanical coupling). By blue-detuning the probe laser, such that it
deposited phonons into the ensemble, the quantum back-action could be ob-
served as a heating of the ensemble. As a result, they were able to measure
the cavity-light-induced heating of the intracavity atomic ensemble. After
this measurement, they also measured the ponderomotive squeezing in 2012
[40].

The second measurement was performed using a photonic crystal nanobeam
by Amir H. Safavi-Naeini et al. in 2012 [69]. At first, they reported their ex-
periment as being an observation of the quantum motion of a nanomechanical
resonator. Farid Ya. Khalili et al. [65] showed that the results of this experi-
ment not only characterized the quantum motion, but also demonstrated the
existence of quantum back-action noise, just as in 2012.

In their experiment, they used a patterned silicon nanobeam, which
formed an optomechanical crystal capable of localizing both optical and
acoustic waves. An optical fiber taper was used to couple light evanescently
into the breathing mechanical mode of the silicon optomechanical device
(effective mass off 311 fg). The cavity was designed to have two optical
resonances, one for cooling (wavelength is 1460 nm) and one for readout of
mechanical motion (wavelength is 1545 nm). In this case, the cooling had
the key to characterize the zero-point motion. After this measurement, they
also measured ponderomotive squeezing in 2013 [41].

The third measurement was performed using a SiN membrane (effective
mass of 7 ng) by Tom P. Purdy et al. in 2013 [13]. The membrane motion
could be coupled to a cavity through the dispersive interaction. This inter-
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action imprinted phase and amplitude modulations onto transmitted laser
light, thus allowing for readout of the membrane motion. In addition, the
laser applied an optical gradient force to the membrane, while pushing it
toward higher optical intensity. They used one laser source (wavelength of
1064 nm) being split into two components by an acousto-optical modulator
(AOM): one for cooling and the other for readout of the mechanical motion.
In this case, the cooling was used for reducing the technical difficulties (e.g.,
parametric instability), not for enhancing the ratio of the quantum back-
action to thermal noise, similarly to our case (See Chapter 6). After this
measurement, they also measured the ponderomotive squeezing in 2013 [14].

A fourth measurement was performed using a suspended 5-mg mirror
by us [15]. Concerning the macroscopic scale, there have been intensive
studies at MIT, NAOJ, etc. [70, 71, 72] since the mid-2000s. The MIT group
used a 1-g suspended mirror, and they reported the usefulness of the double
optical spring [20]. The NAOJ group (currently, ICRR group) used a 22-mg
suspended mirror, and they reported the measurement of an anti-torsional
spring effect [25] in a linear optical cavity. Based on their findings, we were
able to observe quantum back-action. The details will be described after this
chapter.
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Chapter 2
Theory of Optomechanics

In this chapter, we describe the basic aspects of optical cavities, mechanical
resonators, and cavity optomechanical systems. This chapter presents the
basic concepts and mathematical tools for understanding later chapters.

2.1 Optical cavity

There are two equally important aspects in the physical theory: the math-
ematical formalism of the theory, and its intuitive interpretation. In this
section, we describe the mathematical formalism for the quantization of light
and the result; we also present intuitive interpretations of classical/quantum
fluctuation: the ball-on-stick picture. The interested reader is referred to
excellent textbooks [73, 74] for further details.

2.1.1 The quantized electromagnetic field

In 1927, Paul Dirac proposed quantization of the electromagnetic field to
solve the problem of the wave-particle duality. In this quantum theory, each
mode of a radiation field can be understood by a quantized simple harmonic
oscillator. The properties of the quantized field are introduced in the con-
text of an optical cavity mode with angular frequency of ωk. The positive
and negative components of the electric field can be written in terms of the
boson creation and annihilation operators, â†

k
and âk, and the spatial mode

11



2 Theory of Optomechanics 2.1 Optical cavity

function, u(r):

E(+)(r, t) = i
∑
k

(
h̄ωk
2ϵ0

)1/2

âku(r) exp(−iωkt), (2.1)

E(−)(r, t) = −i
∑
k

(
h̄ωk
2ϵ0

)1/2

â†
k
u(r)∗ exp(iωkt). (2.2)

Here h̄ is the Dirac constant and ϵ0 is the permittivity of free space. The
sum of the positive and negative components gives the whole electric field,

E(t) = i
∑
k

(
h̄ωk
2ϵ0

)1/2 [
âku(r) exp(−iωkt)− â†

k
u(r)∗ exp(iωkt)

]
. (2.3)

The creation and annihilation operators are dimensionless and satisfy the
boson commutation relations,

[âk, âk′ ] = [â†
k
, â†
k′ ] = 0, [âk, â

†
k′ ] = δkk′ . (2.4)

These commutation relations account for an important distinction between
classical and quantum optics. In classical optics, an equivalent of equation
(2.3) can be found by replacing the annihilation and creation operators with
complex field amplitudes. The amplitudes in classical optics commute, and
thus they are not limited by the Heisenberg uncertainty relation and its con-
sequences. In quantum mechanics, however, the operators must be Hermitian
in order to represent observable quantities. The annihilation and creation op-
erators are not Hermitian, and are thus not observables. They can be written
in terms of a Hermitian operator pair for the amplitude quadrature, X̂1, and
the phase quadrature, X̂2:

â =
1

2
(X̂1 + iX̂2), (2.5)

â† =
1

2
(X̂1 − iX̂2), (2.6)

The quadrature operators for the amplitude and phase are:

X̂1 = â+ â†, (2.7)

X̂2 = −i(â− â†). (2.8)

12



2 Theory of Optomechanics 2.1 Optical cavity

The amplitude and phase quadratures represent non-commuting observable
parameters. The operator for an arbitrary quadrature, ξ, can be defined
using a linear combination of X̂1 and X̂2,

X̂ξ = X̂1 cos(ξ) + X̂2 sin(ξ). (2.9)

2.1.2 The Heisenberg uncertainty principle

The Heisenberg uncertainty principle (HUP) [26] quantifies the ultimate pre-
cision of continuous measurement of non-commuting observable parameters,
as described in Chapter 1. HUP tells us that if any two observable parame-
ters, Ô1 and Ô2, satisfy the commutation relation,

[Ô1, Ô2] = ξ, (2.10)

they are bounded by HUP,

∆Ô1∆Ô2 ≥
|ξ|
2
, (2.11)

where ∆Ô is the standard deviation of the operator Ô. The standard devia-
tion is defined by

∆Ô =

√
⟨Ô2⟩ − ⟨Ô⟩2. (2.12)

The variance of the operator is the square of the standard deviation,

V = (∆Ô)2. (2.13)

The commutator relation of the amplitude and the phase quadratures of the
electromagnetic field is

[X̂1, X̂2] = 2i, (2.14)

and thus HUP is

∆X̂1∆X̂2 ≥ 1. (2.15)

This relation shows that the trade-off between the fluctuation of the am-
plitude quadrature and that of the phase quadrature. Therefore, this also
shows the trade-off between the shot noise and the radiation pressure shot
noise for the force measurement.

13



2 Theory of Optomechanics 2.1 Optical cavity

2.1.3 States of light

X1 X1

X1X1

X2 X2

X2X2

a

X2

classical noise

vacuum fluctuation

a b

c d

Figure 2.1: Ball-and-stick pictures for states of light. a: Coherent state
is represented. b: Vacuum state is represented. c: Amplitude squeezed state
is represented. d: Classically noisy state is represented.

Here, several common states (a coherent state, a vacuum state, a squeezed
state of light, and a classically noisy state) are described and shown in ball-on-
stick pictures. In the ball-on-stick pictures, the classical steady-state coherent
amplitude of the field is represented as a stick, while the fluctuation of light is
represented as a ball on the stick, which is analogous to the phasor diagram
used in classical physics where the orthogonal axes are the real and imaginary
parts of an electromagnetic field. Various states of light can be visually
understood by this.

• The coherent state
A coherent state is a minimum-uncertainty state with equal uncertain-
ties in the two quadrature components, so that

∆X̂1 = ∆X̂2 = 1. (2.16)

The quadrature fluctuations of the coherent state have no frequency
dependence, and obey Poissonian statistics. For the coherent state,
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the sidebands are randomly distributed in phase, and thus there is
no special phase. Although the coherent state is theoretically realized
by the laser, the laser light has excess noise below the MHz region,
whereas we measured a pendulum motion at around 130 Hz. Therefore,
stabilization of the laser intensity fluctuation is necessary for us (See
Chapter 5).

• The vacuum state
A vacuum state is also a minimum-uncertainty state with equal un-
certainties in the two quadrature components, but it has no coherent
amplitude (ā = ⟨â(t)⟩ = 0). It always occupies all frequency, spatial,
and polarization modes. The vacuum state is important in quantum-
optics experiments, since it enters optical systems in any unfilled ports
of the beam splitters, cavities, and partially transmissive mirrors. In
our case, the vacuum state prevents stabilization of the laser intensity
noise from achieving the minimum uncertainty level (See Chapter 5 &
Appendix).

• The squeezed state
A squeezed state is a non-classical state in which fluctuation is reduced
below the symmetric quantum limit in one quadrature component. In
order to satisfy HUP, the standard deviation of the orthogonal quadra-
ture must be greater than the quantum noise limit and the product of
the two quadratures greater than or equal to unity. If the amplitude
quadrature is reduced, it is called the amplitude squeezed state, and
vice versa. Thus, the minimum uncertainty amplitude squeezed state,
for example, has

∆X̂1 = 1/z, (2.17)

∆X̂2 = z, (2.18)

where z is a real and a positive number. The amplitude-squeezed state
is shown in Fig. 2.1.

• Classically noisy states
In general, lasers produce non-minimum-uncertainty states, which have
excess noise of classical origin at sideband frequencies below the MHz
region. The classical noise of a laser is often many times greater than
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2 Theory of Optomechanics 2.1 Optical cavity

the quantum noise in both quadratures,

∆X̂1 ≥ 1, ∆X̂2 ≥ 1. (2.19)

The classical noise can be reduced via: passive noise suppression using
an optical cavity [75]; active feedback control (See Chapter 5 & Ap-
pendix); or both. The noisy state is characterized by comparing with
the shot noise level in units of dB (so-called the relative to the shot-
noise level) and its coherent laser power in units of 1/Hz1/2 (so-called
relative intensity noise). The former is an useful index for quantum
measurements, such as observation of the quantum back-action and
generation of the squeezed state. The latter is an useful index for force
measurement, such as that used in gravitational-wave detectors.

2.1.4 Optical cavity

Ain

κin κout

Aout

Aout

Aloss

Aref

Aloss

κloss

a, a

^

^^

^

^ ^

^

^

Figure 2.2: Layout of the optical cavity. Consider a cavity composed of
two mirrors: an input coupler, with a decay rate of κin; an output coupler,
with a decay rate of κout; a mirror to represent intracavity loss, with a decay
rate of κloss; and the roundtrip length of the cavity, L. The cavity mode is
labeled â. The extracavity fields are: Âin, Âout, Âref , Âloss, δÂout and δÂloss.

Fabry-Perot interferometers, often referred to as (optical) cavities, consist
of two or more partially transmissive mirrors in order to make the light
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2 Theory of Optomechanics 2.1 Optical cavity

resonate inside it. In this section, the equation of motion for a cavity mode
is introduced; we then obtain the reflected and transmitted fields using this
equation.

Equation of motion

Consider the empty cavity shown in Fig. 2.2. It is made of three partially
transmissive optics labeled, in, out , and l, referring to the input coupler, the
output coupler, and the partially transmissive mirror used to simulate losses,
respectively. The equation of motion for cavity mode â in units of

√
photon

is [76]

˙̂a = −(iωc + κ)â+
√
2κinÂine

−iωAt +
√
2κoutÂout +

√
2κlossÂloss, (2.20)

where the driving field, Ain, in units of
√

photon/s has a coherent amplitude
at frequency ωA; the other fields, Aout and Aloss, are assumed to be in the
vacuum state. The cavity mode has a resonant frequency of ωc.

The equation of motion can be written in the rotating frame of reference
by setting

â → âe−iωAt, (2.21)

Âin → Âine
−iωAt, , (2.22)

and thus

˙̂a = (i△− κ)â+
√
2κinÂin +

√
2κoutÂout +

√
2κlossÂloss, (2.23)

where ∆ = ωA − ωc is the cavity detuning [i.e., the positive (negative) de-
tuning means the blue-detuning (red-detuning)]. In the mean-field approxi-
mation [77, 78], the amplitude decay rates for each mirror are given by the
amplitude transmissivity divided by the round trip time, τ = L/c, where L
is the roundtrip of the cavity. That is,

κin =

√
Tin

τ
≃ Tj

2τ

κout ≃
Tout

2τ

κloss ≃
1− Lc

2τ
, (2.24)
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2 Theory of Optomechanics 2.1 Optical cavity

where Lc is the cavity round-trip loss. The total decay rate is given by

κ = κin + κout + κloss. (2.25)

In the steady state, the cavity mode can be found by setting ˙̂a = 0 and
considering the time-independent component ā. Given that the steady state
amplitudes of the fields Āout = Āloss = 0, the steady state cavity mode is
given by

ā =

√
2κin

κ − i△
Āin. (2.26)

This equation enables us to obtain the reflected and transmitted fields as
a function of detuning in the following was. We are also interested in the
Fourier components of the cavity mode. These can be found by Fourier
transforms of the operators,

Q(ω) =

∫ ∞

−∞
Q(t) exp(−iωt)dt, (2.27)

for Q = â, Âin, Âout, and Âloss. The equation of motion in the frequency
domain is

−iωδâ = (i△− κ)δâ+
√
2κinδÂin +

√
2κinδÂout +

√
2κlossδÂloss, (2.28)

where ω is the sideband frequency. Simply put, this fluctuating term induces
the quantum back-action force (details are described in Sec. 2.3).

Reflected and transmitted fields

Using the cavity input-output relations [76], the reflected field, Aref and trans-
mitted field, Atrans, can be determined:

Atrans =
√
2κouta− Aout,

Aref =
√
2κina− Ain, (2.29)

which give

Ātrans =
2
√
κinκout

κ − i△
Āin, (2.30)

Āref =
2κin − κ + i△

κ − i△
Āin. (2.31)
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2 Theory of Optomechanics 2.1 Optical cavity

The amplitude transmissivity and reflectivity of the cavity can be defined by
the parameters

t(△) =
Ātrans

Āin

=
2
√
κinκout

κ − i△
, (2.32)

r(△) =
Āref

Āin

=
2κin − κ + i△

κ − i△
. (2.33)

From these equations, one can experimentally estimate important parame-
ters, i.e, κ, κin and κout (See Chapter 6).
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Figure 2.3: Optical cavity. These show the reflected and transmitted fields
as a function of detuning normalized by the cavity decay rate. Left: The
(power) reflectivity and transmissivity are shown. Right: The phase shifts
in reflection and transmission are shown.
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2 Theory of Optomechanics 2.2 Mechanical oscillator

2.2 Mechanical oscillator

In this section, we describe the mechanical oscillator, especially concerning
mechanical dissipation. Mechanical dissipation is one of the most impor-
tant parameters, because the Fluctuation-Dissipation Theorem (FDT) [79]
connects the spectrum of the thermal fluctuating force to the mechanical
dissipation in the system, which is given by

S
(2)
FF,th =

2kBT

ω
Imχm ∝ Tthγm. (2.34)

Here, kB is the Boltzmann constant, Tth is the temperature of the thermal
bath, χm is the mechanical susceptibility derived below, ω is the sideband fre-
quency, γm is the mechanical damping rate (i.e, it represents the dissipation)
and m is the mass of the mechanical oscillator. This equation represents that
the reduction of the thermal noise requires a low mechanical dissipation and
a low bath temperature. To reduce the dissipation, we used two types of
dilution techniques. Details are described below.

2.2.1 Mechanical normal modes

Consider a suspended mirror (i.e., pendulum) having a resonant frequency
of ωm, naturally assuming that the mode spectrum is sufficiently sparse such
that there is no spectral overlap with other mechanical modes, such as a
rocking mode and a violin mode. This condition can be easily satisfied by
choosing appropriate parameters [80]. The equation of motion for the posi-
tion of the mirror, x(t), can be described by

mẍ+ 2mγmẋ+mω2
mx = Fext. (2.35)

Here, m denotes the mass of the pendulum, γm the amplitude damping rate
(i.e., the mechanical quality factor is Qm = ωm/2γm), ωm the resonant fre-
quency of the oscillator, and Fext(t) the external force acting on the mirror.
Even if there is no external force, it is given by the thermal fluctuating force.

To solve this equation, we again introduce the Fourier transform via
x(ω) =

∫∞
−∞ dt exp(−iωt)x(t). Then, the mechanical susceptibility χm(ω)

connecting the external force to the displacement of the oscillator is given by

χm(ω) ≡
x(ω)

Fext(ω)
=
(
m(ω2

m − ω2) + 2imωγ
)−1

. (2.36)
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2 Theory of Optomechanics 2.2 Mechanical oscillator

The stationary response is given by χm(0) = (mω2
m)

−1 = 1/km, where km is
the spring constant. In our experiment, the pendulum was effectively cooled
down to about 40 mK by laser cooling, but it is still a classical pendulum
(i.e., thermal occupation number kBT/h̄ωm is about 7 × 107). Therefore,
although quantum mechanics is not necessary until now, it is necessary after
the pendulum reaches its ground state.

A quantum-mechanical treatment of the mechanical harmonic oscillator
leads to the Hamiltonian

Ĥ = h̄ωmĉ
†ĉ+

1

2
h̄ωm. (2.37)

Here, the phonon creation, ĉ†, and annihilation, ĉ, operators have been in-
troduced similarly to Eqs. (2.7), (2.8), with

x̂ = xzpf(ĉ+ ĉ†), p̂ = −imωmxzpf(ĉ− ĉ†), (2.38)

where

xzpf =

√
h̄

2mωm

(2.39)

is the zero-point fluctuation amplitude of the mechanical oscillator. The
quantity ĉ†ĉ is the phonon number operator, whose average is denoted by n̄ =
⟨ĉ†ĉ⟩. In general, the mechanical oscillator is coupled to a high-temperature
bath, and thus the average phonon number will evolve according to the ex-
pression

d

dt
⟨n⟩ = −2γm (⟨n⟩ − n̄th) . (2.40)

For an oscillator that is initially in the ground state, the time dependence of
the occupation is given by

d

dt
⟨n⟩t=0 = 2n̄thγm ≃ kBTth

h̄Qm

, (2.41)

where n̄th is the average phonon number of the thermal bath and Tth is the
temperature of the thermal bath. Equation (2.41) represents the thermal
decoherence rate, because it gives the inverse time of the absorption of a
phonon from the environment. This expression shows that in order to attain
a low thermal decoherence, a high mechanical quality factor, Qm, and a
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low temperature bath are important. In addition, from this equation, the
number of coherent oscillations in the presence of thermal decoherence is
given by ωmh̄Qm/kBTth = Qm · fm × (h/kBTth). Therefore, the“Qm · fm”
product quantifies the decoupling of the mechanical resonator from a thermal
environment. Note that full coherence over one mechanical period is obtained
for Qm · fm = kBTth/h̄, i.e. Qm · fm > 6× 1012 Hz is a minimum requirement
for room-temperature quantum optomechanics. One might consider that
satisfying the criteria is impossible on the macroscopic scale; however, the
dilution techniques described below enable us to realize it.

2.2.2 Mechanical dissipation & Dilution techniques

The loss of mechanical excitations, i.e. phonons, is quantified by the am-
plitude dissipation rate, γm = ωm/2Qm. Here, we introduce the loss mecha-
nisms:

• Viscous damping is mainly caused by interactions with the surrounding
gas atoms. A resistance force proportional to the velocity is applied
to the oscillator. In our case, the gas damping will become an issue in
future (See Chapter 7).

• Clamping losses are due to radiation of elastic waves into the substrate
through the supports of the oscillator. In our case, a thin tungsten wire
is clamped between two aluminum plates at the top, while a mirror is
attached to the wire using an epoxy glue at the bottom (See Chapter
6). Although this lossy configuration has sufficient quality factor for
observing the quantum back-action, it will not be sufficient for future
experiments. Therefore, we must change it to other relatively lossless
materials, such as stainless steels (See Chapter 7).

• A thermoelastic damping is a fundamental anharmonic effect, which
is caused by heat flow along the temperature gradients. This effect
often causes problems, such as a mirror thermal noise, because the
temperature gradients often occur at around the laser beam spot on
the mirror. In our case, the mirror thermal noise has been negligible
until now; however, it will also become an issue in the future (See
Chapters 5 & 7).

• An intrinsic loss of a material is caused by the relaxation of intrinsic
defect states in the bulk or surface of the material. In general, intrinsic
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loss could not be measured directly because of the loss coming from the
support for the measurement. To solve this problem, a nodal support
system, which does not introduce any external loss to the sample by
supporting it at their nodal points, was proposed by Kenji Numata in
2000 [81]. Since then, this technique has been used [82, 83]. In our case,
it was estimated using a torsional mode (See Chapter 6), similarly to
that described in Ref. [84].

The various dissipation processes contribute independently to the overall
mechanical losses, and hence add up incoherently. The resulting mechanical
quality factor, Qtotal, is given by 1/Qtotal =

∑
i 1/Qi, where i labels the

different loss mechanisms.
Since the loss of the energy is only associated with the elastic part of the

stored energy, the mechanical dissipation can be mitigated by storing most of
the mechanical energy in a nearly lossless gravitational or optical potential,
thereby strongly diluting the effect of the dissipation.

• Gravitational dilution: The total mechanical loss of an oscillator
is diluted with gravity by a factor of kgrav/kel, where kgrav and kel are
the gravitational and elastic spring constants [85]. As a result, the
mechanical quality factor becomes kgrav/kel-times larger (i.e., Qm · fm
becomes kgrav/kel-times larger). In our case, an ultimate thin wire
(the radius is 1.5 µm) assures that the amount of energy stored in the
pendulum is dominated by the gravitational potential over the elastic
bending energy of the wire. More concretely, the mechanical dissipation
is about 1000-times diluted (See Chapter 5 & 6).

• Optical dilution: Mechanical energy is stored in the lossless po-
tential provided by the optical restoring forces, which dilutes the ef-
fects of internal material dissipation. As a result, the minimum re-
quirement for room-temperature quantum optomechanics imposed on
“Qm · fm” is (feff/fm)

2-times mitigated. Here, feff is the effective res-
onant frequency of the mechanical oscillator trapped by the optical
spring. In the case of the soft suspension, such as the suspended mir-
ror, this effect is relatively increased, and thereby it is often used with
pendulums [86, 87, 88]. In our case, the original Qm · fm is about
1×106 Hz, which is about 6×106-times lower than the original require-
ment, even though the gravitational potential increases the mechanical
quality factor. The optical spring further reduces the difference to
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6× 106 · (2.2/130)2 ≃ 2× 103. This is due to the double optical-spring
technique [20] (See Chapters 5 & 6). In the future, the difference can
be furthermore reduced (See Chapter 7).

The dilution techniques mentioned above have a key to experimentally inves-
tigate the macroscopic quantum mechanics because any macroscopic object
is strongly affected by thermal decoherence as just it is.
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2.3 Optomechanical system
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Figure 2.4: Layout of the triangular cavity. The cavity consists of three
mirrors: the input coupler for the driving beam, with a decay rate of κin1;
the input coupler for the spring beam, with a decay rate of κin2; the movable
mirror, with a decay rate of κin3; and a mirror to represent intracavity loss,
with a decay rate of κin4. The cavity mode is labeled â and b̂. The extracavity
fields are: Âin1, δÂin2, δÂin3, δÂin4, δB̂in1, B̂in2, δB̂in3, and δB̂in4

Theoretical derivation of quantum back-action Here, we calculate
the quantum back-action in the optomechanical system shown in Fig 2.4.
We again start from Newton’s law to describe the mechanical response,

mẍ+ 2mγmẋ+ kmx = F, (2.42)

where m is the mass of the movable mirror (mechanical oscillator), ωm is
the mechanical resonant frequency, γm is the mechanical amplitude decay
rate, km is the mechanical spring constant, and x is the position for the mir-
ror. To derive the mechanical susceptibility, we Fourier transform Eq.(2.42)
according to the following conventions: f(ω) ≡

∫∞
−∞ dtf(t) exp(−iωt),

χm ≡ x

F
=

1

m(ω2
m − ω2 + i2ωγm)

. (2.43)
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Secondly, we calculate the response of an optomechanical system to two
independent laser driving fields. The Hamiltonian describing the optome-
chanical coupling [89] can be written and linearized in the form

Ĥ = h̄ωc(x)â
†â+ h̄ωc(x)b̂

†b̂+ Ĥκ

≃ h̄ωcâ
†â+ h̄ωcb̂

†b̂+ h̄gâ†âx+ h̄gb̂†b̂x+ Ĥκ, (2.44)

where g = 2ωc cos β/L is the optomechanical coupling constant, ωc is the
cavity resonance frequency, β is the incident angle on the movable mirror,
L is the round-trip length and Ĥκ represents the optical input and out-
put coupling; and âandb̂ are the annihilation operators (cavity modes) for
two counterpropagating directions in the triangular cavity, respectively. The
Heisenberg Langevin equations of motion for the cavity modes are:

˙̂a = −(κ+ iωc)â− igaxâ+
∑
l

√
2κlÂl, (2.45)

˙̂
b = −(κ+ iωc)b̂− igbxb̂+

∑
l

√
2κlB̂l, (2.46)

where the κin1, κin2, κin3 are the cavity amplitude decay rates for each mirror,
κin4 is the decay rate for the cavity round-trip loss and κ is the total decay
rate; ÂlandB̂l are the input optical fields. The equation of motion can be
written in a rotating frame of reference by setting â = exp(−iωat)â and
linearized in the following form:

δ̇â = −(κ− i∆a)(ā + δâ)− iGaδx+
√
2κin1Āin1 +

∑
l

√
2κlδÂl, (2.47)

˙
δb̂ = −(κ− i∆b)(b̄+ δb̂)− iGbδx+

√
2κin2B̄in2 +

∑
l

√
2κlδB̂l, (2.48)

where ∆a = ωa −ωc −Gax̄ and ∆b = ωb −ωc −Gbx̄ are the cavity detuning;
Ga = āg and Gb = b̄g are the light-enhanced optomechanical couplings for
the linearized regime; ā and b̄ are the average parts for each cavity mode;
δâ and δb̂ are the fluctuating parts for each cavity mode; Āin1 and B̄in2

are the real valued coherent amplitudes for input lasers; δÂl and δB̂l, for
l = in1, in2, in3, in4 are the vacuum fluctuation entering from each port.

The average intracavity field amplitudes are described by Eqs. (2.47) and
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(2.48):

ā =

√
2κin1

κ− i∆a

Āin1, (2.49)

b̄ =

√
2κin2

κ− i∆b

B̄in2. (2.50)

From these equations, the intracavity power is given by

P̄circ =
h̄ωc|a|2

τ
+

h̄ωc|b|2

τ
= P̄in1,circ + P̄in2,circ

=
2κin1

τ(κ2 +∆2
a)
P̄in1 +

2κin2

τ(κ2 +∆2
b)
P̄in2, (2.51)

where τ is the cavity round-trip time.
The fluctuation components of Eqs. (2.47) and (2.48) are similarly at

given by

δ̇â = −(κ− i∆a)δâ− iGaδx+
∑
l

√
2κlδÂl, (2.52)

˙
δb̂ = −(κ− i∆b)δb̂− iGbδx+

∑
l

√
2κlδB̂l. (2.53)

In terms of the frequency components, these can be rewritten by

δâ = χa(−iGaδx+
∑
l

√
2κlδÂl), (2.54)

δb̂ = χb(−iGbδx+
∑
l

√
2κlδB̂l). (2.55)

Here, χa = (κ + i(ω − ∆a))
−1 and χb = (κ + i(ω − ∆b))

−1 are the cavity
susceptibilities for the two modes. These lead to forces induced by the cavity
modes, being applied to the movable mirror, which are given by:

F̄BA = −(ga + gb)τ

ωc

P̄circ, (2.56)

δFBA = ih̄|Ga|2δx(χa(ω)− χ∗
a(−ω)) + ih̄|Gb|2δx(χb(ω)− χ∗

b(−ω)), (2.57)

δF̂BA = −h̄G∗
aχa(ω)

∑
l

√
2κlδÂl − h̄Gaχ

∗
a(−ω)

∑
l

√
2κlδÂ

†
l

− h̄G∗
bχb(ω)

∑
l

√
2κlδB̂l − h̄Gbχ

∗
b(−ω)

∑
l

√
2κlδB̂

†
l , (2.58)
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where F̄BA is the average back-action force, δFBA is the dynamic back-action,
which influences the dynamics of the harmonically bound mirror, and δF̂BA

is the quantum back-action force.
From the dynamic back-action, the optical spring effect is

K(ω) = −δFBA

δx
= 2h̄|Ga|2

∆a

(κ+ iω)2 +∆2
a

+ 2h̄|Gb|2
∆b

(κ+ iω)2 +∆2
b

=
8Pin1,circωc

Lc

∆a cos
2(β)

(κ+ iω)2 +∆2
a

+
8Pin2,circωc

Lc

∆b cos
2(β)

(κ+ iω)2 +∆2
b

. (2.59)

The experiment is performed under the “slowly varying” condition, ω ≪√
∆2

a + κ2; then, the spring effect can be written by

K = 2h̄|Ga|2
[

∆a

κ2 +∆2
a

− 2iκ∆a

(κ2 +∆2
a)

2
ω

]
+ 2h̄|Gb|2

[
∆b

κ2 +∆2
b

− 2iκ∆b

(κ2 +∆2
b)

2
ω

]
≡ Kopt + iΓoptω. (2.60)

This condition is also called the “bad” cavity condition because of the weak-
ness of the cooling effect due to the decay of light, itself. Under this con-
dition, the intracavity optical power is largely increased as an effect of the
laser cooling being increased, and thereby the back-action is also increased.
If the light-enhanced optomechanical coupling constant, G, is larger than√
mκγmωm/h̄, the back-action becomes larger than the SQL on resonance

of the mechanical oscillator. Therefore, in general, this condition is not ap-
propriate for the laser cooling of the object for achieving its ground state.
The optical dilution described in the above section has the key to reduce
this difficulty. On the other hand, in the resolved sideband regime, defined
as ωm ≫ κ, one can reduce the occupation number to (κ/2ωm)

2 [90, 91].
Therefore, this condition is called the “good” cavity condition.

This spring modifies the dynamics of the mirror as

ω2
eff = ω2

m +
Kopt

m
, (2.61)

γeff = γm +
Γopt

2m
, (2.62)

which indicates that the positive (negative) rigidity is always accompanied
by negative (positive) damping. In either case, the system is unstable if we
use a single optical spring. To stabilize the system, one can use a feedback

28



2 Theory of Optomechanics 2.3 Optomechanical system

control; however, it is difficult to control if we use a tiny oscillator. An
appropriate alternative is to implement the idea of the double optical spring
[20], by inputting two lasers to the cavity at different frequencies. One laser
with a small detuning provides a large positive damping, while the other
higher input-power beam with a large detuning provides a strong restoring
force. The resulting system is self-stabilized with both positive rigidity and
positive damping, as shown in Fig 2.5. In addition, unlike mechanical springs,
the optical spring effect does not change the thermal excitation spectrum
of the mirror, since the optical field is almost in its ground state (in our
case, the infrared optical field has an effective temperature of 15,000 K). We
can measure the quantum back-action force fluctuation as a displacement
fluctuation via the effective susceptibility, χeff .

29



2 Theory of Optomechanics 2.3 Optomechanical system

−15 −10 −5 0 5 10 15
−0.05

0

0.05

Spring Constant [N/m]

M
ec

h
an

ic
al

 D
ec

ay
 R

at
e 

[H
z] stable

a

−2 −1 0 1 2
0

0.5

1

1.5

2

2.5

3

Normalized Detuning

In
tr

ac
av

it
y

 P
o

w
er

 [
W

]

c

b

driving

spring

vacuum chamber

PD

PD

movable mirror

fixed mirror

controlled

mirror

Figure 2.5: The double optical spring effect in our experiment. a:
The driving (red) and spring (blue) beams incident on the fixed and con-
trolled mirrors, respectively. b: The intracavity power and detuning for each
beam. The red and blue points show both laser-cavity detuning and the
intracavity power. The dashed red and blue curves show the optical power
as a function of the cavity detuning for each beam. The driving beam dom-
inates the quantum back-action due to the higher intracavity power than
the spring beam. c: The optical spring effect. The red point represents the
driving beam at ∆a/κ = −0.05, the blue point represents the spring beam
at ∆b/κ = +1.3, and the dashed green represents their sum. The dashed red
and blue curves show parametric plots of the optical spring as a function of
the detuning for each beam, and the dashed green curve is their sum. Inside
the cyan flame, both the spring and the mechanical decay rates have a posi-
tive values, and thus the mirror is stably trapped. It is impossible for single
optical spring.
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The double-sided force spectrum, S
(2)
FF,q, is written as

S
(2)
FF,q = ⟨δF̂BA(−ω)δF̂BA(ω)⟩

= 2h̄2κ|Ga|2|χa(−ω)|2 + 2h̄2κ|Gb|2|χb(−ω)|2

= 2Nin1,circ
h̄2g2

κ

(
1 +

(
ω +∆a

κ

)2
)−1

+ 2Nin2,circ
h̄2g2

κ

(
1 +

(
ω +∆b

κ

)2
)−1

.

(2.63)

Therefore, the quantum back-action is given by |χeff |2S(2)
FF,q. In practice,

a laser has a classical intensity fluctuation generating the “classical” back-
action force. This effect is given by

S
(2)
FF,c = 2(Bin1 − 1)h̄2κin1|Ga|2

(
|χa(ω)|2 + |χa(−ω)|2

)
+ 2(Bin2 − 1)h̄2κin2|Gb|2

(
|χb(ω)|2 + |χb(−ω)|2

)
, (2.64)

where Bin1 and Bin2 are the relative shot noise levels for each beam. In the
slowly varying regime, the ratio of the classical back-action to the quantum
back-action for each beam is S

(2)
FF,c,j/S

(2)
FF,q,j ∝ κj/κ, for j = in1, in2, which

enables us to estimate the requirement for the intensity stability of the input
beam.
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Chapter 3
Application of Optomechanics

In this chapter, we describe how an observation of the quantum back-action is
related to the gravitational-wave (GW) detectors and macroscopic quantum
mechanics.

3.1 Towards gravitational wave astronomy

Gravitational waves are ripples of space-time curvature that propagate across
the universe at the speed of light. They were theoretically predicted from the
Einstein equation in the General Theory of Relativity [92]. Their existence
was indirectly proved by an observation of a binary pulsar, PSR1913+16 [93].
The observed decrease in the period of its revolution agrees with the theoret-
ical expectation of the orbital decay due to gravitational radiation. There is
no doubt that gravitational waves exist. However, gravitational waves have
not been directly detected yet, because of the weakness of the gravitational
interaction. On the other hand, due to the weakness, these waves enable us
to view the dark ages of the universe through direct measurements. Their di-
rect observation requires modern laser technology and highly sensitive mea-
surements at almost the standard quantum limit (SQL). Furthermore, for
gravitational-wave astronomy, the GW detection rate should be increased
through ultimate sensitive measurements beyond the (free-mass) SQL.

In the past two decades, an international array of ground-based, kilometer-
scale Michelson interferometers composed of quasi-freely suspended mirrors
(shown in Fig. 3.1), has been set up aiming at the first direct observation.
The Michelson interferometer makes it possible to naturally decompose the
optical fields and the corresponding motion of the suspended mirrors into
common and differential modes. Since the Michelson interferometer is usu-
ally operated on a dark fringe (i.e., the beam splitter can be regarded as
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3 Application of Optomechanics 3.1 Towards gravitational wave astronomy

having a perfect reflectivity for the carrier light), ideally only optical signals
induced by the differential motion of the suspended mirrors exit the unused
port shown in Fig. 3.1. This signal enables us to measure the gravitational
waves because one can consider the gravitational waves as being tidal force
imposed on the suspended mirror [94].

These interferometric GW detectors have been operating all over the
world. GEO600 in Germany [61] is currently the only large detector tak-
ing data, while the two LIGO observatories in the US [59] and the Virgo
detectors in Italy [62] are being upgraded to their advanced state, and KA-
GRA in Japan [60] is under construction. These ground-based GW detectors
target signals at audio frequencies in a band of 10 Hz to 10 kHz above the
resonant frequency of the suspended mirror. At higher frequencies, their
sensitivity will be limited by the shot noise. This shot-noise arises from
the vacuum fluctuation of light, which enters the interferometer through the
unused port. At lower frequencies, the quantum noise will be dominated
by the quantum back-action (radiation pressure shot noise, RPSN) from the
same vacuum fluctuation giving shot noise, but at the orthogonal quadrature
phase. At any given frequency, the spectral density of the quantum noise is
the sum of those of the shot noise, the RPSN, and a term arising from their
correlation. Note that the zero-point fluctuation of the mirror does not affect
the sensitivity because the GW detectors only pay attention to the sideband
frequency above the resonant frequency of the suspended mirror, in which
the mirror can be considered to be a free mass. The standard quantum limit
(SQL) on the force measurement arises when the two noise sources are un-
correlated [27, 67]. Therefore, the correlation between the shot noise and the
RPSN becomes a key to overcome the SQL.
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Figure 3.1: Schematic of the gravitational-wave detector. Left: A
classic Michelson interferometer as a GW detector consists of a laser, a 50/50
beamsplitter (BS), two suspended test mass mirrors and a photodetector
(PD). The gravitational wave can be considered to be a tidal force imposed
on the mirrors, thereby shortening the length of one arm while expanding the
length of the other. The vacuum fluctuation entering from the unused port
masks the GW signal because the detector is operated at the dark fringe.
Right: The GW detector in Japan is called KAGRA, with an armlength of
3 km [60].

3.1.1 Background of this section

One of the most important features of future GW detectors is that they will
operate at sufficiently high laser powers such that the quantum back-action
acting on the suspended mirrors will become a dominant force at a lower fre-
quency band (typically below 100 Hz). The effects of the radiation pressure
will be manifested mainly in two ways in terms of the fluctuation of the pres-
sure or the stationary pressure; the vacuum fluctuation will drive the mirror
and the light is squeezed (called ponderomotive squeezing) through the self-
phase modulation, which increases the phase noise of the measurement; also,
the optical spring effects will alter the mechanical dynamics of the mirrors.
Although the latter has been sufficiently studied [20, 25, 37], the former has
not been observed yet on the macroscopic scale. Our result concerning the
observation of quantum back-action changed the situation, and will provide
the field of the GW detectors with a suitable platform to experimentally in-
vestigate a back-action evasion method in order to overcome the free-mass
SQL.
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3.1.2 Back-action evasion method

In order to overcome the free-mass SQL, there are primarily three types of
techniques: (i) creating correlations between the shot noise and the back-
action noise [29, 30]; (ii) measuring the conserved dynamical quantity of the
mechanical oscillator, e.g., momentum [35, 36]; (iii) an effective modification
of the mechanical dynamics, e.g., using the optical spring effect created by
the detuning of a signal recycling (SR) cavity in the GW detectors (unlike
our case, it creates frequency-dependent rigidity called ponderomotive rigid-
ity) [32, 33, 34]; and a variety of other techniques [13, 95]. Although these
QND techniques have been theoretically developed, almost all of them have
not been implemented in the quantum regime because the preparation of a
platform, whose sensitivity must be limited by the quantum back-action, is
very difficult.

Here, we introduce the first technique of creating correlations between the
shot noise and the RPSN for the QND measurement, because our setup will
be suitable to investigate this technique. It includes: (i-i) modifying the in-
put optics called input (frequency-dependent) squeezing; (i-ii) modifying the
output optics, called (frequency-dependent) homodyne measurement. This
technique evades the quantum back-action and achieves a sensitivity limited
only by the shot noise.

• Input-squeezing
Since both the shot noise and the RPSN can be attributed to the same
vacuum fluctuation entering the detector from the unused port, inject-
ing a squeezed vacuum into this port can improve the sensitivity of the
interferometer. In practice, this technique was experimentally imple-
mented so as to reduce the shot noise using the phase-squeezed vacuum
[31]. For overcoming the free-mass SQL, however, the required squeezed
vacuum is very different, because a nearly phase-squeezed vacuum is
required for higher frequencies, at which the shot noise dominates.
However, a nearly amplitude-squeezed vacuum is required for lower
frequencies, at which the radiation pressure noise dominates. To meet
the demand, the squeezing angle should have an appropriate frequency-
dependence, thereby creating the correlation between the shot noise
and the RPSN (i.e., it includes not only back-action evasion, but also
reduces the readout noise). Frequency-dependent squeezing can be
created using the optical cavity, which was demonstrated at around 10
MHz [96]. At around the more suitable frequency for GW detectors, it
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is being prepared at MIT [97]. However, there is no platform to test
the input frequency-dependent squeezing for the QND measurement.
We can prepare the platform in the near future (See Chapter 7).

• Utilization of ponderomotive squeezing
Unlike input-squeezing, ponderomotive squeezing has a superb feature,
i.e., it does not need an external squeezed vacuum generator (squeezer),
such as an OPO (optical parametric oscillator). However, similarly to
input-squeezing, the frequency-dependence is ideally necessary not for
the squeezer, but for the readout of the optical signal. In the con-
ventional interferometer, shown in Fig. 3.1, the displacement signal is
measured in the phase quadrature, and then the anti-squeezing limits
the sensitivity. To utilize the correlation created by the ponderomo-
tive squeezing, the output signal should be appropriately read out in a
frequency-dependent quadrature, because the ponderomotive squeezing
also has a frequency dependence. This is because the quantum radi-
ation pressure fluctuation in Eq. (2.63) has no frequency dependence
inside the cavity linewidth; however, the mechanical susceptibility in
Eq. (2.36) has a dependence above the resonant frequency. Although
the frequency-dependent readout can also be realized by using the opti-
cal cavity, it is not always necessary for the QND measurement, unlike
in the case of input-squeezing. This is because the correlation already
exists without the frequency-dependent readout, due to ponderomotive
squeezing. Therefore, this back-action technique is more achievable
than the others.

3.2 Test of quantum mechanics

Although quantum mechanics has proven to be highly successful in explain-
ing physics below the microscopic scale, its validity at the macroscopic scale
is still being debated. Recent advances in technology have gradually enabled
experimental tests of quantum mechanics at scales close to the macroscopic
scale of our everyday life [13, 98, 99]. However, the superposition of positions
of macroscopic objects beyond the Planck mass has not been observed, even
though quantum mechanics predicts it. This is at the heart of the so-called
“quantum measurement problem”. Until now, intense theoretical and exper-
imental studies have revealed that the environment, such as a thermal bath,
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plays an important role in the decoherence – the loss of quantum interference
[100, 101, 102, 103]. Under the many-world interpretation [104], this decoher-
ence effect will make us understand the problem without any inconsistency
[105]. From a positivistic point of view, however, it is not a fundamental
solution, because linear quantum mechanics cannot destroy superposition.

Turning now to general relativity, gravity might prohibit the superposi-
tion of massive objects (i.e., gravity field) due to its non-linearity. In addition,
there are several intriguing facts that: (i) the consistency between the scale
of the Planck mass (∼ 22 ug) and the scale where the micro-to-macro tran-
sition takes place; (ii) the absence of a theory of quantum gravity; and (iii)
the conflict between the general covariance and the unitary time evolution
of quantum physics [106, 107]. Remarkable proposals were put forwarded by
Diósi [106] and Penrose [107] based on the incompatibility of general relativ-
ity and the unitary time evolution of quantum physics. Accordng to their
models, dimensional analysis suggests that the quantum superpositions van-
ish within a timescale of τ = h̄/∆E, where ∆E is the spread of the mutual
gravitational energy among components of the quantum superposition or the
self-energy of the mass-distribution-difference, respectively.

To test the effect of gravity, the utilization of optomechanical oscillators
combined with light, such as a levitated micro-sphere (e.g., satellite mission
MAQRO [108]) and suspended mirrors (e.g., gravitational-wave detectors
such as LIGO [44, 59]) have been proposed. The former system enables us
to test the effect of gravity, because the cooled micro sphere behaves like
an electron in the double slit experiment. The latter system enables us to
test the effect of gravity, because the mirror is expected to be entangled
with the laser field, and the resulting entanglement causes the position of
the oscillator to be superposed. [42, 44]. If we prepare a massive object
sufficiently isolated from the environment so that the superposition state is
expected to be prepared from the viewpoint of the quantum mechanics, we
can test the gravity-collapse model. Especially the suspended mirror attracts
considerable attention, since the massive mirror, which enhances the effect
of gravity, can enable us to precisely test the effect of gravity [109, 110, 111].

For the entanglement states between separated oscillators created by ra-
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diation pressure, these give [109]

τD ∼
√
h̄ΩqL

2

Gm3/2
, (3.1)

τP ∼ Ωq

Gρ
, (3.2)

where τD is the timescale for the Diósi’s model, τP is the timescale for the
Penrose’s model, L is the distance between two oscillators, G is the grav-
itational constant, ρ is the density of the oscillator, m is the mass of the
oscillator, and Ωq is the characteristic frequency introduced in the next sub-
section. In Ref. [109], τD = 1× 10−5 s, τP = 4.3× 109 s, which were obtained
for GW detectors. In our case shown in Fig. 7.2, we estimate τD and τP to be
1.8× 10−5 s and 4.4× 1010 s , respectively [L = 1 cm, Ωq/2π = 4.5× 103 Hz
and m = 5 mg]. Therefore, our table-top system can have a comparable
life-time to that of the GW detectors, and it might be possible to test the
Diósi’s model similarly to GW detectors [110]. To distinguish these models
(furthermore, there are many other models [105, 108]), it should be tested
for various macroscopic mass scales.

In an optomechnical system, the quantum back-action represents a quan-
tum fluctuation (vacuum fluctuation) of the light derived from the Heisenberg
uncertainty principle (HUP). Therefore, the observation of quantum back-
action identifies the connection between the oscillator and the quantumness
of light, and thus it is a necessary condition for generating an entangled state.
In the following subsection, we describe the stronger necessary condition.
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3.2.1 The requirement
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Figure 3.2: The sub-SQL window: ΩF,Ωq, and Ωx are the frequencies
at which the classical force noise (e.g., the suspension thermal noise), the
quantum back-action, and the classical sensing noise (e.g., the mirror thermal
noise) intersect the free-mass SQL, respectively. The quantum back-action
(blue), shot noise (red), sum of the quantum back-action and the shot noise
(green), classical force noise (cyan), classical sensing noise (magenta) and
free-mass SQL (black) are shown. In order to generate the entanglement
states, a sub-SQL accuracy, with an error area smaller than the free-mass
SQL, is essential [109]. The orange-colored area represents the sub-SQL
window.

In order to test the quantum mechanics, entanglement states involving mas-
sive objects have the key, like in the case of GW detectors [44]. Here, we
only pay attention to the cavity-assisted entanglement states, similarly to
GW detectors [112]. In this case, the generation requires, in terms of the
force measurement, that the sensitivity should be limited by the free-mass
SQL, shot noise, and quantum back-action. The area under the free-mass
SQL, which is reachable through the QND technique, is called the sub-SQL
window, shown in Fig. 3.2. We have to realize a low ΩF and a high Ωx,
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which represent an inverse time of thermalization and a characteristic fre-
quency for the sensing noise, respectively. For Ωx/ΩF > 2, there is a nonzero
frequency band (in between ΩF and Ωx) in which the classical noise is com-
pletely below the free-mass SQL. Therefore, our next goal is to prepare a
cavity that satisfies this condition (Chapter 7). In Ref. [44, 109, 112], the
logarithmic negativity [113], which characterizes the degree of entanglement
of the quantum state, is also calculated as a function of Ωx/ΩF.
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Chapter 4
Optical Torsional Spring

movable mirror

movable mirror

aligned

misaligned

ba

Figure 4.1: Schematic of optical torsional effects. The schematic re-
sponses of the optical axes to the angular motion of the movable mirror are
shown. The detailed response for the triangular cavity is given in Ref. [114].
An optical torque occurs through the stationary radiation pressure. a: In
the case of the linear optical cavity, the optical torque occurs in the same
direction as the angular motion. This results in an anti-restoring force. b:
In the case of the triangular optical cavity, the optical torque occurs in the
opposite direction as the angular motion. This results in a restoring force.

The positive torsional spring effect is the key effect in our experiment because
it enables us to use both the large gravitational dilution effect (See Chapters
5 & 6) and the powerful double optical spring effect (See Chapters 5 & 6).
This effect was independently discovered by Daniel Sigg [115] and myself.
Unlike a linear cavity, light experiences odd numbers of reflections on mirrors
inside a triangular cavity. This results in a positive torsional spring effect.
Figure. 4.1 enables us to intuitively and visually understand the difference
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4 Optical Torsional Spring 4.1 Model of a triangular cavity

between the linear and triangular optical cavities. Although one can calculate
the optical positive torsional effect using the result described in Ref. [114],
we use the result described in Ref. [115] for simplicity. Also, we describe an
experimental demonstration of the effect.

4.1 Model of a triangular cavity

Ma

Mb

Mc

L

2d

R

θ

β

Figure 4.2: Schematic of the triangular cavity. This figure represents
the layout of the triangular cavity. The triangular cavity formed by two
flat mirrors, labeled Ma and Mc (the movable mirror), and a curved mirror,
labeled Mb. L, represents the distance between the curved mirror and the
flat mirror; d is half the distance between the two flat mirrors, R is the radius
of curvature of mirror Mb, θ is the incident angle on the curved mirror, and
β is the incident angle on the flat mirror.

Here, we derive the torsional spring effect around the suspension axis (yaw)
due to the radiation-pressure torque in a triangular cavity. We use Sigg’s
result[115], and begin by considering a two-dimensional triangular cavity
formed by two flat mirrors, labeled Ma and Mc, and a curved mirror, labeled
Mb, as shown in Fig. 4.2. We decompose the rotations of the two flat mir-
rors into two basis modes: the common-mode (same the rotation direction,
the same amount) and the differential-mode (opposite rotation direction, the
same amount). Any misalignment state of the two mirrors can be expressed
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4 Optical Torsional Spring 4.1 Model of a triangular cavity

as a linear combination of these two basis modes. In this picture, the rela-
tionship between the misalignment angle, ∆α, of the basis modes and the
change in beam position on each of the mirror, ∆x, is given by [115]

∆x = LKh∆α (4.1)

with

Kh =
1

L(d+ L−R)


−2d(L−R)

cosβ
0 −

√
2dR

cosβ

0 −2L(d+L−R)
cosβ

0

−
√
2dR 0 (d+ L)R

 . (4.2)

Here, L is the distance between the curved mirror and the flat mirror, d
is half the distance between the two flat mirrors, R is the radius of curvature
of mirror Mb, and β is the incident angle on the flat mirror. The torque,
Nrad, on each mirror induced by the radiation pressure is given by

Nrad =
2Pcirc

c
LTKh (4.3)

with

T =

 cos β 0 0
0 cos β 0
0 0 cos θ

 , (4.4)

where c is the speed of light in a vacuum, Pcirc is the circulating power in
the triangular cavity, θ is the incident angle on the curved mirror, and β
is the incident angle on the flat mirror. When the acute-angled isosceles
triangular optical cavity with a positive g-factor is considered, the optical
spring constant is always positive, because all eigenvalues of Eq. (4.3) become
negative [115]. This suggests that the triangular cavity is intrinsically stable
in the yaw direction.

For simplicity we consider the situation where only the mirror Ma is
movable and others are fixed. In this case, the equations of motion are
given by

Iaα̈a = −(kt,opt + kt,m)αa, (4.5)

kt,opt ≡ −Pcirc

c
l cos β (Kh(1, 1) +Kh(2, 2)) , (4.6)
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where Ia is the moment of inertia about the wire axis of mirror Ma, kt,opt is
the angular spring constant of mirror Ma induced by the radiation pressure,
and kt,m is the mechanical torsional spring constant of mirror Ma in yaw.

From this equation, we can derive the resonant frequency of the yaw
motion as

fa =
1

2π

√
kt,opt + kt,m

Ia
. (4.7)

From Eqs. (4.6) and (4.7) it is found that the angular resonant frequency is
increased with increased circulating power.

4.2 Experimental setup

Nd:YAG QWP HWP FI

movable 

mirror

15 MHz

sound-proof enclosure

piezo-mounted

mirror

PD

measurement of the resonant frequency

fixed

mirror

EOM

PD

PD

cavity length control loop

Figure 4.3: Detailed experimental setup for observing the optical
torsional spring effect. The laser beam (red line) was fed into the trian-
gular cavity. An electro-optic modulator (EOM) was used to apply frequency
sidebands for a Pound-Drever-Hall (PDH) method. Light was detected at
various points using photodetectors (PD). HWP, Half-Wave Plate; QWP,
Quarter-Wave Plate; FI, Faraday Isolator.

44



4 Optical Torsional Spring 4.2 Experimental setup

movable mirror

controlled mirror

PD

input laser

Figure 4.4: Photograph of the experiment for observing the optical
torsional spring effect.

In order to quantitatively verify the model described in the previous section,
we measured the angular resonant frequency of a mirror in a triangular cavity.
By changing the internal power of the cavity, thus changing kt,opt, we expect
the resonant frequency to change according to Eq. (4.7).

A schematic of the experimental setup is shown in Fig. 4.3. The laser
source was a monolithic non-planar Nd:YAG ring laser with a 2W continuous-
wave single-mode output power at 1064 nm. We used an electro-optic mod-
ulator (EOM) as a phase modulator at 15 MHz to lock the triangular cavity
via a Pound-Drever-Hall (PDH) locking scheme. The triangular cavity with
a length of 100 mm and a finesse of 223 was composed of two flat mirrors and
a fixed curved mirror with a radius of curvature of 75 mm. One of the two flat
mirrors was a half-inch fused silica mirror suspended by a tungsten wire of
30 µm diameter and 100 mm length. The suspended mirror was attached to
an oxigen-free copper cylinder of 3 mm diameter and 3 mm thickness, which
was damped by an eddy-current using a doughnut-shaped magnet. Because
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of its shape, the magnet damps only the pendulum motion without decreas-
ing the mechanical quality factor of the yaw motion. The curved mirror was
fixed, and was mounted on a piezoelectric transducer (PZT), which was used
as an actuator to keep the cavity in resonance with the laser. The triangular
cavity and a photodetector were placed in a vacuum desiccator for acoustic
shielding.

The reflected light was received by a photodetector, and its output signal
was demodulated at the modulation frequency. This signal was then low-pass
filtered with a cutoff frequency of 1 Hz, and fed back to the PZT actuator.
The unity gain frequency of the length control servo was approximately 1
kHz. We used this signal to stabilize the cavity length and also to measure
the angular (yaw) resonant frequency. The yaw motion of the suspended
mirror generated the PDH signal, because there was a slight miscentering
of the beam position on the suspended mirror. The transmitted light was
also detected in order to measure the intracavity power. The incident light
power into the cavity was varied from 60 mW to 1 W in order to measure
the change in the angular resonant frequency.
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4.3 Experimental results & Discussions
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Figure 4.5: Optical torsional spring response for various power levels.
a: Observed spectra of the feedback signal. The peaks correspond to the yaw
resonance of the suspended mirror with the intracavity power (4 W(blue),
32 W(red), 46 W(green) and 68 W(cyan)). b: Angular resonant frequency
of the mirror suspension against the intracavity power. The blue circles are
the measurement data and the blue horizontal lines are the statistical errors.
The solid red curve is the theoretical prediction obtained from Eqs. (4.6)
and (4.7) and the dashed red curve shows the systematic error.

Figure 4.5a shows the observed spectra of the feedback signal with the intra-
cavity power at 4 W, 32 W, 46 W, and 68 W. The peaks at around 0.4 Hz are
the yaw resonances. The angular resonant frequency increases with increas-
ing circulating power. The measured angluar resonant frequencies are plotted
against the intracavity power in Fig. 4.5b. The blue circles are the measured
values and the horizontal lines are the statistical errors. The dashed red
curves are the theoretical predictions, obtained from Eqs. (4.6) and (4.7) with
l = 44 mm, d = 10 mm, β = 0.67 rad, kt,opt = 1.0×10−9×Pcirc Nm/rad, Ia =
2.4×10−8 kgm2, and kt,m = 1.3×10−7 Nm/rad. The theoretically calculated
values show good agreement with the experimental results, which suggests
that Eq.(4.6) is suitable for modeling the torsional spring effect caused by
the optical restoring force.

Until now, we have only paid attention to the yaw. Note that this is a
sufficient discussion in order to consider the stability of our triangular cavity.
Because the suspended mirror can easily have sufficient mechanical positive
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torsional spring constants for a pitch without increasing the suspension ther-
mal noise, even though the anti-torsional spring effect occurs for the pitch.
This is due to the fact that the stiffness of the pitch does not depend on the
radius of the wire, which mainly determines the dilution factor, but depends
on the radius of the mirror.

From this result and the following consideration, the advantage of the
triangular cavity can be understood. When the linear cavity is used, the in-
stability can be mitigated by, e.g., :(i) reducing the optical power; (ii) short-
ening the cavity length; (iii) using a thick wire for suspension; (iv) using
multiple wires for suspension; (v) active control; and (vi) using a linear opti-
cal cavity that consists of fixed and suspended mirrors under the negative-g
condition (i.e., both focal points are inside the cavity; in other words, both
mirrors have a concaved structure). However, those induce: (i) a reduction
of the quantum back-action; (ii) no issue; however, in practice it is insuffi-
cient only by it; (iii) a reduction of the gravitational dilution (i.e., increasing
the suspension thermal noise); (iv) introducing an unexpected thermal noise
through the unexpected normal mode generated by the complicated suspen-
sion system [116]; (v) the necessity of using a more macroscopic mirror to
be attached along with the actuator, which would result in decreasing the
quantum back-action (i.e., relatively increase all technical noise), and also
might introduce some other dissipation through the actuator [to avoid these
issues, using the lossless control system via radiation pressure without at-
tached actuators has been proposed [117]]; and (vi) the necessary of using
a sufficiently concaved and small mirror in order to make the cavity length
shorten (as a supplemental explanation, the linear optical cavity demands
the condition given by 0 ≤ (1−L/R1)(1−L/R2) ≤ 1, where L is the cavity
length, R1 is the curvature of the one mirror and R2 is the curvature of the
other mirror) and avoid the same issue of (v). (If an appropriate mirror can
be manufactured, this method has no issue. We have been trying, but it is
still challenging.) On the other hand, the triangular cavity has an intrinsic
stability for yaw motion. As a result, one can conclude that the triangular
cavity overcomes the fundamental compromise between the sensitivity and
the instability for the linear cavity.
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Chapter 5
Experimental Setup

Figure 5.1 shows the displacement noise induced by the quantum back-action
that sets our goal of sensitivity. At the resonant frequency of the pendulum
(130 Hz), the displacement noise is approximately 1× 10−12 m/

√
Hz. Every

component was specially designed to achieve the sensitivity needed to detect
the quantum back-action. In this chapter, we describe an experimental setup
for a direct measurement of the quantum back-action.
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Figure 5.1: Goal sensitivity for observing the quantum back-action.
The quantum back-action (blue), the suspension thermal noise (red), the
mirror thermal noise (green), the laser frequency noise (cyan), the SQL for
the free mass (dotted black) and the SQL for the modified mirror (black line)
are shown.
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5.1 All aspects of the experiment

In this section, we describe all aspects of the experiment: both the experi-
mental setup and the technical features.

Nd:YAG QWP HWP FI

PBS

BS

damper

damper

QWP

vacuum tank

BS

movable mirror

15 MHz

80 MHz

40 MHz + 1 MHz

intensity stabilization

out of loop

intensity stabirization

in loop

sound-proof enclosure

cavity length control loop

EOM

AOM

AOM

CCD2

controlled mirror
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measurement of quantum back-action

fixed
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measurement of 

intensity fluctuation

PD6
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Figure 5.2: Detailed experimental setup for observing the quantum
back-action. The driving beam (red line) and the spring beam (blue line)
were fed into the triangular cavity in the same spatial mode, but in different
directions. Acousto-optic modulators (AOM) were used to shift the laser
frequency. An electro-optic modulator (EOM) was used to apply frequency
sidebands for the PDH method. Light was detected at various points using
photodetectors (PD). HWP, Half-Wave Plate; QWP, Quarter-Wave Plate;
FI, Faraday Isolator.
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Figure 5.3: Photographs of the experiment for observing the quan-
tum back-action.
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Experimental Setup The detailed experimental setup is shown in Fig.
5.2. Our optical cavity had a triangular configuration constructed from one
movable mirror (mass, 5 mg; shown in Fig. 5.4), one half-inch fixed mirror,
and one half-inch suspended mirror with a coil-magnet actuator attached
onto its aluminum mirror holder for cavity length control (mass, 97 g; radius
of curvature, 200 mm) (Figs. 2.5 a and 5.2). The 5-mg mirror was suspended
by a tungsten wire of 50 mm length with 3 µm diameter, attached to the
mirror with epoxy resin. On the top of the wire, a picomotor-actuated stage
for yaw alignment was attached. The fixed mirror and the controlled mirror
had picomotors for both pitch and yaw alignment. Also, there were two
picomotor-actuated folding mirrors for aligning each incident beam. These
adjustment mechanisms allowed us to align the optics inside the vacuum
chamber remotely. The triangular cavity, which was suspended by a double
pendulum on a double-stage pre-isolation stack, was installed in a vacuum
chamber (10−3 Pa) in order to sufficiently reduce any seismic motion, acoustic
vibration, gas damping and so on.

The shape of the optical path of the cavity was an isosceles triangle, which
had round-trip length of L = 90 mm. The incident angle to the movable
mirror was β = 0.64 rad. The finesse of the cavity was 1.10× 103, and each
mirror had a (power) transmittance of Tin1 = 4.8 × 10−3, Tin2 ≃ 1 × 10−4,
and Tin3 < 8 × 10−4. In other words, the half linewidth of the cavity is
κ/2π = 1.5 MHz and the optomechanical coupling constant is g/2π = 2.8ωc

Hz/m, where ωc is the cavity resonant frequency.
The Nd:YAG laser source at the operational wavelength of 1064 nm was

used, and the whole input optics system was covered by a sound-proof acryl
box so as to reduce any jitter of the input beams. Two beams split from the
same laser source were injected to the cavity in the same spatial mode, but in
opposite directions. One of the two beams was injected from the fixed mirror
in a clockwise direction (spring beam, illustrated as the blue line in Figs. 2.5
and 5.2), and the other one was injected from the controlled mirror in a
counterclockwise direction (driving beam, illustrated as the red line in Figs.
2.5 and 5.2). The frequency of the driving beam was slightly red-detuned
(∆a/κ ≃ −0.05), and the frequency of the other was largely blue-detuned
(∆b/κ = +1.3) from the cavity resonance (Figs. 2.5 b, c). The incident
beam powers were Pin1 = 5 mW and Pin2 = 0.1 W, and the intra-cavity
power values were Pin1,circ = 2.9 W and Pin2,circ = 0.5 W, respectively. Since
the driving beam has a larger intra-cavity power and a smaller detuning, this
beam was the major source of the quantum back-action.
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The driving beam was frequency shifted by 80 MHz with an AOM and
phase modulated in 15 MHz with an EOM. A portion of the driving beam
was picked-off and detected by a photodetector with a high quantum effi-
ciency (Perkin Elmer, C30632, InGaAs photodiode). In order to stabilize
the intensity of the laser beam sufficiently, we have to take into account the
vacuum fluctuation, δâ1 and δâ2, inevitably injected from the open ports of
BS1 and B2, respectively. Because the vacuum fluctuation, δâ1, has an anti-
correlation between an in-loop (PD1) and an out-of-loop (PD2), a correlation
between the laser intensity fluctuation and the vacuum δâ1 will be generated
in the out-of-loop after stabilization (See Appendix). This results in increas-
ing the noise level in out-of-loop, which is so-called “noise penalty” [118]. In
addition, a possible minimum relative to the shot noise level in out-of-loop is
also limited by the uncorrelated vacuum, δâ2. More concretely, in our case,
the required relative shot-noise levels of the input beams were smaller than
2.0 dB and 26 dB for the driving and spring beams, respectively, based on
Eqs. (2.63) and (2.64). Thus, the power injected to the photodetector (PD1;
in-loop) used for the intensity stabilization was two-times larger than the
power injected to the photodetector (PD2; out-of-loop) for monitoring the
intensity fluctuation. This power balance allows intensity stabilization of the
beam at a relative shot-noise level of 1.8 dB. Besides, there were picomotors-
actuated mirrors before these two PDs so as to adjust the position of the
beam spot on the detectors in order to find the spot position where the effect
of the beam jitter is minimized. Moreover, the incident angles to these two
PDs were adjusted to the Brewster angle in order to minimize the effect of
the back scattering.

A sufficiently stabilized beam was injected into the cavity, and the cavity
reflected beam was detected with the fast-responding PD (PD3; HAMA-
MATSU, G10899-01K, InGaAs photodiode). The output of this PD was
demodulated with a 15 MHz RF signal to obtain the cavity length signal.
We used this signal for cavity length control, and also to extract a quantum
back-action signal. One of the transmitted beams from the cavity was mon-
itored by CCD1 or PD4 (flipped by a flipped mirror), and the other one was
eventually rejected at the Faraday isolator.

The frequency of the spring beam was shifted by 82 MHz with an AOM
in the double pass configuration, before injecting into the cavity. The cavity-
reflected beam was monitored with PD5. One of the transmitted beams was
monitored by PD6, and the other one was monitored by PD7 and CCD2.
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Technical Features There are three main technical features in our exper-
iment: an extremely thin suspension wire, the triangular geometry of the
cavity and the use of double optical spring. The thin wire assures that the
amount of energy stored in the pendulum is dominated by the gravitational
potential over the elastic bending energy of the wire [85]. Since any loss of
the energy is only associated with the elastic part of the stored energy, the
total mechanical loss of the pendulum is diluted with gravity by a factor of
kgrav/kel = 4l

√
mg/πY /r2 = 1×103, where kgrav and kel are the gravitational

and elastic spring constants of the pendulum, r is the radius of the wire, l is
the length of the wire, m is the mass of the mirror, Y is the Young’s module
of the wire, and g is the gravitational acceleration. Any reduction of the
loss results in a reduction of a thermal fluctuation force, which also drives
the mechanical motion similarly to the quantum back-action, by a factor of√

kgrav/kel.
The radiation pressure of the light induces a torque on the mirror when it

is rotated. In a suspended linear cavity, this torque works as an optical anti-
torsional spring, which causes a mechanical instability (so-called Sidles-Sigg
instability [24, 25]). This is especially a serious issue because the mirror is sus-
pended by the thin wire in order to reduce the thermal noise, which provides
a small mechanical torsional spring constant (kt,m ≃ 3 × 10−11 Nm/rad) to
compete against the optical anti-torsional spring. In order to circumvent this
limitation, we used a triangular cavity, which has a positive optical torsional
spring, and exhibits no instability in the rotation around the suspension
axis. In our setup, the optical torsional spring constant is kt,opt = +1× 10−9

Nm/rad, whereas it is k
(linear)
t,opt ≃ −3× 10−9 Nm/rad for a linear cavity with

otherwise the same parameters. As a result, we can store a about 100-times
higher optical power in our cavity than the instability limit for the linear cav-
ity. Besides, compared with mechanical springs, the optical torsional spring
is free from the thermal noise penalty because the optical field is almost in
its ground state.

The third feature is the double optical-spring technique [20], which used
to increase the resonant frequency of the pendulum without increasing the
thermal noise, similarly to the optical torsional spring. By detuning a cavity
from its resonance, one can create an optical-spring effect for the position of
a mirror. However, the optical-spring (anti-spring) effect is always accom-
panied by optical anti-damping (damping), and thus it is unstable by itself.
Since our pendulum has a low mechanical decay rate (γm/2π = 2.3×10−6 Hz)
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due to the large dilution, the anti-damping effect cannot be compensated by
the mechanical damping. In order to avoid this problem, we used the combi-
nation of two optical springs, by injecting two laser beams, in order to cancel
out the instability (Fig. 2.5c). With this technique, we can increase the
resonant frequency of the pendulum to 130 Hz, where the technical noises,
such as ground vibration and laser frequency noise, are smaller.

In conclusion, the geometrical advantages of the triangular cavity enables
for the mirror to be isolated from the thermal bath under high intracavity
power, thus allowing us to use the powerful double optical spring, which also
enables isolation from any technical noise sources. As a consequence, we
were able to observe the quantum back-action imposed on a mg scale object,
which is far beyond the Plank mass, at room temperature (See Chapter 6).
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5.2 Partial aspects of the experiment

In this section, we discuss a mechanical oscillator (i.e., a suspended mirror
consisting of a mirror and a tungsten wire), which is fluctuated by quantum
back-action, and a vibration isolation system for it.

5.2.1 Mechanical oscillator

side view front view enlarged view

Figure 5.4: Mechanical oscillator. The mirror was manufactured by
SIGMA KOKI. It has a radius of 2 mm, a thickness of 0.2 mm, and a mass
of 5 mg. A tungsten wire of 3 µm diameter and 50 mm length was attached
to the mirror with epoxy resin. In both side and front views, it appears to
be much larger than the real size of the tungsten wire because of an over-
exposure of the camera. The enlarged view photographed by a stereoscopic
microscope (Olympus, SZ61) shows the interface between the wire and the
mirror. Scale bars, 4 mm in both side and front views, and 0.2 mm in an
enlarged view.

• Details of the mechanical oscillator
The mechanical oscillator is one of the key components in our exper-
iment because it mainly determines the magnitude of the quantum
back-action in terms of both the mechanical susceptibility and the op-
tical power gain inside the cavity. In addition to the signal level, it
also determines the noise level of a suspension thermal noise through
material dissipation and gravitational dilution (shown in Fig. 5.1). It
is the main noise source driving the mechanical oscillator, similarly to
the quantum back-action. To reduce the difficulty for detection, the
mechanical oscillator was designed to have a low mass (5.0 mg), a high
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(power) reflectivity (the designed values are 0.99957 for p-polarized
light and 0.99997 for s-polarized light), and a low mechanical loss of
the pendulum (the estimated value is Qm = 4.7× 104; see Chapter 6).
The low mass was achieved using a thin (the radius was 0.2 mm) flat
mirror. [Furthermore, the flat mirror reduces the noise, which is leaked
from the residual side-motion (ii.e., orthogonal to the pendulum).] Un-
like a conventional linear optical cavity, the geometrical advantages of
a triangular cavity enables us to stably trap the flat mirror due to the
optical torsional spring effect. (In general, the dissipation of substrate
material, which is related to the mirror thermal noise, increases as the
object becomes thin due to only surface loss. Therefore, we estimate
that its mechanical quality factor of the substrate is 105. This is rela-
tively lower, but is sufficient to observe the quantum back-action, par-
tially because of an enhancement of the quantum back-action through
the lightening.) The low mechanical loss of the pendulum was achieved
by using an ultra-thin wire (the radius was 1.5 um) to suspend the
mirror, and high reflectivity was achieved using Ion Beam Sputtering
(IBS) to coat it.

• Dimensions and spot size
The dimensions of the triangular cavity and the spot size on the mov-
able mirror are important factors in terms of a frequency noise of the
laser and any mirror thermal noise, respectively. By designing the path
length and the spot size to be as small as possible, there sensing noises
are depressed. We set the cavity round-trip length as short as possi-
ble, 9 cm, from the viewpoint of easy handling. The beam radii on
the movable mirror and on the controlled mirror, as determined by the
cavity parameters, are 110 um and 178 um, respectively. Based on the
choices of the cavity length, the substrates of the thin mirror and of
the beam spot sizes, the theoretical frequency and thermal noise levels
are shown in Fig.5.1.

• Vibration isolation system
Seismic noise is the most serious problem in the low-frequency region
(i.e., the vibration level is usually about 10−7/f 2 m/

√
Hz above 1 Hz)

because it is not only increased, but also becomes difficult to be miti-
gated using passive filter, such as a pendulum. To avoid this difficulty,
we used the double optical spring technique to enhance the resonant
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frequency of the pendulum from 2.20 Hz up to 130 Hz. The double op-
tical spring also mitigates other requirements for technical noises, such
as the frequency noise and an other degrees of freedom of the seismic
motion. The other seismic motions, such as a bobbing motion of the
pendulum, leaks into the direction of the beam axis through asymme-
tries of the isolation system. Therefore, a sufficient level of attenuations
for all degrees of freedom has to be achieved as well. To meet this cri-
teria, the isolation system was made of two parts: a double pendulum
and a double stack.

platform

damping mass

triangular cavity

Figure 5.5: Double-pendulum system.

Figure 5.5 shows the suspension system designed for this experiment.
The triangular cavity was placed on a platform made of aluminum,
which was suspended by the double pendulum on a double stage pre-
isolation stack. Common-mode rejection of seismic noise is expected
by using the common platform for the triangular cavity. The inter-
mediate ring mass (made of copper) of the double pendulum was also
suspended with three tungsten wires (radius of 150 um) and vertical
coil springs. For the purpose of damping, another larger intermediate
ring mass (made of steel) with strong magnets was suspended next to
the (smaller) intermediate mass of copper. In order to avoid any re-
injection of seismic noise from the damping magnet, the intermediate
mass of steel was also isolated from any seismic motion. In order to
decouple the seismic motion from other degrees of freedom, the slope
of the platform of aluminum was adjusted using x-y-z stages, which
were attached onto stages located on the top of the double pendulum.
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Then, the slope of the intermediate mass of steel was also adjusted by
using the other x-y-z stages, which were attached on stages in order to
decouple the eddy-current damping from other degrees of freedom. The
double-pendulum system theoretically provides 160 dB of isolation at
the resonant frequency of the movable mirror in the horizontal plane.
In the vertical plane, the coil springs provide 80 dB of isolation at the
resonance.

The pre-isolation stack, designed and constructed by Kenji Numata
[119], can provide further isolation for all degrees of freedoms, although
the double pendulum ensures sufficient isolation. The stack was com-
posed of two stainless-steel blocks, separated by isolation rubbers. The
isolation performance of this stack was also measured by Numata using
a vibration exciter. It was better than 70 dB for the vertical direction,
and 80 dB for horizontal direction at resonance [119].

The total performance of this suspension and the stack system is es-
timated by multiplying the simulated isolation ratio of the suspension
and the measured isolation ratio of the stack to 150 dB and 240 dB.
The required level of displacement noise was very likely achieved.

5.2.2 Intensity stabilized laser

One of the main noise sources for the quantum back-action measurement is
the classical back-action force generated by the classical intensity noise of the
laser. By making a high finesse cavity (i.e., high optical power gain inside
the cavity), we can decreased the power of the input driving beam to 5 mW,
such that the requirement of the classical intensity noise level is reduced in
terms of the relative intensity noise level. Note that the requirement of the
noise level in terms of the relative shot-noise level is unchanged. Intensity
stabilization is performed based on an active feedback control.

In this section, the intensity stabilized laser, composed of the laser source,
the photodetecter, and the stabilization servo system will be explained.
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Figure 5.6: Requirement for intensity stability. The observed spectra
of intensity fluctuation without stabilization. The black line represents the
requirement for achieving the shot-noise level inside the cavity.

• Requirement for the intensity stability
Figure 5.6 shows the free-run intensity noise of the laser that we used.
Our goal sensitivities converted into a relative intensity noise level is
shown. To reduce the requirement of the relative intensity noise level,
the input driving beam (main source of quantum back-action) power
was suppressed to 5 mW (i.e., simply put, the requirement of the rela-
tive intensity noise level is about 9× 10−9 1/

√
Hz).
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Figure 5.7: Transfer function from the intensity modulation of the
laser to the PD1.

• Laser source
As a laser source we used a monolithic non-planar Nd:YAG ring laser
with 2 W continuous wave single-mode output power at 1064 nm. The
wavelength is the most common choice in the current GW detectors.
Nonplanar ring oscillators (NPROs) are monolithic lasers where the
laser radiation circulates along a nonplanar ring in a single laser crystal.
This is believed to give the best performance as a continuous-wave laser.
The laser intensity can be modulated by applying a voltage signal to
its current actuator. Our intensity stabilization was done by using this
actuator. The tuning efficiency was measured before its installation
into the injection bench of our setup. Figure 5.7 shows the initially
measured transfer function, from the applied voltage on the tuning
current to the laser-intensity-change, as a function of the control signal
frequency.
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Figure 5.8: Dark noise of photodetectors. Observed spectra of the volt-
age fluctuation of the photodetectors. Both detectors satisfy the requirement
(black).

• Photodetectors for intensity stabilization
The two beam-splitter output fields were focused onto Perkin Elmer
C30642 InGaAs photodiodes with an active diameter of 2 mm. The
electronics was designed by referring to that specified in Ref. [120].
Since intensity stabilization is performed by measuring the intensity
fluctuation, the dark noise of the detectors has to be under the required
intensity noise level. To confirm this, we measured the dark noise as
shown in Fig 5.8.
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Figure 5.9: Open-loop transfer function of the intensity stabilization.
The unity-gain frequency was approximately at 600 Hz.

• Servo system
We designed the servo system to have a sufficiently high gain to achieve
the goal sensitivity. The control signal is fed back to a current actuator
of the laser head. Figure 5.9 shows the measured openloop transfer
function of the stabilization loop. The unity gain frequency was about
600 Hz, and phase margin was 55 deg. The stabilization gain was 28
dB at 130 Hz, which is larger than the required gain (about 20 dB).
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Achieved stability
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Figure 5.10: Measured intensity fluctuation. Observed spectra of inten-
sity fluctuation of the input driving beam. The measured intensity fluctua-
tion (blue), measured intensity fluctuation before the stabilization (red), and
the requirement for achieving the shot-noise level inside the cavity (green)
are shown.

Figure 5.10 shows the measured intensity noise. The actual stability of the
stabilized laser was measured by the error signal of the non-stabilization
loop (out of loop). According to the measurement, the stability satisfies our
requirement near the resonance.
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5.2.3 Actuator efficiency
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Figure 5.11: Measurement of the efficiency of the coil-magnet actu-
ator. a: Experimental setup. The laser beam was fed into the Michelson
interferometer (MI). Light was detected using a photodetector (PD), and
the MI was locked at the mid-fringe point. b: Measured open loop transfer
functions of the displacement control are shown as blue points, while the
red solid lines are the fitting curves. From this measurement, the actuation
efficiency, (1.4± 0.1)× 10−6 N/V, was estimated.

In order to calibrate the displacement noise spectrum from the voltage signal,
we firstly measured the actuator efficiency and determined the voltage-to-
force conversion factor. Here, we present an estimation of the factor using a
Michelson interferometer.

Fig.5.11 a shows the configuration used to measure the actuation efficien-
cies. We locked the Michelson interferometer using a PD, an appropriate
servo circuit and the same coil-magnet actuator as the main measurement
for observing the quantum back-action. From this measurement, we could
estimate the voltage-to-force conversion factor of the actuator because the
others composing the loop, such as the response of MI, the pendulum, PD,
and servo filter, had been measured by other experiments. As a result, we
experimentally determined the actuation efficiency (1.4± 0.1)× 10−6 N/V.

Secondly, we determined the force-to-voltage conversion factor from Eq.
(6.5). As a result, the voltage-to-displacement conversion factor at ω ≪ ωm

was estimated (8.5± 0.6)× 10−11 m/V.
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5.2.4 Detection system, control system and vacuum
system

In this section, we will describe the signal detection system, control system
for the triangular cavity and the vacuum system. The signal detection system
is composed of a modulator, a RF photo detector, and a demodulator.

• Modulator
We used the Pound-Drever-Hall technique to control the triangular
cavity. The laser beam was phase modulated by an EOM (New Focus
Inc., model 4003) on the injection bench. The EOM is made up of
a LiNbO3 crystal and a tank circuit tuned at 15 MHz. The EOM is
driven by a commercial oscillator at 15.000 MHz. We set the output
voltage of the oscillator at 1 V, and the modulation depth was about
0.1 rad.

• RF photo detector and demodulator
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Figure 5.12: Characterization of the RF PD. a: Observed spectra for
various input laser power. b: PD3 output noise at the modulation frequency.

The PDH error signal is extracted at PD3 (HAMAMATSU, G10899-
01K), which detects the intensity changes at the modulation frequency
in the reflected light. The PD3 is followed by an RLC circuit that
converts its photocurrent to voltage with high efficiency, and preampli-
fiers. The Q of the circuit was measured to be 30. The detected RF
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signal is demodulated and down-converted to an AF signal by a Double
Balanced Mixer (DBM; Mini Circuit, SBL-1).

The output voltage noise from the demodulator, Vn, represents the
sum of the shot noise and of the detector noise in general [119]. The
equivalent photo current noise, Idet, is defined by

V 2
n = 2eR2

det(IDC + Idet). (5.1)

Here, Rdet is the equivalent resistance for the current-to-voltage con-
version, and IDC is the DC photocurrent. To make the noise of the
detection system negligible compared to the shot noise, Idet has to be
smaller than IDC. In our case, the shot noise is not a serious problem
because the input laser power was increased such that the radiation
pressure shot noise dominates. On the other hand, an equivalent resis-
tance is necessary to check the consistency of a calibration. Figure 5.12
shows the measured demodulated output voltage of PD3 as a function
of the DC photocurrent. The response was fitted by Eq. 5.1. The
noise equivalent photocurrents, Idet, were estimated to be 6.8 mA. The
equivalent resistance was estimated to be 583 Ω. Typical photocur-
rents operations occurs at 4 mA, which is slightly less than the noise
equivalent photocurrents; however, the photodetector and demodula-
tion system does not limit the sensitivity.
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F

Figure 5.13: Block diagram of the triangular cavity servo. δx, displace-
ment of the movable mirror; H, displacement-to-voltage conversion factor;
F , servo filter; A, the efficiency of the actuator; χm, mechanical susceptibil-
ity; ver, error signal; vfb, feedback signal; nS, sensor noise; nF, filter noise. In
practice, the PDH signal was extracted by the reflected light and the actua-
tor was attached not to the movable mirror, but the controlled mirror (See
Chapter 6).

• Servo system for the cavity length control
The detected signal at the PD3 was demodulated by the DBM, and
then sent to a control servo circuit. The displacement fluctuation can be
extracted from error/feedback signals (labeled ver and vfb, respectively)
of the servo loop. In the following, we describe the open-loop transfer
function of the triangular cavity loop.

Figure 5.13 shows a diagram of the triangular cavity servo system.
The displacement of the movable mirror, δx, is converted by the PDH
method into a voltage thorough a displacement-to-voltage conversion
factor, H [V/m] (consists of the transfer function of the optical cavity
and the RF photodetector), producing an error signal, Ver [V]. It is
filtered by an electric servo circuit, F [V/V], producing a feedback sig-
nal, Vfb [V]. The feedback signal pushes the movable mirror χm [m/N]
through the coil with an efficiency of A [N/V]. Here, an open-loop trans-
fer function of the triangular cavity loop, G = HFAχm, is obtained.
From the error signal, the displacement can be estimated as

δ(er)x =
1 +G

H
ver G → 0−−−−−−→

1

H
ver = δx+

nS

H
+ AχmnF. (5.2)
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On the other hand, based on the feedback signal, it is given by

δ(fb)x =
1 +G

FH
vfb = δx+

nS

H
+

Aχm

G
nF

G → ∞−−−−−−−→Aχmvfb = δx+
ns

H
. (5.3)

Based on the viewpoint of the filter noise, the estimation from the
feedback signal is appropriate; however, it can not directly measure the
resonant motion. If one can not measure the mechanical susceptibility
from any other measurement, the estimation from the error signal is
appropriate for the resonant motion. In our case, the imaginary part of
the mechanical susceptibility was not measured by any other measure-
ment (See Chapter 6, Figs. 6.3, 6.5). Therefore, we estimated it from
the error signal. In order to reduce the feedback gain at the resonance,
we used a notch filter, described below.

• Notch filter
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Figure 5.14: Characterization of notch filter. Measured transfer function
of the notch filter.
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In order to directly measure the resonant motion of the pendulum,
the feedback gain has to be reduced at the resonance under 0 dB.
To meet the demand, we used the notch filter. The effective quality
factor of our pendulum was estimated to be about 4300, and thereby
the notch should have more than a 70 dB attenuation and less than
a quality factor of 4300. According to the measurement, the demand
was satisfied.

Vacuum system

Every component of the system, except for the input optics on the injec-
tion bench, was housed in a vacuum system in order to reduce the effect of
sound, air motion, changes in the refraction index along the optical path,
and so on. Figures 5.3 and 5.5 (right) show the vacuum system used in this
experiment. Two almost identical vacuum tanks were used for the intensity
stabilization and for the observation of quantum back-action. The system is
relatively compact - their inner diameter is about 50 cm. Every component
was designed to fit inside. The system was evacuated with a rotary pump
and a turbomolecular pump connected to the tank in which the intensity
stabilization signal was extracted. The typical vacuum level was a 10−3 Pa.
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Chapter 6
Experimental Results

In this chapter, we describe the experimental results of direct measurements
of the quantum back-action imposed on the 5-mg mirror. In order to show
the validity of our measurement, we also show the characterization of the
optical, mechanical, and optomechanical systems. These measurements give
us the information about the intracavity power, cavity linewidth, suspension
thermal noise, effective mechanical susceptibility, quantum back-action, and
so on.
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6.1 Optical characterization
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Figure 6.1: Cavity scan. The optical characterization of our devices was
done by sweeping the laser frequency across the optical resonance while
detecting the transmitted light in a photo-detector. The blue circles are
measured values and the vertical blue lines are the statistical errors; the
red line is the fitting line. From this measurement, the total decay rate,
κ/2π = (1.52 ± 0.03) × 106 Hz (i.e. finesse, Fp = (1.10 ± 0.02) × 103),
was estimated against the p-polarized light. We also estimated it against
s-polarized light, which resulted in Fs = (3.86 ± 0.09) × 103. Here, we used
the p-polarized light because the priority was given to the easiness of cavity
control.

From Eq. (2.63), the optical parameters κ, κin1, and κin2 are necessary for
estimating the power spectrum of the quantum back-action. Here, we provide
estimations of these parameters.

The experimental setup for making the estimations is shown in Fig. 5.2.
We measured the transmittance of the triangular cavity using the spring
beam (blue line in Fig. 5.2), which was not used to control the cavity length.
The shifted frequency of the spring beam was changed within the range from
77 MHz to 83 MHz by AOM, while the driving (control) beam was shifted at
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80 MHz. Thus the transmittance of the cavity for the broadband frequency
could be measured using PD6 and PD7. Figure 6.1 shows the result. From
this measurement, the total cavity decay rate, κ, and the combination of
κin2(κin1 + κin3 + κin4) could be estimated. In addition to this information,
the ratio of the decay rate of the fixed mirror to that of the controlled one
(indexed in1 and in2, respectively), which was measured from the ratio of
the tuned-transmittance of the driving beam to one of the spring beams, was
used to separate them. As a result, κ/2π = (1.52±0.03)×106 Hz (i.e. finesse,
Fp = (1.10±0.02)×103), κin1/2π = 1.3×106 Hz, and κin2/2π ≃ 3.2×104 Hz
were estimated.

6.2 Mechanical characterization
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Figure 6.2: Ringdown measurement. The measured damped oscillations
for the pendulum and the yawing motion are shown, respectively. The blue
solid curve is the measured value and the red lines are the fitting curve to the
pendulum and the yawing motions, respectively. The green line represents
an unknown amplitude modulation of about 600 µHz, which might be from
the temperature change of the vacuum chamber or a difference between the
resonant frequency of the pendulum and that of the side-motion. a: Decay
of the pendulum motion. The mechanical Q-value of the pendulum, Qpend =
4.7×105, was estimated. b: Decay of the yaw mode. The mechanical Q-value
of the yaw, Qyaw = 3.8× 103, was estimated.
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Here we present the details of the Q-value measurement of the mechanical
oscillator. The mechanical Q-value can be written as Qm = ωm/2γm, using
ωm and γm in Eq. (2.42). Also, from the fluctuation-dissipation theorem, the
thermal noise can be written as

S
(2)
FF,th = 4kBTγmm. (6.1)

Thus, by measuring the Q-value of the pendulum, the thermal noise level
can be estimated. Here, T is the temperature of the pendulum and kB is the
Boltzmann constant. From Eq. (6.1), it follows that the thermal noise level
is proportional to the pendulum loss, γm, and so the displacement sensitivity
can be improved by trapping the pendulum with the gravitational potential
and diluting the loss. Our oscillator was also trapped by the optical fields.
This stabilizes the system without changing the thermal noise level, since the
force fluctuation caused by the thermal fluctuation does not change with the
optical springs. Our oscillator is effectively cooled down to

Teff = T
ωmQeff

ωeffQm

. (6.2)

It is worth pointing out that this effective cooling reduces the thermal noise at
the resonant frequency, but it does not change the signal-to-noise ratio (SNR)
with respect to the quantum back-action. This is because the reduction
of the thermal noise at the resonant frequency is caused by the change in
the susceptibility, not the reduction in the force fluctuation. The change in
the susceptibility also reduces the quantum back-action, and therefore SNR
remains the same.

In our experiment, we used a thin wire to suspend a mirror in order to
dilute the mechanical loss by the gravitational potential and to increase the
pendulum Q-value. Generally, a thin wire has a low material Q-value because
the loss of a material comes mainly from the surface loss. Ultra-thin wires
have been used for discharging test masses for inertia sensors. There is some
literature that reports on measurements of the Q-value for golden thin wires;
one example reports the Q-value of a 10 µm diameter golden wire at Q=270
[121]. However, the Q-value of an ultra-thin tungsten wire, as far as we know,
has not yet been reported.

Our experimental setup for the Q-value measurement was almost the same
as that shown in Fig. 5.2, except that the fixed mirror was removed. The
incident beam was aligned such that the beam would hit the movable mirror
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at its edge, and the mirror would block the portion of the beam before the
beam could be detected by PD4. The amplitude of the resonant motion can
be obtained by demodulating the output of PD4 with the resonant frequencies
of the pendulum mode and the torsional mode because a small oscillation of
the mirror creates amplitude modulation of the beam. The Q-values were
measured by exciting the mirror motion and measuring the decay time of
each mode.

Our pendulum had a very high Q-value, since the loss was diluted by the
gravitational potential by a factor of 1000. Therefore, the pendulum mode
had a very long decay time, and measuring the Q-value without excitations
was difficult. In order to prevent an overestimation of the Q-value (i.e. ther-
mal noise), we also measured the Q-value of the yaw mode, which had a
shorter decay time, to have estimated the maximum Q-value of the pendu-
lum. In addition to the shorter decay time, the yaw mode has tolerance to
the mechanical loss of the clamping mechanism, such as the epoxy due to
its mode function, which represents the mechanical displacement patterns
associated with mechanical motion. Therefore we can estimate the Q-value
of the yaw mode as being the intrinsic mechanical Q-value of the wire. As a
result, the measured pendulum Q-value should be smaller than the maximum
Q-value of the pendulum estimated from Qm,max = Qt,m × 1.0× 103.

The result of the ring-down measurement is shown in Fig. 6.2. The
measured Q-value for the pendulum mode was Qm = 4.7× 105 (the resonant
frequency was ω/2π = 2.2 Hz). There was an amplitude modulation at
a period of approximately 30 min, which might be from the temperature
change of the vacuum chamber. However, the error caused by this amplitude
modulation was negligible. The measured Q-value for the torsion mode was
Qt,m = 3.8 × 103 (the resonant frequency was ωyaw/2π = 0.23Hz). This
means that the upper limit of the Q-value for the pendulum mode would
be Qm,max = 3.8× 106, which is consistent with the Q-value from the direct
measurement mentioned above. From Qm = 4.7 × 105, we estimated the
suspension thermal noise level as in Figs. 5.1 and 6.4 (red).
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6.3 Optomechanical characterization
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Figure 6.3: Optical spring response for various detunings of the cav-
ity. a: Measured open-loop transfer functions of the displacement control
shown as points, while the solid lines are fitting curves. b: Resonant fre-
quency of the pendulum against the detuning of the cavity. The blue circles
are the measurement data and the blue horizontal lines are the statistical
errors. The solid red curve is the fitting curve to Eq.(2.60). From this mea-
surement, the optomechanical coupling constant, g/2π = (2.8±0.1)ωc Hz/m,
was estimated.

Here, we present the characterization of the optical spring of our optomechan-
ical system. We measured the effect of the restoring force from the optical
spring in order to estimate the optomechanical coupling constant, g, of the
cavity using Eq. (2.60). Together with the measured value of κ, κin1, and κin2

from the optical characterization, the amplitude of the quantum back-action
can be estimated.

The optical restoring force was measured using the same setup as shown
in Fig. 5.2, at a higher pressure (1×103 Pa) than that for the main quantum
back-action measurement. The driving beam (shown as the red line in Fig.
5.2) at 2 mW was injected to the cavity, and the cavity length was controlled
using the same light (PD3). Under these conditions, the decay rate from
the gas damping was γgas/2π ≃ +1 Hz, and the minimum decay rate from
the optical spring was Γopt,min/2m · 2π ≃ −0.03 Hz. Thus, the cavity stays
sufficiently stable without using the double optical spring technique. After
closing the cavity length control loop, a small electrical signal was injected
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into the loop in order to measure the resonant frequency of the movable
mirror.

Our optomechanical system can be modeled by the following coupled
oscillators without the damping term:

Mẍc = −(kc + kopt)xc + koptxm + Fc, (6.3)

mẍm = kopt(xc − xm)− kmxm. (6.4)

Here, kc is the mechanical spring constant of the controlled mirror, Fc is
the feedback force acting on the controlled mirror, and km is the mechanical
spring constant of the movable mirror; xc and xm are the displacements of
the controlled mirror and the movable mirror, and M and m are the masses
of the controlled mirror and the movable mirror, respectively.

In our setup, the controlled mirror was heavier (M = 97 g) and had
a higher mechanical spring constant (kc ≃ 32 N/m). The movable mirror
was lighter (m = 5 mg) and had a lower mechanical spring constant (km ≃
1× 10−3 N/m). The optical spring connected the controlled mirror and the
movable mirror with the spring in between (kopt ≃ 10 N/m). Thus, the cavity
length change caused by the force on the controlled mirror can be written as

xc(ω)− xm(ω)

Fc(ω)
≃ 1

M

1

ω2
eff − ω2

, (6.5)

in the frequency domain, where ωeff is the effective resonant frequency of
the movable mirror. This means that the resonant frequency of the movable
mirror can be measured by exciting the controlled mirror and measuring the
cavity length change.

Figure 6.3 shows the changes in the resonant frequency of the movable
mirror under different detunings of the cavity. The measured dependence
of the resonant frequency to the cavity detuning was fitted by least-squares
method and an estimated value of g/2π = (2.8± 0.1)ωc Hz/m was obtained.
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6.4 Direct measurement of quantum back-action
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Figure 6.4: Quantum back-action. Observed spectra of displacement fluc-
tuations at an optical power of Pcirc = 3.4 W; half linewidth of κ/2π =
1.5 MHz; effective amplitude decay rate of γeff/2π = 1.53 × 10−2 Hz; and
effective resonant frequency of ωeff/2π = 130 Hz. The measured peak dis-
placement spectral density (blue), the estimated thermal contribution (red),
the estimated back-action contribution (cyan), and the theoretical prediction
(green) are shown. Then, measured peak is consistent with the theoretical
estimation in Fig.2.5c, both in terms of the resonant frequency and the me-
chanical decay rate.

The measured amplitude power spectrum of the pendulum motion of the
mirror is shown in Fig. 6.4. The result agrees well with the sum of the esti-
mated thermal noise, the estimated classical back-action (which is generated
based on the classical intensity fluctuation, not by vacuum fluctuation) and
estimated the quantum back-action. Generally, the photon number fluctua-
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tion of the laser is larger than the vacuum fluctuation below the MHz region.
The classical back-action is also large at our measurement frequency band
(100–150 Hz). In order to assure the classical back-action to be smaller than
the quantum one, the intensity fluctuation of the laser should be stabilized.
The required power variations of the input beams relative to the shot noise
limit have to be smaller than 2.0 dB and 26 dB for the driving and spring
beams, respectively. To meet this criteria, we stabilized and monitored the
intensity of the driving beam with active feedback (Fig. 6.5a). We also
measured the optically modified dynamics of our movable mirror just before
the measurement without the notch filter. This was performed by intention-
ally adding a small disturbance to the cavity length control loop in order to
directly confirm the resonant frequency of the pendulum (Fig. 6.5b).
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Figure 6.5: Characterization of the light and the mechanical oscilla-
tor. a: Observed spectra of intensity fluctuation of the input driving beam.
Measured intensity fluctuation (blue), measured intensity fluctuation before
the stabilization (red), and the requirement for achieving the shot noise level
inside the cavity (green) are shown. b: Mechanical response of the pendu-
lum. The measured values (blue) are given. The peak at around 130 Hz
represents the pendulum resonance. The measured resonant frequency is
consistent with the theoretical estimation (Fig. 2.5c). A low resolution of
the measurement disables us from measuring the mechanical decay rate.

The measured resonant frequency and the mechanical decay rate of the
pendulum give us precise information about the optical spring, and thus
enabling us to make a consistency check on the cavity conditions (e.g. intra-
cavity power, detuning) –namely, our estimate of the amount of the quantum

79



6 Experimental Results 6.5 Discussions

back-action. As a result, we estimated the ratio of the quantum back-action
to the thermal noise to be 0.33± 0.03.

6.5 Discussions

Lastly of this chapter, we discuss the results. Firstly, Fig. 6.4 represents
the fact that the achieved stability of the laser intensity fluctuation under
the measurement was comparable to those of the requirement, although the
preliminary result shown in Fig. 5.6 represents the more stable result. This
is due to the difference in the measurement condition, i.e., the degree of
the vacuum and laser power. The observation of the quantum back-action
requires a high vacuum, such that any gas damping is sufficiently decreased
(10−3 Pa, i.e., quality factor is ∼ 106). To meet this demand, the observation
was performed under the operation both of the rotary and turbomolecular
pumps connected to the tank, in which the intensity stabilizing signal was
detected. We used relatively large 1-inch-beam-splitters (BSs) (labeled BS
in Fig. 5.2) to split the signals for in-loop and the out-of loop in order to
reduce the noise of the beam jitters, which are induced by the vibration
of the pumps. Although the large BSs decreased the noise, there was still
slight noise. This residual classical back-action noise induced by the classical
noisy state could be further reduced using an interferometer, such as a Maha-
Zehnder interferometer.

Secondly, Fig. 6.5b represents the fact that the measured peak shown in
Fig. 6.4 was certainly the resonant motion of the pendulum. This is because
of the fact that our measurement of the open-loop transfer function, in prin-
ciple, reacts only to translation motion of the mirror. The slight differences
between the peak frequencies shown in Figs. 6.4 and 6.5b are due to the low-
resolution of the measurement concerning the open-loop transfer function.
After measuring the open-loop function, the notch filter was switched on so
as to reduce the feedback gain on the resonance.

Thirdly, Fig. 6.4 not only represents the displacement fluctuation, but
also the effective resonant frequency and the effective quality factor of the
pendulum, because we obtained it from Eq. (5.2). Especially, the informa-
tion of the effective quality factor is important because we were not able to
measure it from other experiments. From Eqs. (2.60) and (2.63), the validity
of the measured optical spring effect implies the validity of the magnitude of
the quantum back-action. Here, we emphasize that there is no inconsistency
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between the measured values and the estimated values summarized in Table
6.1.

Finally, it is worth pointing out that the ratio of the displacement due
to the quantum back-action force versus the thermal fluctuating force can
be accurately estimated, although the displacement fluctuation due to them
has relatively large errors. This is because the errors of the displacement
fluctuation were mainly due to the errors of the effective susceptibility of the
pendulum. The ratio, however, is not affected by the effective susceptibility.
Thus, we can accurately estimate it to be 0.33± 0.03.

Table 6.1: parameters
parameter symbol unit measured value estimated value
input power (d) Pin1 mW 5.0 -
input power (s) Pin2 W 0.10 -
intracavity power (d) Pin1,circ W - 2.9± 0.1
intracavity power (s) Pin2,circ W - 0.45± 0.06
normalized detuning (d) ∆a/κ - 0.048± 0.005 -
normalized detuning (s) ∆b/κ - 1.30± 0.07 -
optomechanical coupling g/2π Hz/m (2.8± 0.1)ωc (design) 2.84ωc

cavity decay rate κ/2π Hz (1.52± 0.03)× 106 -
finesse Fp - (1.10± 0.02)× 103 -
effective resonant frequency feff Hz 130.0± 0.1 117± 22
effective quality factor Qeff - 4× 103 (4.4± 1.8)× 103

quality factor Qm - 4.7× 105 < 3.8× 106

thermal noise level (@130 Hz)
√

S
(2)
xx,th m/

√
Hz - (1.9± 0.7)× 10−12

back-action level (@130 Hz)
√

S
(2)
xx,q+cl m/

√
Hz - (1.4± 0.7)× 10−12

actuator efficiency A N/V (1.4± 0.1)× 10−6 -
relative shot noise level(@130 Hz) - dB < 4.1 -

displacement fluctuation (@130 Hz) - m/
√
Hz (2.8± 1.0)× 10−12 (2.4± 1.0)× 10−12

signal to noise ratio (@130 Hz) - - - 0.33± 0.03
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Chapter 7
The Future

In this chapter, two possible future investigations are proposed and discussed.
First, as compared with the experiment described above, it is necessary to

improve several parameters: (i) the mechanical quality factor of the pendu-
lum; (ii) the mechanical quality factor of the substrate; and (iii) the finesse.

(i) The Q-value of the pendulum can be improved by: increasing the
dilution factor by using a longer wire from 5 cm to 20 cm; changing the lossy
alminium clamp to a relative lossless steel clamp; and the degree of vacuum
can be improved from 10−3 Pa to 10−4 Pa by changing the devices in the
vacuum tank to devices with only little gas release. It is presumed that the
Q-value of the pendulum can be increased from 4.7× 105 to 5× 106 at least
by these improvements because the Q-value without only clamping loss was
estimated to be 3.8×106 in chapter 6, and further dilution enlarges the value
by 4 times.

(ii) We estimated the mechanical quality factor of the substrate to be
105 by taking the thinness of the mirror into consideration. However, it
was an underestimation because the mirror thermal noise was not observed.
Therefore, it turned out that the value is larger than 4 × 105. Although it
may be a slight overestimation, we estimate the Q-value of the substrate to
be 106 here. If this is an overestimate, it may be necessary to change the
lossy thin form of the mirror.

(iii) In this thesis, we used p-polarized light because it enabled us to easily
control the optical cavity. Here, we assume that by using s-polarized light
and an input coupler for the driving beam (labeled in1) better reflectivity is
possible. By making these changes, the finesse would rise to 10000.

Under these assumptions, we propose the following.
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7 The Future 7.1 Towards ground-state cooling

7.1 Towards ground-state cooling
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Figure 7.1: Plan1. The quantum back-action (blue), the suspension ther-
mal noise (red), the mirror thermal noise (green), the zero-point fluctuation
(cyan), the SQL for the free mass (dotted black) and the usual (for the peo-
ple belonged to GW detectors) SQL for the modified mirror (black line) are
shown. The parameters are listed in Table 7.1.
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7 The Future 7.1 Towards ground-state cooling

Table 7.1: Parameter list of Fig. 7.1
Parameter Value Unit
finesse 1.0× 104 -
cavity decay rate 0.9 MHz
Q-value of the pendulum 5.0× 106 -
Q-value of the substrate 1.0× 106 -
effective resonant frequency 7.4 kHz
effective Q-value 8.4 -
input power (driving) 250 mW
input power (spring) 1500 mW
normalized detuning (driving) −1.0 -
normalized detuning (spring) 2.5 -

In order to experimentally test a quantization of spacetime for exploring
quantum gravitational phenomena, a massive object should be cooled almost
in its ground state[111]. Ground-state cooling has been realized[10, 11, 12];
however, it has not been realized on the macroscopic mass scale.

From Eqs. (1.1) and (6.1), the relationship between the thermal fluctua-
tion force and the SQL is given by

S
(2)
FF,th

S
(2)
FF,SQL

=
4kBTγmm

h̄|χm(ω)|−1 + 2h̄ωmγmm
ω → ωm−−−−−−−→

kBT

h̄ωm

. (7.1)

Therefore, (it is regarded as at the high-temperature limit), the occupation
number becomes unity when the thermal noise and the SQL are equal. (Cor-
rectly, the occupation number, 1/(exp(h̄ωm/kBT )− 1), becomes about 0.58,
in this case.)

In our case, due to the bad cavity condition, reducing the quantum back-
action is challenging; however, the thermal excitation can be sufficiently re-
moved. The phonon occupation number, ⟨n⟩ = 0.22, is reachable, as shown
in Fig. 7.1. To reduce the effect of back-action, one can use the QND method
like the variational readout; however, the optical loss, L, which makes the
vacuum fluctuation to be superposed with the signal, degrades the effect. The
SQL beating ratio by the variational readout method is given by L1/4[109].
In our case, the loss must be smaller than 10−4 for sufficiently removing the
effect of the back-action. This is currently impossible due to the detection
loss.
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7.2 Towards beating the SQL
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Figure 7.2: Plan2. The quantum back-action (blue), the shot noise (cyan),
the suspension thermal noise (red), the mirror thermal noise (yellow), the
SQL for the free mass (dotted black) and the SQL for the modified mirror
(black line) are shown. ΩF,Ωq, and Ωx are the frequencies at which the
classical force noise (i.e., suspension thermal noise), quantum back-action,
and classical sensing noise (i.e., the mirror thermal noise) intersect the free-
mass SQL, respectively. The parameters are listed in Table 7.2.
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Table 7.2: Parameter list of Fig. 7.2
Parameter Value Unit
finesse 4400 -
cavity decay rate 2.1 MHz
Q-value of the pendulum 5.0× 106 -
Q-value of the substrate 1.0× 106 -
effective resonant frequency 1.7 kHz
effective Q-value 1700 -
input power (driving) 10 mW
input power (spring) 100 mW
normalized detuning (driving) −0.06 -
normalized detuning (spring) 3 -

In order to develop the gravitational-wave astronomy and testing quantum
mechanics, respectively, it is necessary to overcome the SQL. To meet the
criteria, we firstly have to realize the condition of Ωx/ΩF > 2. Under this
condition, there is a nonzero frequency band (in between ΩF and Ωx) in which
the classical noise is completely below the SQL.

Fig. 7.2 shows the possible sensitivity (ΩF ∼ 2700,Ωx ∼ 15000). The
criteria can easily be realized, and thereby this is a suitable platform to
experimentally study the QND technique.

Although the future view has been described as mentioned above, more
detailed theoretical research is required.
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Conclusion

The observation of quantum back-action imposed on a macroscopic 5-mg
mirror has been performed, and presented in this thesis. The quantum back-
action is one of the most significant issues to be investigated regarding the
interferometric gravitational-wave (GW) detectors because it will directly
limit the sensitivity in next-generation detectors. Although the quantum
back-action is just a noise for weak-force measurements, such as GW detec-
tors, it is one of the key milestones concerning macroscopic quantum mechan-
ics, such as the testing quantum measurement problems (Chapter 3). Until
now, no one had observed the quantum back-action on the macroscopic scale
(Chapter 1). To increase the optomechanical coupling and to reduce the ther-
mal fluctuating force, an optical cavity with high circulating optical power
must consist of a freely suspended mirror. However, the fundamental in-
stability, called the Siddles-Sigg instability (i.e., optical anti-torsional spring
effect), prevents their coexistence.

We thus developed an optical triangular cavity to overcome this limita-
tion. In the case of this triangular cavity, the anti-torsional spring in pitch
motion still occurs without any dependence on the isolation of the pendulum
from the thermal bath. On the other hand, the anti-torsional spring in yaw
motion changes the stable positive torsional spring (Chapter 4). The geomet-
rical advantages of the triangular cavity enables for the mirror to be isolated
from the thermal bath under a high intracavity power, and thus allowing us
to use the powerful double optical spring, which also enables isolation from
technical noise sources (Chapter 2 & 6). As a result, we were able to observe
the quantum back-action (Chapter 5 & 6). Our result opens a new route
to investigate ultra-sensitive force measurements and macroscopic quantum
mechanics (Chapter 3 & 7). Both of them certainly go toward beating the
standard quantum limit (SQL), and the only difference is the viewpoint from
them. The former regards it as significant noise, and the latter regards it as
a benchmark. Although reaching the SQL at the resonant point (so-called
ground state cooling) is still challenging, due to the bad cavity condition, it
can be reached at off-resonance by using our method in the future (Chapter
7). This condition is necessary to experimentally study the QND scheme for
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7 The Future 7.2 Towards beating the SQL

GW detectors, and to generate macroscopic entanglement states. It is, there-
fore, a critical step toward gravitation wave astronomy and of macroscopic
quantum measurements.
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Appendix A
Intensity stabilization
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Figure A.1: Intensity stabilization system. Left: Simplest case. Right:
Our case.

Here, we describe intensity stabilization using active feedback control. To
start with, consider the simplest case, as shown in Fig. A.1(left). Since
we only pay attention to the amplitude fluctuation of the electromagnetic
field, only the amplitude quadrature is considered. The input laser and the
vacuum fluctuation entering the unused port of the beam-splitter (BS) can
be given by δâ, δb̂1, respectively. A fluctuation component of a transmitted
light from the BS labeled as δÊt is given by

δÊt = t1δâ+ r1δb̂1, (A.1)

where r1 represents the amplitude reflectivity of the BS and t1 represents the
amplitude transmittivity of the BS. On the other hand, the reflected light
δÊr is given by

δÊr = −r1δâ+ t1δb̂1. (A.2)
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A Intensity stabilization

If the transmitted light is used for stabilization, the negative-feedback
system ideally reduces δÊt to zero, and then

δâ = −r1
t1
δb̂1 (A.3)

is obtained. The anti-correlation between δâ and δb̂ increases the noise level
in the out-of-loop (i.e., the reflected field). It is given by

δÊr =
1

t1
δb̂1. (A.4)

Therefore, the maximum stability in the out-of-loop is 1/t1-times larger than
the vacuum fluctuation. This effect is called the “noise penalty”. In our
case, we used two half-BSs shown in Fig. A.1(right). Then, the maximum
stability can be calculated as

δÊ ′
r =

√(
r2
t1

)2

+ t22δb̂1 t1, t2 → 1/
√
2

−−−−−−−−−−−→

√
3

2
δb̂1. (A.5)

Therefore, the achievable relative shot-noise level is reduced to about 1.8 dB.
This satisfies our requirement (2 dB).
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