
THESIS

Optomechanical Torsion Pendulum

for Measurement of

Quantum Radiation Pressure Fluctuation

Kentaro Komori

Department of Physics

University of Tokyo

January 2019



ii



Abstract

Quantum radiation pressure fluctuation is caused by a vacuum field coupling

with laser light. The amplitude of the laser light changes randomly, resulting

in the fluctuation of intra-cavity power in an optical cavity and shaking of the

mirror. It is important to measure it around 10-100Hz using a massive oscilla-

tor heavier than mg from two view points of gravitational wave detectors and

optomechanics. A torsion pendulum is used as a common mirror of two trian-

gle cavities constructed on both edges in order to observe this phenomenon.

The rotational mode is measured by subtracting signals from the two cavities.

The optomechanical torsion pendulum has three advantages. First, it has low

suspension thermal noise due to the low resonant frequency of the rotational

mode. Second, common noises at both cavities are reduced by the common

mode rejection. Third, the rotational mode is more sensitive because its effec-

tive mass is lighter than that of the pendulum mode. Due to these benefits, we

succeed in observing quantum radiation pressure fluctuation around 60-100Hz

with a signal to noise ratio of 0.14 ± 0.03. This is the highest signal to noise

ratio to date around the frequency band of gravitational-wave detectors using

a mechanical oscillator above a milligram scale. Our work is important from

the aspect of the frequency band, around which the detector sensitivity will

be limited by the radiation pressure noise. The mass scale is also meaningful

in terms of optomechanical research on the various scales.
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at the different finesse and arm length . . . . . . . . . . . . . . 17

2.5 Total responses of the Fabry–Perót Michelson interferometer to
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Chapter 1

Introduction

Laser light couples with a vacuum field and propagates without lossing the

vacuum fluctuation. It is because the energy scale of a photon from a laser

ℏωL is much higher than that of room temperature kBTth. The laser photon is

not excited thermally even at room temperature. The vacuum fluctuation has

two degrees of freedom, amplitude and phase quadratures. These amplitude

and phase degrees of freedom correspond to radiation pressure fluctuation and

shot noise, respectively, in the displacement measurement of oscillators with

laser light. In particular, it is important in terms of two perspective to observe

the amplitude fluctuation, i.e., the quantum radiation pressure fluctuation.

One is related to gravitational-wave detectors, and the other is associated

with optomechanics.

Gravitational wave detectors

Graviational waves (GWs) are ripples of space time predicted by Einstein al-

most one hundred years ago [1,2]. We can get a wave equation by linearizing the

Einstein equation after splitting the metric of space time to Minkowski plus a

tiny fluctuation. The solution shows the GW. It is generally difficult to observe

the GWs compared with electromagnetic waves because of the tiny amplitude.

Emission of large GWs is expected from drastic astronomical phenomena, such

as coalescence of binary compact stars, explosion of supernova, and the big-

bang at the start of the universe. GWs bring us information which cannot be
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obtained with electromagnetic waves thanks to its great transparency.

Even if these phenomena happen, the amplitude of the GW reaching the

earth is too small to catch easily, so it had never been observed directly until

2015. On September 14th in 2015, Laser Interferometer Gravitational-wave

Observatory (LIGO) directly observed GWs at last. These came from a binary

black hole merger [3]. This event is not only the first detection of GWs, but

also revealed the existence of binary black holes. Moreover, Virgo, which is

the third GW detector in Italy, started operating and contributed to the joint

observation of GWs with LIGO in 2017 [4]. That event was followed by, at last,

GWs from a binary neutron star merger [5]. At the same time electro-magnetic

waves were observed by dozens of telescopes at various wave lengths [6, 7]. In

2018, all of the binary black hole mergers in their two observation phases were

reported and the total number of GW events grew up to 11 [8]. The era of

GW astronomy and multi-messenger astronomy thus opened.

LIGO and Virgo are currently improving their sensitivities, and the Japanese

GW detector KAGRA [9,10] will join the detector network in late 2019. More-

over, the next-generation GW detectors such as Einstein Telescope (ET) [11]

and Cosmic Explorer (CE) [12] are expected to constructed in the 2030s. These

detectors in the future will observe much more GWs from binary stellar-mass

compact stars with their improved sensitivities. In particular, CE will catch al-

most all binary black hole mergers in the universe and can test for the existence

of primordial black holes [13].

For observation of GWs from binary stellar-mass compact stars, the fre-

quency range between 10Hz and 100Hz is the most important to obtain the

signal to noise ratio during their inspiral phase towards merger. The future

sensitivities of the detectors around that frequency region will be limited by

radiation pressure noise, which is one of fundamental noises [14,15]. Radiation

pressure noise, however, has not been observed yet around the detector band,

especially at the radiation pressure noise regime. The sensitivities of the pre-

vious works [16–21] are worse than the radiation pressure noise by one order

of magnitude or more. It is important to measure it and demonstrate how to

reduce the quantum noise on a table-top scale experiment ahead of real GW

detectors.
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Optomechanics

Can we prepare quantum entangled states of massive oscillators? Such states

have never been observed yet. Is this because of only technical issues in iso-

lating the massive objects from the environment, or due to something funda-

mental preventing them from existing in a quantum state?

Optomechanics is about the interaction between eigen modes of mechan-

ical oscillators and radiation pressure of laser light [22]. Radiation pressure

can suppress mechanical motion. This means that it can reduce the effective

temperature of the mechanical modes. The cooling effect can be used even for

cooling the mechanical oscillator to its quantum ground state and observing

the zero-point oscillation [23]. Moreover, the method was proposed to real-

ize entangled states of the massive oscillators using the quantum coherence of

laser light if the mechanical mode is cooled enough [24].

In order to do these experiments, we have to cool the mechanical oscillator

to the ground state or reach its standard quantum limit (SQL). Observation

of quantum radiation pressure fluctuation acting on the oscillator is the first

necessary condition for that. The quantum radiation pressure fluctuation on

mechanical oscillators was first observed with a nano-scale silicon beam in

2012 [25], followed by an experiment with membranes [26, 27]. These oscil-

lators were also cooled to ground state [28–30]. In addition, it was reported

that entangled states between distinct two mechanical modes were finally re-

alized [31–33].

On the other hand, although the progress is great in the field of optome-

chanics whose mass scale is lighter than the µg-scale, it has not been developed

much in the heavier mass scale [16–21]. It is important to develop optomechan-

ics in various mass scales including above the µg-scale because some theories

predict the mass dependence on the time scale of quantum coherence. In or-

der to test the quantumness of the massive object, it is necessary to improve

the displacement sensitivity of the mechanical motion up to near the standard

quantum limit, and one of the necessary conditions is to observe the radiation

pressure fluctuation. Therefore, we try to measure the quantum radiation pres-

sure fluctuation acting on a massive objects. Our experiment is the first step

to realize macroscopic (in terms of the mass) quantum superposition states.
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We aim at observation of quantum radiation pressure fluctuation with a mg-

scale mechanical oscillator around 10-100Hz. In previous works on this regime,

classical noises such as suspension thermal noise hid the quantum fluctuation.

Thus, we design the setup using a rotational mode of a torsion pendulum

which has low suspension thermal noise due to the low mechanical resonant

frequency. A 10-mg bar-shaped tiny mirror is used as a torsion pendulum.

Two optical cavities are constructed on both edges of the bar mirror. We

can get the quantum fluctuation signal by subtracting displacement of the two

cavities and measuring the rotational mode of the torsion pendulum. The

quantum fluctuation causes the differential force and almost all classical noises

contribute to the displacement identically across both cavities. This common

mode rejection is one of advantages in our setup. Moreover, the rotational

mode is more sensitive to tiny force than the usual pendulum mode owing to

the lighter effective mass, which is also a main benefit.

This thesis consists of 7 chapters including this introduction. In Chapter 2,

we introduce GW detectors and its noise sources including radiation pressure

noise with previous works for measuring it. Chapter 3 shows theories of optical

cavities and radiation pressure fluctuation from a viewpoint of optomechanics.

In Chapter 4, our experimental design and setup are written, followed by

the results of our experiments and data analysis in Chapter 5. In Chapter 6,

various noise sources are discussed and finally future prospects for our research

and conclusion of this thesis are described in Chapter 7. Additional contents

for this thesis are given in the appendix, such as the suspension thermal noise

with a temperature gradient in the cryogenic detector (Appendix A), and the

sensitivity design of the current and future KAGRA (Appendix B).
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Chapter 2

Quantum noises in a

gravitational wave detector

The amplitude of the GW is so small that we have to reduce all noises in

order to catch the GW with the detectors. Radiation pressure noise is one

of the most fundamental noises in GW detectors. In this chapter, we discuss

quantum noises from a viewpoint of the GW detectors.

First, theories on the GW and the detector are given in Section 2.1. After

that Section 2.2 describes noises in the detectors, followed by reduction of the

quantum noises and its necessity in Section 2.3. Finally, previous works on the

quantum noises are introduced in Section 2.4.

2.1 Theories on the GW and the detector

Einstein predicted the GW as a wave solution in his general relativity in

1916 [1, 2]. The amplitude of the GW is so small because the interaction

of gravity is tiny. The GW brings us unique information which is not ac-

cessible by usual electromagnetic wave observation. On the other hand, its

smallness get the direct detection of the GW too difficult. Even though it was

considered to be impossible to detect the GW for a while, experimental works

for detection were developed step by step.

The development started from a resonant-bar type in the 1960s [34], and

it was followed by an interferometric type in the 1960s [35] and the 1970s [36]
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used mainly these days. Besides, indirect detection of the GW was realized by

measuring the orbital period of a binary neutron star getting short with radio

waves in 1982 [37] after the discovery of that in 1975 [38]. In 2000s, km-scale

interferometric GW detectors were constructed and have been upgraded to

current LIGO [14], Virgo [15], and KAGRA [9]. Finally two LIGOs directly

detected GWs from a binary black hole merger in 2015 [3].

Here we show theories on the GW including the derivation and sources [39,

40]. The method and system of detectors are described after that.

2.1.1 Derivation of the GW

According to the general relativity, the strain of time-space is related to the

distribution of the energy as follows:

Rµν −
1

2
gµνR =

8πG

c4
Tµν , (2.1)

which is called the Einstein equation. The Ricci scalar R, the Ricci tensor Rµν ,

the Rieman tensor Rα
βµν , the Christoffel symbol Γα

µν , and the metric tensor gµν

are defined as below:

R = Rµ
µ, (2.2)

Rµν = Rα
µαν , (2.3)

Rα
βγδ = Γα

βδ,γ − Γα
γδ,β + Γα

γµΓ
µ
βδ − Γα

βµΓ
µ
γδ, (2.4)

Γα
βγ =

1

2
gαµ (gγµ,β + gµβ,γ − gβγ,µ) , (2.5)

ds2 = gµνdx
µdxν , (2.6)

where ds is the interval between two points.

Assuming that the metric can be divided by Minkowski space-time ηµν and

small perturbation hµν which satisfies |hµν | ≪ 1, Eq. (2.1) can be written as

□h̄µν = −16πG

c4
Tµν , (2.7)

where

h̄µν = hµν −
1

2
ηµνh

α
α (2.8)
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Figure 2.1: A drawing of the two polarizations of GWs. The shapes of the
strain due to the GWs are described at each phase. Free particles move as
shown when the GWs propagate perpendicularly to the page space.

is satisfied and the Lorenz gauge is chosen. This means that there is a wave

solution of the Einstein equation and the wave propagates at the speed of light

even in vacuum Tµν = 0.

In the transverse traceless (TT) gauge, we can set

h0µ = 0, hii = 0, ∂jhij = 0. (2.9)

Considering that the wave direction is along z axis, the solution shows

hTT
ij (t, z) =

 h+ h× 0

h× −h+ 0

0 0 0

 cos [ω(t− z/c)], (2.10)

and at this time the interval can be described as

ds2 =− c2dt2 + dz2 + {1 + h+ cos [ω(t− z/c)]}dx2 (2.11)

+ {1− h+ cos [ω(t− z/c)]}dy2 + 2h× cos [ω(t− z/c)] dxdy.

The GW in general relativity has two polarizations, h+ and h×. According

to Eq. (2.11), The GW stretches the surface perpendicular to the propagating

direction to one direction and shrinks to another at the same time with ratio
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of h. The number of degrees of freedom is two. They are different by 45◦. Fig.

2.1 shows the effect of the GW on the free particles in the plane perpendicular

to the propagation at each phase. The GW has two polarizations of the plus

and cross mode.

2.1.2 GW sources

In this section, we describe various sources of GWs after deriving the radia-

tion formula. Here we adopt the far-zone approximation. Distance between

observer and the GW sources r is much greater than the GW wave length λ,

which is greater than size of the source R,

R ≪ λ≪ r. (2.12)

Under this situation Eq. (2.7) can be solved with Green’s function as

hTT
ij (r,x) ≃ 1

r

2G

c4
ÏTT
ij (t− r/c) (2.13)

in the TT gauge. The quadrupole moment is introduced as

ITT
ij (t) =

∫
dx ρ(t,x)

(
xixj −

1

3
r2δij

)
, (2.14)

where ρ is mass density of the source.

Now we can estimate order of magnitude of the GW. The quadrupole mo-

ment can be approximated as I ∼MR2, and hence Ï ∼Mv2, whereM is mass

and v is velocity of the source. For example, when a bar with the length of L

and the mass of M is rotating at the angular frequency of ω, the magnitude is

h ∼ GML2ω2

rc4
. (2.15)

Assuming that M = 103 kg, L = 10m, ω/2π = 102Hz and noting that the

distance must be greater than the GW wavelength (r ≫ c/ω), we can get the

order of amplitude

h≪ GML2ω3

c5
∼ 10−39. (2.16)
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This magnitude is very tiny.

On the other hand, there are sources expected to produce much larger GWs

than artificial one even though they have cosmological distance. Hereafter

these sources are categorized with typical amplitude and frequency.

Compact binary coalescence

Compact binary is a binary system consisting of two compact stars such as

neutron stars and black holes. They are rotating around each other and finally

merge resulting in the emission of large GWs. The source of the first direct

detection of GW is a black hole merger. After some detections of binary black

hole mergers, a binary neutron star merger has been also detected. The GW

from a binary neutron star was expected to be promising candidates of direct

detection because the GW emission from the system already has been tested

via the radio wave observation of change of the revolution period [37,38].

Here we assume that mass of each star of the binary is the same as M .

In point mass approximation for the stars, when the GW comes along the

perpendicular axis, the amplitude of the GW can be written as

h = π2/3

(
Rs

r

)(
Rsfgw
c

)2/3

, (2.17)

where Rs ≡ 2GM/c2 is the Schwarzschild radius for the mass of each star, r

is distance between the source and observer, and fgw is frequency of the GW.

The particle limit can be applied roughly until their rotating orbit reaches an

Innermost Stable Circular Orbit (ISCO) rISCO = 12GM/c2. At that time the

GW frequency increases to

fgw,ISCO =
1

6
√
6π

c

Rs

. (2.18)

Thus, the amplitude of the GW at ISCO is

hISCO =
1

6

Rs

r
, (2.19)

The amplitude just before coalescence is decided by ratio of the Schwarzschild
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Event Masses [M⊙] Red shift Localization [deg2]

GW150914 35.6+4.8
−3.0 + 30.6+3.0

−4.4 0.09+0.03
−0.03 179

GW151012 23.3+14.0
−5.5 + 13.6+4.1

−4.8 0.21+0.09
−0.09 1555

GW151226 13.7+8.8
−3.2 + 7.7+2.2

−2.6 0.09+0.03
−0.04 1033

GW170104 31.0+7.2
−5.6 + 20.1+4.9

−4.5 0.19+0.07
−0.08 924

GW170608 10.9+5.3
−1.7 + 7.6+1.3

−2.1 0.07+0.02
−0.02 396

GW170729 50.6+16.6
−10.2 + 34.3+9.1

−10.4 0.48+0.19
−0.20 1033

GW170809 35.2+8.3
−6.0 + 23.8+5.2

−5.1 0.20+0.05
−0.07 340

GW170814 30.7+5.7
−3.0 + 25.3+2.9

−4.1 0.12+0.03
−0.04 87

GW170817 1.46+0.12
−0.10 + 1.27+0.09

−0.09 0.01+0.00
−0.00 16

GW170818 35.5+7.5
−4.7 + 26.8+4.3

−5.2 0.20+0.07
−0.07 39

GW170823 39.6+10.0
−6.6 + 29.4+6.3

−7.1 0.34+0.13
−0.14 1651

Table 2.1: Observed GW events [8].

radius of the component and the distance from observer. Typical amplitude

and frequency are

hISCO = 1× 10−21

(
M

30M⊙

)(
400Mpc

r

)
, (2.20)

fgw,ISCO = 24Hz

(
30M⊙

M

)
. (2.21)

This GW sources which has been observed are listed in Table 2.1. The

third event GW170608 came from the farthest distance, corresponding to the

redshift of z ∼ 0.2. The black holes of the fourth event GW170608 are the

lightest ones observed by the GW. The binary neutron star event GW170817

has the best record of the signal to noise ratio and the localization. The best

localization is due to not only the near event but also the fact that the GW

came from the blind spot of Virgo and it was not able to observe the GW.

Supernova

One of the promising source except for compact binary coalescence is super-

nova explosion. For example, a type II supernova is typical. Massive stars

heavier than around 10M⊙ make the iron core, which has the highest bind-
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ing energy of all atoms, at the center with supported by electron degeneracy

pressure in the final phase of star evolution. Finally, after gravity beats the

degeneracy pressure, gravitational collapse occurs and the outer matters fall

into the center. The collapse is stopped by neutron degeneracy. It causes

bounce of falling objects and making shock waves expanding out of the star.

This is observed as a supernova.

These phenomena are expected to follow drastic change of the gravitational

potential, especially the quadrupole moment. The amplitude of the GW from

supernova is approximately given by

h ∼ G

rc4

(
Ï22 − Ï33

)
, (2.22)

where

I22 =
2

5
MR2

(
1− e2

2

)
, I33 =

2

5
MR2, (2.23)

M , R, and e are the mass, radius, and eccentricity of the proto-neutron star,

respectively. Assuming that M = 1M⊙, R = 10 km, and e = 0.1, time scale of

this event can be considered as the free-fall time scale

τf =

√
3π

32

1

Gρ
, (2.24)

where ρ ∼ 1018 kg/m3 is the density of nuclear. Therefore, typical frequency

and amplitude of the GW from supernova are obtained by

fgw,sn ∼ 1

2πτf
∼ 3× 103Hz, (2.25)

hsn ∼ 2× 10−21

(
10 kpc

r

)
. (2.26)

Pulsar

Pulsar is a rotating neutron star emitting radio wave, which is observed as short

pulses when the axis of the emission and the sight direction of the observer are

overlapped. It is also one of promising candidates of the observation.

Although there is no GW emission if the neutron star is rotating axis-

symmetrically, it produces the GW with ellipticity ϵ = (I11 − I22)/I33. The
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amplitude of the GW is written as

h =
4π2GI33f

2
gw,pu

rc4
ϵ. (2.27)

Here we assume that mass and radius of the neutron star is M = 1M⊙ and

R = 10 km, respectively. By observation of radio wave, it is known that typical

frequency of the GW from pulsars is

fgw,pu = 10Hz− 1 kHz, (2.28)

which is double of the rotating frequency. The amplitude is calculated as

hpu ∼ 8× 10−26

(
f

1 kHz

)2(
10 kpc

r

)(
ϵ

1× 10−6

)
. (2.29)

Early universe

It is a kind of final goal for the GW astronomy to hear the early universe. In the

usual electro-magnetic wave observation such as cosmic microwave background

(CMB) search, we can only see up to the recombination which occurred around

0.38 million years after the Big Bang. It is because electro-magnetic waves

cannot avoid interacting with the radiation field and losing the information on

the previous era. On the other hand, gravity is so weak that GW can avoid

the interaction. It is the unique probe for information at the early universe

such as the energy scale of the inflation.

Amplitude of the GW from the early universe is characterized by one of

cosmological parameters, ΩGW, like

h =

√
3H2

0ΩGW

4π2f 3
, (2.30)

where H0 ∼ 67 km/s/Mpc is Hubble constant. Here we assume ΩGW does not

have dependence on frequency. The value is estimated to be ΩGW ∼ 10−16.

According to Eq. (2.30), the GW at lower frequency has larger amplitude. In

the frequency range below 0.1Hz, however, there are superposed GWs from

binary white dwarfs in our galaxy. This prevents us from detecting the GW
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from the early universe. Therefore, the best frequency for detection is

fgw,eu ∼ 0.1Hz, (2.31)

and the amplitude is written as

hgw,eu ∼ 2× 10−25

√
ΩGW

1× 10−16

(
0.1Hz

f

) 3
2

. (2.32)

2.1.3 Interferometric GW detectors

Ultra-high sensitivity is required to detect GWs because it has so tiny am-

plitude as shown in the previous section. In the 1960s and the 1970s, it was

proposed that a Michelson interferometer consisting of suspended mirrors can

be used as a GW detector [35, 36]. A Michelson interferometer as a GW de-

tector was expanded to Fabry–Perót cavities. Here, we describe the response

to the GW of the detector.

Mechanical response

At first, the geodesic equations are considered. Taking difference between two

nearby geodesics parametrized by xµ and ξµ, we can get equations on spatial

part of ξµ as

ξ̈i = −Ri
0j0ξ

j

(
dx0

dτ

)2

=
1

2
ḧTT
ij ξ

j (2.33)

in a proper detector frame. This means that the effect of the GW can be

regarded as classical force

Fi =
m

2
ḧTT
ij ξ

j (2.34)

to a point particle whose mass is m.

We consider a Michelson interferometer where end mirrors reflecting laser

light are located on (ξx, ξy) = (L, 0), (0, L). End mirrors are mechanical oscil-

lators such as pendula with angular resonant frequency of ωm and mechanical

dissipation of γm. When the GW with the plus polarization propagates to
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Figure 2.2: Mechanical response of the bar-type and interferometer-type GW
detectors. Parameters of the resonant bar are ωm/2π = 1kHz, γm = ωm/1000,
L = 10m. Those of the interferometer are ωm/2π = 1Hz, γm = ωm/1000,
L = 3km.

z-direction, the equation of motion of the x arm mirrors, whose mass is m, is

given by

m
(
ξ̈x + γmξ̇x + ω2

mξx

)
=
m

2
ḧ+ξx, (2.35)

where the right hand can be approximated as ḧ+ξx ≃ ḧ+L + O(h2). In fre-

quency domain, Eq. (2.35) can be written as

(
ω2
m + iγmω − ω2

)
ξx = −1

2
h+Lω

2. (2.36)

Therefore, the transfer function from strain of the GW to coordinate change

(the mechanical response) of the end mirror is shown in

ξx
h+

=
L

2

ω2

ω2 − ω2
m − iγmω

, (2.37)
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which means that the response is flat above the mechanical resonant frequency

of the mirror, while the mirror cannot be moved by the lower-frequency GW.

Fig. 2.2 shows the absolute value of the mechanical response of two types

of the GW detector. One is a resonant bar type. It was developed in 1960s as

the first GW detector by Weber. For a while from that time, this type of the

detector was in the main stream. The test mass is a rigid heavy bar. It has

a high sensitivity around the frequency of the bar resonance. The advantage

of the bar detector is measuring GWs on one frequency coming from pulsars.

The other is an interferometer type described later. It is in the recent main

stream. The test masses are pendula, whose typical resonant frequencies are

low. The merit is that the pendula can be placed on a faraway place, so we

can set very large L. Moreover, the sensitivity range is the same as the GW

frequency band from binary compact stars.

Under this discussion, it is assumed that the GW frequency is much larger

than the inverse of time needed for the GW to propagate through the arm, ω ≪
c/L. The effect of the GW on mirror motions is cancelled while propagating

when the frequency is higher than that.

Optical response

Next, we describe the response of an interferometer to the coordinate change

of the end mirror. In a Michelson interferometer we can measure phase shift

of laser light caused by differential motion of end mirrors. Moreover, a Fabry–

Perót cavity can enhance the phase shift. We show a schematic picture of a

Fabry–Perót Michelson interferometer in Fig. 2.3.

A Fabry–Perót cavity consists of two facing mirrors. When the input mirror

has small transmission and the cavity round trip length is near integer times of

laser wave length λL, power of the light is enhanced dramatically. This state is

called resonance. Here we introduce a parameter, finesse written by F , which

characterizes sharpness of the cavity resonance. The cavity is resonating under

both situations where the wave length is 1/n and 1/(n+1) times of the cavity

length, where n is a integer. The frequency difference of the laser light is called

FSR,

νFSR =
c

2L
. (2.38)
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Figure 2.3: A schematic picture of a Fabry–Perót Michelson Interferometer.
Two Fabry–Perót cavities replace the end mirrors of an usual Michelson inter-
ferometer.

On the other hand, laser light is enhanced even if the wave length is not just

integer times but near that. This frequency width is defined as full width of

the half maximum of the resonance peak,

νFWHM =
1− rIrE
2π

√
rIrE

c

L
, (2.39)

where rI ≃ 1 and rE ≃ 1 are the reflectivity of the input and end mirror

respectively. Finesse is the ratio of these parameters,

F =
νFSR
νFWHM

=
π
√
rIrE

1− rIrE
, (2.40)

showing enhancement factor of the cavity.

The reflectivity of a Fabry–Perót cavity rFP is given by

rFP = −rI + t2I rE

∞∑
n=1

(rIrE)
n−1 e−iωL∆tn , (2.41)
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Figure 2.4: Optical response of the Fabry–Perót Michelson interferometer at
the different finesse and arm length. Short and long arms mean L = 1km
and L = 10 km, and high and low finesses mean F = 100 and F = 1000,
respectively.

where tI and ∆tn are transmissivity of the input mirror and time taken for

laser light to go and return by n times in the cavity. This time can be written

as

∆tn =
2L

c
n+

2

c

n∑
m=1

δL

[
t− L

c
(2m− 1)

]
, (2.42)

where δL is change of cavity length caused by the GW. By using a Fourier

transformation, this can be rewritten as

∆tn =
2L

c
n+

2

c

∫ ∞

−∞
δL

1− e−2iηn

eiη − e−iη
eiωtdω, (2.43)

where η = Lω/c. We assume that rE = 1 and the resonance condition

2LωL/c = 2πn is satisfied. It is enough to calculate under the 1st order
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approximation of ωLδL/c because the displacement is much smaller than the

wave length of the laser light, δL ≪ λL. In frequency domain, and hence, the

reflectivity is calculated as

rFP ≃ −rI + t2I

∞∑
n=1

rn−1
I

[
1− i

2ωL

c
δL

1− e−2iηn

eiη − e−iη

]
≃ 1− i

4π(1 + rI)

λL

e−iη

1− rIe−2iη
δL. (2.44)

The phase shift of the cavity is expressed as ∆ϕFP = arg rFP. The GW

frequency is low enough (η ≪ 1), and the finesse can be approximated as

F ≃ π
√
rI/(1−rI) ≃ π/(1−rI). Therefore, the optical response from the mirror

displacement to the phase shift of the Fabry–Perót Michelson Interferometer

is
|∆ϕFP|
δL

≃ 8F
λL

1√
1 + (f/fp)

2
, (2.45)

where

fp ≃ c

4LF
=
νFWHM

2
(2.46)

is called a cavity pole. This means that the optical response gets worse above

the cavity pole because the fast motion is averaged while laser light makes

many round trips in the cavity.

In Fig. 2.4, the optical responses of the Fabry–Perót Michelson interfer-

ometer are plotted. The sensitivity is higher with a longer arm length at the

low frequency, but gets worse at the high frequency because the cavity pole is

lower. Considering that with the mechanical response proportional to the arm

length, the total response is the same at the high frequency even with the long

arm.

Total response

Combining the mechanical (Eq. (2.37)) and optical (Eq. (2.45)) response, we

can get the transfer function from strain of the GW to phase shift of the

Fabry–Perót Michelson interferometer |∆ϕFPMI|. Noting that the GW effect

contributes to both arms differentially which can be measured by the Michelson

interferometer, the phase shift is twice as large as that with only one cavity,
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Figure 2.5: Total responses of the Fabry–Perót Michelson interferometer to the
GW strain. The responses combining the mechanics and optics of KAGRA, B-
DECIGO, and TOBA are shown in the red, green, and blue lines, respectively.

∆ϕFPMI = 2∆ϕFP. The total response is given by

|∆ϕFPMI|
h+

≃ 8FL
λL

ω2

ω2 − ω2
m

1√
1 + (f/fp)

2
(2.47)

with ignoring the mechanical dissipation.

In Fig. 2.5, this total response is shown on some GW detectors. Parame-

ters of KAGRA are used in the plot of ground-based GW detectors, F = 1550,

L = 3km, and λ = 1064 nm. In fact, ground-based detectors have multiple

suspension system, but here one pendulum whose mechanical resonant fre-

quency is ωm/2π = 1Hz. For example, the typical amplitude of GWs from

binary coalescence is around h ∼ 10−21 as shown in the previous subsection,

which is enhanced up to phase shift of ∼ 10 nrad by the ground-based detectors

above the mechanical resonant frequency.
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It should be noted that typical GW detectors like KAGRA has the signal

recycling mirror between the BS and the PD enhancing the frequency band.

The plot only shows the response of the Fabry–Perót Michelson interferometer

with the same arm cavities as KAGRA.

A detector with the highest sensitivity is B-DECIGO where F = 100, L =

100 km, λ = 532 nm. Deci-hertz gravitational wave observatory (DECIGO)

is a GW detector in space targeting GWs from the early universe [41, 42].

B-DECIGO (called pre-DECIGO previously) is its outpost plan with shorter

arms of 100 km [43]. In the case of spaceborne detectors, suspension system is

not needed and the test masses are perfect free masses, ωm/2π = 0Hz. The

target frequency of the GW is around 0.1Hz.

Another detector which has high sensitivity around 0.1Hz is TOBA where

F = 1000, L = 10m, λ = 1064 nm. Torsion bar antenna (TOBA) is a new type

of the GW detector [44]. It is a suspended torsion pendulum which rotates

due to the GW. TOBA cannot have large arm length because it consists of a

massive bar. However, the mechanical resonant frequency can be much lower

than that of a usual pendulum down to ωm = 5mHz. Then it has much higher

sensitivity compared with conventional ground-based GW detectors around

0.1Hz range.

In this section, we describe theories on GWs and detectors focusing on

how the amplitude of the GW is small even if it comes from the most drastic

phenomena in the universe, and how we can enhance the effect and detect

them with the Fabry–Perót cavities. There are various types of GW detectors,

their sensitivities are limited by many noises, especially quantum noises of

laser light, which are discussed in the next section.

2.2 Noises in GW detectors

Suspended mirrors of a GW detector are moved by many noise sources. These

noises hide the GW signals, so we have to reduce them. The required level of

noise reduction is very high because of the tiny amplitude of the GW.

First of all, power spectral density is introduced to discuss measured am-

plitude of noises in frequency domain. Next, we show quantum noise of laser

light, which is one of the most fundamental noises, followed by another fun-
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damental noise, thermal noise of the detector. Moreover, we introduce other

technical noises such as seismic noise and laser frequency noise.

2.2.1 Power spectral density

Power spectral density is an useful value to evaluate the amplitude of fluctu-

ation. It shows how the fluctuation at each frequency component contributes

to averaged square of the interested value [39].

Here we define Fourier transformation of x(t) as

X(ω) =
1

2π

∫ ∞

−∞
x(t)e−iωtdt,

x(t) =

∫ ∞

−∞
X(ω)eiωtdω. (2.48)

With function defined on the interval [−T/2, T/2] as

xT (t) =

x(t) |t| ≤ T/2

0 |t| > T/2,
(2.49)

single-sided power spectral density is given by

Sn(f) = lim
T→∞

2

T
|2πXT (f)|2 , (2.50)

where

XT (f) =
1

2π

∫ T/2

−T/2

xT (t)e
−i2πftdt. (2.51)

Then, we get the following equation on averaged square of x(t),

⟨x2(t)⟩ =
∫ ∞

0

Sn(f)df. (2.52)

This means that the amplitude of fluctuation contributing to the averaged

square at each frequency is Sn(f).

In actual experiments, we cannot measure the value in infinity time. There-

fore, usually the whole time-series data is divided to many set, the power spec-

tral density is calculated at each data, and the average is taken. The more the
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average is taken, the closer the experimental result gets to the real value. The

statistical relative error σn is given by

σn =
1

√
nav

, (2.53)

where nav is the average numbers. In this thesis, we adopt the Hanning window

and half overlap for calculation of power spectra.

Moreover, we can describe the mean square with the measurement time T .

If the spectral density does not depend on frequency, Eq. (2.52) can be written

as

⟨x2(t)⟩ = 1

2
Sn

∫ ∞

−∞
df =

1

2
Snδ(t = 0). (2.54)

In the measurement in finite time T , the Dirac delta is replaced by

δ(t) =

1/T |t| ≤ T/2

0 |t| > T/2.
(2.55)

Therefore, δ(t = 0) = 1/T and we get

⟨x2(t)⟩ = 1

2T
Sn. (2.56)

An unit of the spectral density is the square of the unit of measured value

over Hz. In order to make correspondence to the root mean square (RMS) of

the value, the square root of the spectral density hn(f) =
√
Sn(f) is also used.

In the case of the strain of the GW, the unit of hn(f) is 1/
√
Hz.

Typical strain of the GW is around h ∼ 10−21, which corresponds to

hn ∼ 10−22 [1/
√
Hz] at 100Hz because the integrating frequency range extends

roughly from 50Hz to 150Hz, ∆f ∼ 100Hz. On the other hand, the signal to

noise ratio (SNR) of the the GW signal is decided by the ratio of power of the

root mean square. Thus, required strain sensitivity of the detector is around

hn ∼ 10−23 at 100Hz to detect the GW signal at the SNR of around 10.
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2.2.2 Quantum noise

Quantum noise results from vacuum fluctuation of laser light. For simplicity,

here we discuss fluctuation of photon number of laser light semi-classically

and regard it as quantum noise. Strict quantum description derives the same

result. Frequency region above ωm is considered.

The laser power P measured during the measurement time T is

P =
1

T
NpℏωL, (2.57)

where Np is the photon number incident on the PD during the time of T . A

number of photon follows the Poisson distribution. The RMS can be written

as ∆Np =
√
Np. Therefore, the power fluctuation is

∆P =
ℏωL

T

√
Np =

√
ℏωLP

T
. (2.58)

In addition, the quantum efficiency of PD is assumed to be 1 in this section.

Shot noise

Shot noise is one of readout noises caused by phase fluctuation of laser light.

The phase fluctuation is given by ∆ϕ = ∆P/P . By using Eq. (2.56) and

(2.58), the spectral density of the phase fluctuation is given by

hϕ =
√

2T∆ϕ =

√
2ℏωL

P
. (2.59)

Based on Eq. (2.47), this fluctuation can be expressed as the strain sensitivity

of shot noise,

hshot(f) =
1

4FL

√
πcℏλL
Pbs

√
1 + (f/fp)

2, (2.60)
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where Pbs is laser power just before the beam splitter. In the case of KAGRA

parameters, the amplitude of shot noise is

hshot(f) ∼ 6× 10−25Hz−1/2

(
1550

F

)(
3 km

L

)√
670W

Pbs

√
1 +

(
f

16Hz

)2

,

(2.61)

and hshot(f = 100Hz) = 4 × 10−24Hz−1/2. Input power and power recycling

gain are 67W and 10 respectively in KAGRA design sensitivity. A power

recycling cavity consists of the Michelson interferometer as a compound mirror

and a recycling mirror. The power recycling gain is the enhanced ratio after

the power recycling mirror.

Radiation pressure noise

Radiation pressure noise results from force fluctuation acting on mirrors of the

detector. The force fluctuation comes from the power fluctuation of the laser

light.

First, we calculate enhancement factor Ncav of the intra-cavity power Pcirc

compared with the input power to the cavity Pin. In terms of the electric field,

the field in the cavity Ecav can be written with the input field Ein as

Ecav = EintI

∞∑
n=0

rnI (2.62)

when the cavity is on resonance. The absolute square of the coefficient is the

enhancement factor in terms of power. It is calculated as

Ncav ≃
2F
π
. (2.63)

Next, we consider the force noise due to the radiation pressure fluctuation.

The force RMS is given by ∆F = 2∆Pcirc/c, and the intra-cavity power fluc-

tuation is ∆Pcirc = (F/π)∆Pbs by Eq. (2.63). With Eq. (2.56) and (2.58), the

force spectral density is written as

hF =
2F
πc

√
2ℏωLPbs. (2.64)
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In free mass regime, this force spectrum can be rewritten as the displacement

spectrum,

hx(f) =
1

m(2πf)2
2F
πc

√
2ℏωLPbs

1√
1 + (f/fp)

2
, (2.65)

noting that the effect of radiation pressure is cancelled above the cavity pole.

By using Eq. (2.37), the strain sensitivity of radiation pressure noise can be

described as

hradp(f) =
16F

m(2πf)2L

√
ℏPbs

πcλL

1√
1 + (f/fp)

2
, (2.66)

where the effect that the detector consists of 4 mirrors is concerned.

In KAGRA parameters, we get

hradp(f) ∼ 7× 10−24Hz−1/2

(
23 kg

m

)(
F

1550

)(
3 km

L

)(
100Hz

f

)2

×
√

Pbs

670W

(
1 +

(
f

16Hz

)2
)−1/2

, (2.67)

and hradp(f = 100Hz) = 1 × 10−24Hz−1/2. KAGRA consists of 4 sapphire

mirrors whose mass is 23 kg.

Total quantum noise

Total quantum noise hqu =
√
h2shot + h2radp is given by

hqu =
1√
2
hSQL

√
1

K
+K, (2.68)

where

hSQL =

√
8ℏ

mω2L2
, (2.69)

K =
8PbsωL

mω2L2

1

ω2 + ω2
p

, (2.70)

and ωp = 2πfp. Therefore, the total strain sensitivity cannot beat so called

the standard quantum limit (SQL), hqu ≥ hSQL even if the laser power is
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Figure 2.6: Total quantum noises of KAGRA with the Fabry–Perót Michelson
interferometer. We show the radiation pressure noise, the shot noise, and the
total quantum noises at the designed power of Pbs = 670W. Total quantum
noises when the power is 1/10 times and 10 times are also shown as the black
dotted lines. They cannot beat the green dotted line, SQL. The magenta line
and dots show the inspiral and merger of the first event GW150914.

changed. Fig. 2.6 shows three strain sensitivities of quantum noises in KAGRA

at each laser power with the design power centered. Similarly here, KAGRA

is assumed to be the Fabry–Perót Michelson interferometer. Actually there is

a signal recycling mirror with adopting the configuration of resonant sideband

extraction. Therefore, the radiation pressure noise is smaller and the effective

cavity pole is higher.

This sensitivity is high enough to detect the inspiral and merger of the

first GW event shown in the figure. The frequency dependence of the inspiral

is f−2/3. In this description in the log-log plot, the signal to noise ratio is

calculated as the area surrounded by the inspiral and the strain sensitivity of

the detector. That of the first event is over 10.
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With just increasing or decreasing the laser power, we cannot realize sen-

sitivity beyond the SQL. However, some methods to beat the SQL have been

proposed and a part of them has been already realized. We will see the meth-

ods and experiments in the next section.

Here we describe quantum noise of the GW detector such as KAGRA. In

next subsection, another fundamental noise, thermal noise is discussed.

2.2.3 Thermal noise

After a mechanical mode of an oscillator is excited, the oscillation amplitude

gets smaller in finite time. It is because the oscillator is coupled with thermal

bath and energy dissipation to the thermal bath occurs. According to the fluc-

tuation dissipation theorem (FDT) [45–47], the oscillator receives fluctuation

from the thermal bath corresponding to this energy dissipation in the equilib-

rium. The amplitude of the fluctuation is proportional to temperature of the

thermal bath and to the energy loss in one period of the ringdown oscillation.

In this subsection, we pick up two thermal noises such as suspension and

mirror thermal noise. Suspension system can be regarded as a link between

the oscillator and the thermal bath. Substrate of the mirror and the coating

material have internal losses and the energy dissipates as heat. In order to

decrease these thermal noises, test masses in KAGRA are cooled to cryogenic

temperature of around 20K, and the material of sapphire is used as the mirror

substrate and the suspension fibers because it has low internal loss at cryogenic

temperature. The detail about the thermal noise in KAGRA is described in

Appendix, where the suspension thermal noise with the temperature gradient

is focused on in particular.

Suspension thermal noise

In frequency domain, an equation of motion on one mechanical mode can be

written as (
−mω2 + iΓmω + km

)
x(ω) = F (ω), (2.71)

where km = mω2
m is the mechanical spring constant and Γm ≡ mγm(ω) shows

the mechanical decay of the mode. The decay of the mode after excitation x0
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is given by

x(t) = x0e
−γmt/2. (2.72)

This decay rate can be written by Q-value Qm = ωm/γm(ωm) and by loss angle

ϕm(ω) = γm(ω)ω/ω
2
m. When one period of the oscillation t = 2π/ωm passes,

the amplitude decreases by πϕm(ωm).

In FDT, power spectrum of thermal noise in force is given by [48]

Sf,th(ω) = 4kBTthRe

[
F (ω)

iωx(ω)

]
, (2.73)

where Tth is the temperature of the thermal bath. Therefore, the spectral den-

sity of suspension thermal noise can be described as hf,sust(ω) =
√

4kBTthγpendm,

where γpend is the decay rate of the pendulum mode.

Here we introduce two dissipation models. One is viscous model, where the

mode has friction and the oscillation is decayed by force proportional to the

velocity. The other is structure model, where the energy loss is due to internal

loss of the material. Frequency dependence of the decay rate and loss angle

can be written as differently,

γm =
ωm

Qm

, ϕm(ω) =
ω

Qmωm

: viscous, (2.74)

γm(ω) =
ω2
m

Qmω
, ϕm =

1

Qm

: structure. (2.75)

Thermal noise due to residual gas or magnet damping follows viscous model

and the decay rate is constant. On the other hand, leading thermal noise of

GW detectors introduced in this section is structural and the loss angle is

constant. Then, above frequency of pendulum mode the displacement spectral

density of suspension thermal noise is

hx,sust(ω) =

√
4kBTthω2

pendϕpend

mω5
, (2.76)

KAGRA suspension consists of multiple pendula, but here we assume one

pendulum whose resonant frequency is ωpend/2π = 1Hz. Sapphire fibers of

KAGRA have the loss angle of ϕpend ∼ 1×10−8 and the averaged temperature
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of Tth = 19K. The strain sensitivity of suspension thermal noise is given by

hsust(ω) =
2

L

√
4kBTthω2

pendϕpend

mω5
, (2.77)

because 4 mirrors move independently. The concrete value is

hsust(f) ∼ 3× 10−25

(
3 km

L

)(
fpend
1Hz

)√
Tth
19K

√
ϕpend

10−8

√
23 kg

m

(
100Hz

f

)5/2

.

(2.78)

Mirror thermal noise

Elastic modes of mirror substrate have their internal loss resulting in substrate

thermal noise. Moreover, dielectric coatings for mirrors also have the loss and

contribute to coating thermal noise. Resonant frequencies of elastic modes are

much higher than frequency region for observation, so the frequency depen-

dence of the strain sensitivity is f−1/2. The displacement can be calculated by

summarizing infinite elastic modes of the mirror, but the other simple method

for calculation of mirror thermal noise was proposed by Levin [49].

As a general formalism for FDT, displacement power spectrum of thermal

noise can be described as

Sx(ω) =
8kBTth
ω2

Wdiss

F 2
0

, (2.79)

whereWdiss is an averaged dissipation energy when the oscillating force, whose

amplitude is F0, is applied to the surface of the mirror. This dissipation energy

is given by

Wdiss = Umaxωϕm, (2.80)

where Umax is the maximum energy of elastic deformation while the force is

applied.

In the case of the substrate, this energy is [50]

Umax =
1− σ2

0

2
√
πE0w0

F 2
0 , (2.81)
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where σ0 is the Poisson ratio, E0 is the Young’s modulus of the substrate,

and w0 is the beam radius on the mirror. Then, the strain sensitivity of the

substrate Brownian thermal noise can be written as

hsubt(f) =
2

L

√
2kBTth
π3/2f

1− σ2
0

E0w0

ϕsub, (2.82)

where ϕsub is the loss angle of the substrate. A bulk of sapphire has very low

loss at cryogenic temperature. Here ϕsub = 1× 10−8 is assumed.

Next, we consider coating thermal noise. A dielectric multilayer is required

to realize the high reflectivity of the mirror for GW detectors. Typically two

materials which have different reflective index are laminated alternately. These

layers have the internal loss and result in the thermal noise. By using the

Levin’s approach similarly, the strain sensitivity of coating thermal noise is [51]

hcoat,i(f) =

√
2

L

√
2kBTth
π2f

dI,i + dE,i
E2

0Eiw2
0

ϕcoa,i

×

√
E2

i (1 + σ0)2(1− 2σ0)2 + E2
0(1 + σi)2(1− 2σi)

(1− σ2
i )

, (2.83)

where i = 1, 2 shows two materials for the coating, for example SiO2 and

Ta2O5, respectively, dI,i and dE,i are the thickness of each material on the

input and end mirrors, Ei and σi is the Young’s modulus and the Poisson ratio

of each material. The total sensitivity is hcoat(f) =
√
h2coat,1 + h2coat,2.

Another significant thermal noise is due to a thermo-elastic effect. When

the substrate is deformed by an external force, temperature gradient arises

and the distribution is relaxed at a time scale given by the thermal conductiv-

ity of the substrate. This energy loss is thermo-elastic damping. The strain

sensitivity of the thermo-elastic noise is given by [52,53]

hthel(f) =
2

L

√
4kBT 2

thα
2
0(1 + σ0)2w0√
πκ0

J(Ωc), (2.84)

J(Ωc) = Re

[
eiΩc/2(1− iΩc)

Ω2
c

(
Erf

[√
Ωc(1 + i)

2

]
− 1

)]
+

1

Ω2
c

−

√
1

πΩ3
c

, (2.85)
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where α0 is the thermal linear expansion, κ0 is the thermal conductivity, and

Ωc = f/fcut is the frequency normalized by cut off frequency of thermal relax-

ation, fcut = κ0/(πC0w
2
0), where C0 is the specific heat per unit volume. The

frequency dependence of the thermo-elastic noise is f−1/4 at f ≪ fcut and f
−1

at f ≫ fcut.

In KAGRA parameters, the relation of the amplitude of each mirror ther-

mal noise around observation frequency region is hcoat > hthel > hsubt. Here

we show the concrete value of the coating thermal noise as an example. The

mirror temperature is set to Tth = 22K in the design sensitivity. The coatings

are multilayers of SiO2 (i = 1) and Ta2O5 (i = 2). The Young’s modulus

and the Poisson ratio of each material are E0 = 400GPa, E1 = 73.2GPa,

E2 = 140GPa, σ0 = 0.29, σ1 = 0.16, and σ2 = 0.23. The input mirror

has a little transmissivity, on the other hand the reflectivity of the end mir-

ror is almost one. Therefore, the coating thickness of mirrors are different,

dI,1 = 2.2µm, dI,2 = 1.4µm, dE,1 = 3.9µm, dE,2 = 2.6µm. The loss angle of

each coating are ϕcoa,1 = 3 × 10−4 and ϕcoa,2 = 5 × 10−4. The beam radius

on the mirrors is w0 = 3.5 cm. Then the strain sensitivity of coating thermal

noise in KAGRA is

hcoat(f) ∼ 2× 10−24

(
3 km

L

)(
3.5 cm

w0

)√
Tth
22K

√
100Hz

f
. (2.86)

This is the largest noise except for quantum noise around 100 Hz in KAGRA,

but better than that of other GW detectors because of the cryogenic operation.

2.2.4 Other technical noises

In previous subsection, we described two fundamental noises of GW detectors

such as quantum noise and thermal noise. GW detectors have so many other

noises. In this subsection they are shown, especially with picking up seismic

noise and laser frequency noise.

Seismic noise

The ground always moves due to activities of the earth. The mirror motion

is excited not only by the earthquake but also by continuous shaking. The

31



displacement of the seismic noises typically

√
Sseis(f) ∼ 10−7

(
1Hz

f

)2

m/
√
Hz. (2.87)

For example, at 100Hz the ground moves by ∼ 10−11m/
√
Hz. When we

realize the strain sensitivity of ∼ 10−24, reduction of ten orders of magnitude

is needed.

In order to isolate the mirrors from the seismic noise, we make use of

a character of multiple suspension system. An equation of motion of one

pendulum whose spring constant is km = mω2
m can be written as

mẍ = −km(x−X), (2.88)

where x and X are coordinates of the pendulum and the ground. In frequency

domain the transfer function from the ground motion to the pendulum dis-

placement is given by
x

X
=

ω2
m

ω2
m − ω2

. (2.89)

This means that the seismic noise is reduced by f−2 above the resonant fre-

quency. In the same way, multiple pendula with n stages have attenuating

factor of f−2n. In KAGRA, 8-stage pendula are used for the vibration isolation

system and the seismic noise is suppressed enough not to limit the sensitivity.

Laser frequency noise

Laser light has fluctuation of the frequency and it can be a significant noise.

When the optical cavity is on resonance, the round trip length is n times

of the wave length of the laser, so 2L = nc/fL is satisfied. If the cavity

is shorter by ∆L, the corresponding laser frequency gets higher by ∆f , and

hence 2(L − ∆L) = nc/(fL + ∆f) holds. Subtracting these equations and

assuming L≫ ∆L and fL ≫ ∆f , we can get the relation of the displacement

and frequency change of the cavity as

∆L

L
=

∆f

fL
. (2.90)
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In principle this noise contributes to the common signal, not to the differential

signal, so does not limit the sensitivity of the detector with common mode

rejection. However, the common mode rejection ratio is not infinite, and the

frequency noise is the issue. To realize the sensitivity of h ∼ 10−24, we have to

suppress the frequency noise to ∆f ∼ 10 nHz/
√
Hz with assuming the common

mode rejection ratio is 100. However, typical fluctuation of laser frequency is

around ∆f ∼ 100Hz/
√
Hz at 100Hz. Therefore, we need to reduce it by

10 orders of magnitude. Multistage frequency stabilization is applied at a

reference cavity with input optical table, an input mode cleaner of laser light

to the interferometer, and a summation signal of both arms.

Other noises

There are so many other noises in real detectors. Here we introduce noises

which were relatively large in O1 of advanced LIGO in Livingston.

The strain sensitivity of advanced LIGO was limited by shot noise above

100Hz. Around 10Hz, coupling noise resulting from control of the angu-

lar degrees of freedom was dominant. The angular control is necessary for

suppressing the residual angular motion due to seismic noise and eliminating

Sidles–Sigg instability of the arm cavities [54]. The control couples with the

GW signal port.

Measured noise between 15Hz to 100Hz was not explained well. A part

of noise was actuator noise caused by excitation due to the dark noise of the

actuator driver. Coupling noise from control of signal recycling cavity length

was relatively large. Residual gas noise was also the issue. It is divided by two

types. One is a kind of thermal noise caused by collision of the mirrors and gas

molecules randomly. This effect is enhanced by the effect that the molecules

kick more times than usual because of a narrow gap between the test mass

and the recoil mass. It is called squeezed film damping. The other is a kind of

phase noise induced by intersection of molecules across the beam in the cavity.

In this section various noises of GW detectors are shown. Next, we focus

on quantum noise and discuss how it can be reduced.
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2.3 Quantum noise reduction

Quantum noise is the most fundamental noise in the GW detector, and limits

the sensitivity around almost all frequency region. Therefore, the reduction of

quantum noise contributes the most directly to improving the sensitivity and

to observation of more GW events. It seems difficult to reduce quantum noise,

especially to beat the SQL because it derives from the Heisenberg’s uncertainty

principle. However, some methods have been proposed to suppress quantum

noise below the SQL.

We introduce two methods for reduction of quantum noise. The first is

injection of squeezed light, whose vacuum field is squeezed to one direction of

two quadratures of the laser light. This method is changing the vacuum field

causing the quantum noise. Second, a homodyne detection is used. In this

scheme we change the readout quadrature of the output laser light.

2.3.1 Input squeezing

Quantum noise can be described as the vacuum field fluctuation of the laser

light. First of all, the vacuum state of the laser light is introduced [55].

Vacuum state

A quantized electromagnetic field E(t) is given by

E(t) = i
∑
k

√
ℏωk

2ϵ0

[
âku(r)e

−iωkt − â†ku(r)
∗eiωkt

]
, (2.91)

where ϵ0 is the dielectric constant of vacuum, ωk is the angular frequency

of each mode, and u(r) is the spatial mode function. âk is the annihilation

operator of the mode and satisfies

[âk, âk′ ] = [â†k, â
†
k′ ] = 0, [âk, â

†
k′ ] = δkk′ . (2.92)

Here we focus on one mode of the laser light frequency. The quadrature
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X2: Phase
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+
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Vacuum

End mirror
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Figure 2.7: Schematic pictures of the vacuum state and the incidence to the
Michelson interferometer. We describe the amplitude and phase of the laser
light as the horizontal and vertical axis. This vacuum fluctuation enters the
Michelson interferometer and causes the quantum noise.

operators are defined as

X̂1 = â+ â†, X̂2 = −i(â− â†), (2.93)

where X̂1 and X̂2 are the amplitude and phase quadrature respectively. The

commutation relation of these quadratures is

[X̂1, X̂2] = 2i, (2.94)

and the Heisenberg’s uncertainty principle is

∆X1∆X2 ≥ 1. (2.95)

Even without the coherent amplitude of laser light, the vacuum field has

this fluctuation. This is shown with a ball picture on the quadrature plane.

Quantum noise on the differential signal of the Michelson interferometer can

be considered to be caused by injection of the field from the anti-symmetric

port of the beam splitter. The amplitude and phase quadrature corresponds

to radiation pressure noise and shot noise respectively.

In Fig. 2.7, we show the schematic pictures of the vacuum state of laser light

and its incidence to the interferometer. The vacuum has the same fluctuation
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Phase squeezing

Figure 2.8: Schematic pictures of the squeezed vacuum state at different
squeezing angles. We describe the squeezed states of 6 dB at three squeez-
ing angles, λsq = 0, π/4, and π/2. The states of λsq = 0 and π/2 are called
amplitude and phase squeezing respectively.

in the amplitude and phase quadrature. Here we define the amplitude and

phase directions as the horizontal and vertical ones. The field from the anti-

symmetric port has the differential effect [56].

Squeezed state

A squeezed state of laser light has smaller deviation on one quadrature than

that of the vacuum state. For example, in order to keep the uncertainty

principle Eq. (2.95), the modified deviation of two quadratures is given by

∆X1 = z, ∆X2 = 1/z, (2.96)

where z is positive and real number.

The squeezing factor is described with the unit of dB. For example, when

z = 2, the deviation of the fluctuation is Vdev = 1/4. This value corresponds to

−10 log10 Vdev ≃ 6 dB, which is called 6 dB squeezing. Moreover, the parameter

of

r = −1

2
loge Vdev (2.97)

is also used. It is also called the squeezing factor. A squeezed direction is

36



SHG

Nonlinear crystal

OPO

Squeezed vacuum

Circulator

Figure 2.9: A schematic picture of generation of the squeezed light and its
injection. The SHG and OPO contain the nonlinear crystals in the cavities.
Orange mirrors are dichroic ones which have the high reflectivity of the green
light and the high transmissivity of the red light. The circulator has the system
of PBSs and changing the polarization of the light, so it can reflect the light
from one direction and transmit from the perpendicular direction.

expressed as a squeezing angle λsq. λsq = 0 and π/2 means the amplitude

and phase squeezing respectively. We show squeezed states of 6 dB at different

squeezing angles with the ball pictures in Fig. 2.8.

The squeezed light used in the GW detectors is generated by an optical

parametric oscillation (OPO) [58]. OPO consists of a cavity containing a

nonlinear optical crystal inside. With second harmonic as a pump light, the

output of fundamental light is squeezed due to a χ(2) nonlinear interaction,

down conversion effect of the crystal. The second harmonic (typically green

light) can be made by a cavity which is called a second harmonic generation

(SHG). The SHG has also the nonlinear crystal, and the up conversion effect

occurs with the fundamental light resonating in the cavity.

We can make the squeezed vacuum with the SHG and OPO. The quantum

noise of the Michelson interferometer can be reduced by injecting the generated

squeezed light to the interferometer from the anti-symmetric port. In Fig. 2.9,
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Figure 2.10: Quantum noises at different squeezing angles in frequency inde-
pendent squeezing and frequency dependent squeezing. The red, green, and
blue line show the quantum noises at λsq = 0, π/4, and π/2. The blue line
shows the sensitivity of frequency dependent squeezing. The squeezing level is
6 dB in all cases.

we show a schematic picture of generation of the squeezed light and its injection

to the interferometer.

Frequency independent squeezing

We can adjust the squeezing angle by controlling the OPO system. The squeez-

ing factor is determined by the loss in the OPO. Here we discuss how the strain

sensitivity of detectors is changed when the squeezed vacuum, which is inde-

pendent of the frequency, is injected. The strain sensitivity without input

squeezing is shown in Eq. (2.68). The power spectrum is changed by squeezed
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light to [57]

Ssq =
h2SQL

2

(
1

K
+K

)
(cosh 2r − cos[2(Φ− λsq)] sinh 2r) , (2.98)

where Φ = arccotK.

The dependence of the strain sensitivity at KAGRA parameters on the

squeezing angle is plotted in Fig. 2.10. When λsq = π/2 (the phase squeezing),

the spectrum can be written as

Ssq(λsq = π/2) =
h2SQL

2

(
1

Ke2r
+Ke2r

)
. (2.99)

In other words, the squeezing effect is the same as increasing the input power

to the interferometer by a factor of 1/Vdev. In the case of λsq = π/4, the

sensitivity is below the SQL. It is because the amplitude and phase fluctuation

of the vacuum is no longer independent. On the other hand, the sensitivity is

worse at the frequency outside the best region.

Frequency dependent squeezing

When we realize λsq(ω) = Φ(ω) = arccotK(ω), that is, we give the optimal

frequency dependence to the squeezing angle at Eq. (2.98), the sensitivity is

given by [57]

Ssq =
h2SQL

2

(
1

K
+K

)
e−2r. (2.100)

Therefore, quantum noise at all frequency range gets smaller than the original

by a factor of e−2r.

The frequency dependence of the squeezing angle is as follows. At low fre-

quency, we need to suppress radiation pressure noise, so the amplitude squeez-

ing (λsq = 0) is necessary. On the other hand, shot noise can be reduced by

the phase squeezing (λsq = π/2) at high frequency. At the SQL frequency

where K = 1, the angle of λsq = arccot1 = π/4 is needed. In order to make

such squeezed vacuum, we have to prepare the frequency independent phase

squeezing and rotate the angle at low frequency by 90◦.

Such a rotation can be made by a cavity whose pole is near the SQL
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Figure 2.11: A schematic picture of a filter cavity and generation of the
frequency dependent squeezed vacuum. The injected frequency independent
squeezed state is shown at the left. The reflection from the filter cavity has
the frequency dependence of the squeezing angle on the frequency.

frequency of the GW detectors. This cavity is called a filter cavity. We give the

detuning of the cavity pole frequency and input the phase squeezing vacuum to

the filter cavity. Then, the low frequency component of the vacuum enters the

filter cavity and high frequency one is reflected off directly because of the cavity

pole. The squeezing angle at low frequency is rotated by −90◦ and becomes the

amplitude squeezing. The strain sensitivity at all frequency range is changed

to be better when the frequency dependent squeezed vacuum is injected. In

Fig. 2.11, we show the schematic picture of the filter cavity and generation of

the frequency dependent squeezed vacuum.

We can understand the effect of the filter cavity with a phasor diagram in

Fig. 2.12. Each frequency component can be considered to be a sideband of

the career. Actually there is no career in the vacuum state in the squeezed

light but we can assume the virtual one. The sidebands move randomly for

the career in the vacuum state, however, the upper and lower sidebands act

with correlation in the squeezed state.

As shown later with Eq. (3.14), when the career frequency is detuned by

the cavity line width to the red direction, the phase of the reflected career is

shifted by −90◦. Sidebands at low frequency compared with the cavity line

width have the same shift as the career, so the squeezing angle gets the rotation
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Figure 2.12: Dependence of the rotation angle on the sideband frequency. The
dotted black arrow shows the virtual career and the blue and red arrows show
the upper and lower sideband. At the bottom we show the dependence of the
squeezing angle of the vacuum state out of the filter cavity on the sideband
frequency normalized by the detuning.
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by around −90◦. On the other hand, the upper and lower sidebands at high

frequency get different phase shift. The shift of the upper and lower sidebands

are −180◦ and 180◦ respectively, so the angle is not changed.

Around the frequency near the cavity line width, the rotation angles are

varying. When the sidebands frequency is
√
2 times larger than the line width,

their phase shift are −135◦ and 45◦. In that case, the rotation angle is −45◦

and the squeezing angle becomes 45◦. As mentioned in the previous section,

λsq = π/4 is required at the SQL frequency. Thus, the pole of the filter cavity

has to be the SQL frequency over
√
2. In KAGRA, the SQL frequency is ∼ 70

Hz, and hence the cavity pole has to be ∼ 50Hz. It is so low frequency for

the optical cavity. The filter cavity is required to be enough long and to have

high finesse with low optical loss.

2.3.2 Homodyne detection

In the previous subsection, we discuss reducing the quantum noise with the

active action of injection of the squeezed light. Here the change of readout

method to evade the quantum noise is described. To be exact, this is not

quantum noise reduction because the shot noise can not be reduced, but we

can beat the SQL with the method.

The usual PD can measure the amplitude quadrature of the laser light.

With the Michelson interferometer, the phase quadrature can be measured.

Moreover, with the method of homodyne detection, we can take the arbitrary

angle of the quadrature plane for the measurement. The basical set up for

homodyne detection is shown in the left of Fig. 2.13. We see the interfer-

ence between target light and local oscillator (LO) light at various phases by

changing the optical path length of the local light. The measurement phase is

called a homodyne phase labeled by ξ. The amplitude and phase measurement

means ξ = 0 and π/2 respectively.

Ponderomotive squeezing

The amplitude of quantum noise in the interferometer also can be described

with a ball picture [57]. Assuming the input field is the vacuum state, the

shape of the output field turns to be an ellipse at low frequency, that is, radi-
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Figure 2.13: A schematic picture of the homodyne detection and the pondero-
motive squeezing. The output from the interferometer and the LO light are
combined at the BS and the signals of two PDs are subtracted. The homo-
dyne angle can be changed by shifting the phase of the LO light with changing
the the length of the optical path by the PZT. In the right the input and
output field are shown. P moves to P’ due to the ponderomotive squeezing.
Here we should note that the optimal angle of the homodyne detection Φ and
the squeezing angle of the output field ϕ are different. They are related by
2tanΦ = tan 2ϕ, thus always Φ > ϕ is satisfied. These values get close as they
approach to zero.

ation pressure noise dominant regime. It is because the amplitude fluctuation

of the vacuum affects the additional phase fluctuation by K. This is a kind

of squeezing effect and called ponderomotive squeezing. Combining the homo-

dyne detection and selecting the appropriate homodyne angle, we can evade

the radiation pressure noise.

It is understood by a picture in the right of Fig. 2.13. After the vacuum

field enters the interferometer, the amplitude fluctuation causes the phase fluc-

tuation with its radiation pressure and the vacuum circle is squeezed pondero-

motively. The measurement value is decided by the projection of the signal

and noises to the homodyne angle axis. For example, we consider that the

amplitude of the signal and noise are the same in usual phase measurement

ξ = π/2. When we do homodyne detection whose angle is Φ, the signal am-

plitude becomes larger than that of the noise.
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Figure 2.14: Quantum noises at different homodyne angles with the pondero-
motive squeezing. The red, green, and blue lines show the quantum noises at
the homodyne angles of ξ = π/16, π/8, and π/4 respectively. At one frequency
the radiation pressure noise is cancelled and the sensitivity reaches the shot
noise.

The strain sensitivity is changed to

Spo =
h2SQL

2K
[
1 + (cot ξ −K)2

]
. (2.101)

When we do the usual phase measurement ξ = π/2, Spo = Squ. In Fig. 2.14, the

sensitivities in KAGRA parameters at different homodyne angles are shown.

At the SQL frequency, K = 1 and the optimal homodyne angle is ξ = π/4. The

sensitivity of the total quantum noise beats the SQL and reaches the shot noise

limit at the SQL frequency. In this measurement the mirror oscillates due to

the radiation pressure noise actually, but we do not observe it by choosing the

appropriate angle. Therefore, this method is also called back action evasion.

Moreover, if we set the frequency dependent homodyne angle as ξ(ω) =
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arccotK(ω) = Φ(ω), the radiation pressure noise can be evaded at all frequen-

cies, which is called variational readout. Only the shot noise is left in the strain

sensitivity. This situation can be realized with an output filter cavity to rotate

the ponderomotively squeezed vacuum from the interferometer. We note that

this frequency dependent angle is the same as the optimal squeezing angle at

the frequency dependent squeezing except for the sign. That is to say, in order

to do the variational readout, we have to prepare the same filter cavity and do

the homodyne detection at ξ = π/2.

Detuned signal recycling cavity

In advanced GW detectors, a signal recycling mirror is used for enhancing the

GW signal. The mirror is placed after the anti-symmetric port of the beam

splitter. The cavity with the signal recycling mirror and the power recycling

Michelson interferometer as a compound mirror is kept on anti-resonance. This

condition is called resonant sideband extraction (RSE). The system raises the

effective cavity pole of the arm cavities and avoids decreasing of the sensitivity

at high frequency. The highest sensitivity gets worse with this method con-

sidering only the quantum noise, however, it is still effective due to the other

noises at low frequency in terms of the binary compact star range.

On the other hand, it has been proposed that the highest sensitivity gets

better at the cost of the high sensitivity range with the detuned signal recycling

cavity. The homodyne detection is combined with making use of the detuned

cavity. The strain sensitivity of quantum noise is given by [59]

Sdsr =
h2SQL

2K
(C11 cos ξ

′ + C21 sin ξ
′)2 + (C12 cos ξ

′ + C22 sin ξ
′)2

τ 2|D1 cos ξ′ +D2 sin ξ′|2
, (2.102)

with

C11 = C22 = (1 + ρ2)

(
cos 2ϕ+

K
2
sin 2ϕ

)
− 2ρ cos 2β,

C12 = −τ 2(sin 2ϕ+K sin2 ϕ), C21 = τ 2(sin 2ϕ−K cos2 ϕ),

D1 = −(1 + ρe2iβ) sinϕ, D2 = −(−1 + ρe2iβ) cosϕ, (2.103)

where ρ and τ are the amplitude reflectivity and transmission of the signal
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Figure 2.15: Quantum noises at different homodyne angles and detunings.
The red and green lines show the sensitivities at the homodyne angles of ξ = 0
and −π/4 on the anti-resonance of the signal recycling cavity. The blue and
brown lines show the sensitivities with the detuning of 0.08 rad from the anti-
resonance.

recycling mirror (ρ = 0.92 in KAGRA), β = atan(ω/ωp) is the phase shift in

the arm cavity, and ϕ is the detuning phase. ϕ = π/2 is satisfied in the RSE

condition. The homodyne angle ξ′ in this equation is defined differently from

the usual one ξ. It can be calculated as ξ = ξ′ + ϕ.

The strain sensitivity curves of quantum noise are shown with some de-

tuning phases and homodyne angles in Fig. 2.15. With the signal recycling

cavity on the anti-resonance (the RSE condition), the effective cavity pole is

decreased. The sensitivity is improved in almost all frequency ranges. It is es-

pecially useful in the detector with low cavity pole such as KAGRA. Moreover,

we can realize the better maximum sensitivity even below the SQL with the

detuning from the anti-resonance. This improving is also useful in KAGRA

because the cryogenic system has better sensitivity around 100Hz due to the
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Figure 2.16: BRSE and DRSE sensitivities of KAGRA. The magenta, green,
blue, and red lines show the displacement noises due to the seismic, suspension
thermal, mirror thermal, and quantum noises. The total noise is given by
the black line. The solid (dotted) lines mean the strain sensitivity of DRSE
(BRSE).

low mirror thermal noise and we can dig the sensitivity more deeply.

2.3.3 Motivations for reduction of quantum noises

Scientific motivations for reduction of quantum noises are written in this sub-

section with KAGRA design sensitivities as an example. Fig. 2.16 shows the

design sensitivities of KAGRA with two configurations. One is broadband RSE

(BRSE) type without the homodyne detection or the detuning of the signal

recycling cavity. The other is detuned RSE (DRSE) type with the homodyne

phase of 135.1◦ and the detuning phase of 86.5◦. Other detailed parameters

are described in Appendix B. With these techniques, the total sensitivity of

KAGRA is improved by a factor of about 2 around 100Hz.
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This leads to enhancement of an inspiral range for binary neutron stars

from 128Mpc to 153Mpc. The inspiral range R is defined by

R =
0.442

ρSN

√
5

6

GMc

π2/3c2

[∫ fmax

fmin

f−7/3

Sn(f)
df

]1/2
, (2.104)

where ρSN is the signal to noise ratio of GW detection, Mc is the chirp mass

of the binary, and Sn(f) is the square of the strain sensitivity of the detector.

The factor of 0.442 is a sky average constant. In the case of calculation related

to KAGRA, we set that ρSN = 8, fmin = 10Hz, and fmax is the ISCO frequency

in Eq. 2.18. The improvement factor of the inspiral range for binary neutron

stars is 1.2.

The factor seems to be small, but it has significant impacts in the case of

GW detectors. The covered volume by the detectors is determined by the third

power of the inspiral range. Thus, the volume is expanded by a factor of 1.23 ≃
1.7. That is to say, detection number becomes 1.7 times larger. Moreover,

typical signal to noise ratio of GWs gets bigger by the same factor. They

contributes to 1.7 times smaller errors of astrophysical parameters estimated

by GWs such as the Hubble constant. Also, Estimation accuracy of the number

of binary compact stars is improved by
√
1.7 ≃ 1.3.

As described above, the dominant noises are quantum noises in GW de-

tectors and the reduction is meaningful even with a small factor. The second

dominant noise around 100Hz is the coating thermal noise, which is low be-

cause of the cryogenic operation of KAGRA. It is more important to reduce

quantum noises around 100Hz in order to get the better sensitivity compared

with other GW detectors. Considering the KAGRA configuration, one of the

goals is reducing quantum radiation pressure noise by half for demonstration of

the reduction in GW detectors. The demonstration should be done by exper-

iments on the table-top scale ahead of the actual detectors, and the first step

is observing the quantum radiation pressure noise on a mechanical oscillator.

In this section, we discuss how to reduce quantum noise in GW detectors

with some techniques. Next, experimental previous works on quantum noise

are introduced, and left works are shown.
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2.4 Previous works

Many experiments have been done to test the reduction methods introduced

in the previous section. We need to check that the methods can be actually

applied to the real GW detectors. The testing process has two steps: first,

observing the quantum noise, and second, reducing that.

In this section we describe previous works on quantum noise reduction.

Here, in particular, works at detector-band frequency are focused on. Obser-

vation and reduction of shot noise has been reported by many experiments

including both the table-top scale and the real detectors. However, on radia-

tion pressure noise, there is only one experiment with success of observation

at ∼ 104Hz, and the measurement at detector-band frequency has not been

realized yet.

2.4.1 Generation and injection of squeezed light

We review works on generation of squeezed light at table-top scale firstly, and

next on injection of squeezed light to the real interferometers like the GW

detectors with confirmation of shot noise reduction.

Generation of squeezed light at table-top scale

Caves proposed that the quantum noise in GW detectors can be reduced with

squeezed light in 1981, and the first success of making the squeezed light was

done by Slusher et al. [60] in 1985. After that the squeezing level has been

progressed with time, up to 15 dB squeezing by Vahlbruch et al. [61] at MHz

region, where the field of laser light has almost the vacuum state without any

suppression of the classical amplitude and phase noise.

At the audio-band frequency, it is technically difficult to produce the squeezed

states because of the classical noises of the laser source. The first locked

squeezed state at audio frequency was done by McKenzie et al. [62], where

the squeezing was realized down to 100Hz in 2006. In 2012, 10 dB squeez-

ing around 10Hz was reported by Stefszky et al. [63]. The squeezing over

10 dB is not realistic well due to the optical loss especially in the context of

GW detectors, so we can say generation of squeezed light is already developed
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enough.

In 2015, the frequency dependent squeezing was realized by Oelker et al. [64]

at audio-band. They succeeded in rotating the squeezing angle at 1.2 kHz

by 90◦ with keeping the squeezing level of 2 dB. The rotation frequency of

the squeezed vacuum should be below 100Hz to improve the quantum noise

of advanced detectors, but this demonstration is the significant first step for

reduction of quantum noise at all frequency range.

Shot noise reduction at an interferometer

The first measurement of reduction of shot noise at a detectors-like interferom-

eter was reported by Goda et al. [65] in 2008. They improved the sensitivity

beyond the shot noise limit. Squeezed light was injected to a simple signal re-

cycling Michelson interferometer, where the shot noise was reduced by about

a half between 40 kHz and 100 kHz.

At a large detector scale, reduction of shot noise was demonstrated in 2011

by GEO600 in Hannover [66]. GEO600 is a prototype GW detector for the

second generation with the arms of 600m and the signal recycling Michelson

interferometer. It has a role of testing the advanced technique such as quantum

noise reduction. With the input of squeezed light, the shot noise was reduced

by 3.5 dB above 1 kHz.

Moreover, the demonstration at km-scale detectors was done at LIGO Han-

ford in 2013 [67]. In this experiment, the sensitivity of initial LIGO Hanford

was improved by 2 dB above 500Hz. There was no noise excess at low fre-

quency at the demonstration in both sites.

As we show the previous works in this subsection, it has much progress

to generate the squeezed light with the enough squeezing level and to reduce

the shot noise even at the real GW detectors. There is a plan to install the

squeezer and reduce the shot noise in advanced LIGO at O3.

2.4.2 Towards measurement of radiation pressure noise

In contrast to experiments on shot noise, there is still room for improvement

on experimental research of radiation pressure noise. It has been observed

for the radiation pressure noise to be dominant with such light mechanical
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oscillators as below ng scale, and in a part the back action evasion also has

succeeded as we describe the details in the next chapter. Their frequency

region is mainly MHz. It is much higher than the detector-band frequency.

However, the reduction of radiation pressure noise below 1 kHz has not been

realized yet, even the measurement of it either. Here we show experimental

works trying to measure the radiation pressure noise.

Lighter mirrors and cavities with higher finesse than the real detectors

are used in order to enhance the radiation pressure noise. Sakata et al. [16]

developed a Fabry–Perót Michelson interferometer with a 20-mg suspended

mirror. Due to the suspension of a single wire, the Sidles–Sigg instability [54]

occurred and they could not realize enough intra-cavity power to measure the

radiation pressure noise. This instability was caused by the negative spring

of the rotational mode of the test mass. When the mirror tilts, the torque of

the intra-cavity power works with enhancing the tilt. The method to avoid

this instability was developed by controlling the rotational mode of the other

heavier mirror which was a pair of the test mass [68,69].

Neben et al. [18] tried to measure radiation pressure noise on 1-g suspended

mirrors constructing a Fabry–Perót Michelson interferometer. They suspended

test masses with two suspension fibers to avoid the Sidles–Sigg instability.

However, thermal noise of bonding between the mirror and the suspension

fibers was the issue and radiation pressure noise was much below the measured

displacement.

Sub-gram scale cantilever flexures were developed by Nguyen et al. [21].

Their test masses were made of Aluminum and Niobium. The sensitivity was

also limited by the thermal noises of the fundamental modes of the cantilevers.

Westphal et al. [17] is planning to reach the SQL sensitivity with 100-g test

masses in a 10-m Fabry–Perót Michelson interferometer. The plan of Gräss

et al. [19] is testing back action evasion with a speed meter consisting of 1-

g mirrors. In the speed meter, the relative velocity of the test mass can be

measured with laser light traveling in the clockwise and the counter clockwise

direction in a Sagnac interferometer.

In our group, a 5-mg suspended mirror in a triangular cavity was devel-

oped [20]. The negative rotational spring by the Sidles–Sigg instability turns

to be positive in the case of the triangular cavity because of the one more
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sign flip at reflection. We succeeded in storing the intra-cavity power of 7W.

The power was around 50 times higher than that in the case of linear cavity.

The displacement sensitivity was limited by the laser frequency and intensity

noise. Even though the suspension thermal noise was estimated to be smaller

than the radiation pressure noise over 325Hz, that frequency was not radiation

pressure dominant band for the real GW detectors.

The sensitivity of advanced LIGO in O1 was close to the radiation pressure

noise compared with above experiments [70]. The signal (radiation pressure

noise) to noise (sum of the other noises) was ∼ 0.1 around 40-50Hz.

In 2018 at last, Cripe et al. [71] reported the first observation of radiation

pressure noise at wide frequency band. Their test mass was a 50-ng cantilever.

The signal to noise ratio was over 1 between 10 kHz and 50 kHz. The result

is a benchmark for radiation pressure experiments. The frequency region was

lower than MHz region, however, it was far from the detector band.

We summarize the noise to radiation pressure ratio of above previous works

in Fig. 2.17. Many experiments have not succeeded in observing the quantum

radiation pressure noise. Around the detector band, the most sensitive test

mass is that of LIGO at O1. The 50-ng cantilever is the unique oscillator

driven by radiation pressure, but the frequency region is different from around

100Hz.

2.5 Summary of this chapter

Gravitational waves bring us information which is not accessible with electro-

magnetic waves. Future detectors’ sensitivities are designed to be limited by

quantum radiation pressure noise. This noise is caused by the vacuum fluc-

tuation coupled with the laser light inside the arm cavities. It is important

to observe the noise ahead of the actual detectors and confirm the reduction

method. Displacement noises of previous works aiming at observation of the

radiation pressure noise were higher than the target by more than one order

of magnitude.
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Figure 2.17: The noise to radiation pressure ratio of previous works. We de-
scribe the results of ongoing experiments (the 100-g suspended disk by West-
phal et al. from AEI [17] and the 1-g suspended disk by Gräss et al. from
Glasgow [19]) as magenta points, done works (the 20-mg suspended disk by
Sakata et al. from NAOJ [16], the 1-g suspended disk by Neben et al. from
MIT [18], the 0.7-g cantilever by Nguyen et al. from ANU [21], the 5-mg sus-
pended disk by Matsumoto et al. from U Tokyo [20], and the 20-mg suspended
disk by Nagano et al. from ICRR [68]) as blue points, and different types (the
sensitivities of aLIGO O1 [70] and the 50-ng cantilever by Cripe et al. from
LSU [71]) as green dots.
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Chapter 3

Radiation pressure fluctuation

in optomechanics

Optomechanics describes interactions between mechanical modes of oscillators

and optical modes of laser light. The origin of the interaction is radiation pres-

sure of the light. Photon of the laser light gives momentum to the mechanical

oscillator at the hitting, when the oscillator feels the pressure. In this chapter,

we describe the radiation pressure effect and its quantum fluctuation from a

viewpoint of optomechanics.

First, background of optomechanics is introduced in Section 3.1, followed

by theories of a optomechanical Hamiltonian, an optical cavity, an optical

spring, and radiation pressure fluctuation in Section 3.2. Next, we introduce

phonon number and optomechanical cooling of the oscillator in Section 3.3.

At the last in Section 3.4, previous works in optomechanics are discussed.

3.1 Background

One of the most fundamental goals of optomechanics is to realize macroscopic

quantum states such as superposition of massive oscillators and to test the

principle of quantum mechanics. In this section, the fundamental motivation

and application of optomechanics are shown.
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3.1.1 Massive superposition

Quantum mechanics can be well applied to microscopic physics in the scale of

atoms and molecules. On the other hand, how about the macroscopic scale?

In 1935, Schrödinger did a thought experiment whether a cat is in the su-

perposition states of alive or dead state [72]. From a viewpoint of quantum

correlation length, many experiments have been demonstrated and behaved in

the quantum mechanics. However, a truly Schrödinger’s cat state, that is to

say, the superposition of such the massive degree of freedom as kg scale has

not been realized yet.

It is pointed out that quantum mechanics might not hold in strong grav-

itational fields. It is because the gravity can not be quantum, or there exists

the gravitational decoherence [73]. Diósi [74] and Penrose [75] pointed out

that the gravity causes wave function collapse. Ghirardi et al. [76] proposed

continuous spontaneous localization (CSL) model, where the localization of

the wave function is always occurring. In these theories the energy dissipation

of a massive degree of freedom due to the localization can be observed as a

kind of classical noise, which is detectable with feasible techniques. The CSL

model attracts much attention because it can be tested experimentally on the

two parameters space, the correlation length rCSL and the collapse rate λCSL.

The force noise spectrum due to the CSL effect is given by [77]

Sf,CSL =
4πℏ2ρm
m2

0d
λCSLr

2
CSL, (3.1)

where ρ and m are the density and mass of the oscillator, m0 is the nucleon

mass, and d is the characteristic length of the oscillator. Some experiments

have set the bounds on the CSL parameters [79–83].

In addition to the test of the CSL model, it is also an outstanding goal to

create superposition states of massive oscillators and to observe the behavior

after that, for example, to measure the decoherence time of the superposition.

Optomechanics can be a great test bench for making such states. In the

next subsection, we describe how optomechanics can be applied to test the

macroscopic quantum mechanics.
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3.1.2 Application of optomechanics

Optomechanics provides the platform to search for massive superposition states

with the effect cooling of mechanical modes drastically. Similarly to laser

cooling of trapped atoms, the laser light in the optical cavity can suppress the

motion of mirrors of the cavity by the radiation pressure. It is possible to cool

the mechanical mode even to its quantum ground state.

Marshall et al. [24] proposed the method of making superposition state

of a macroscopic mirror if we can prepare the mirror cooled almost to the

ground state. The cooled mirror is used as an end mirror of Fabry–Perót

Michelson interferometer. A single photon is injected to the interferometer.

If the mirror is fixed, the entangled state of which arms the photon exists in,

|ψ⟩ = (|0⟩A|1⟩B + |1⟩A|0⟩B)/
√
2, is observed. When the one end mirror is in

its ground state |0⟩m, time evolution of the wave function is given by

|ψ(t)⟩ = 1√
2

[
|0⟩A|1⟩B|0⟩m + eiζ

2(ωmt−sinωmt)|1⟩A|0⟩B|ζ(1− e−iωmt)⟩m
]
, (3.2)

where ζ = (ωL/Lωm)
√
(ℏ/2mωm), ωm and m are the angular resonant fre-

quency and mass of the end mirror respectively, L is the cavity length, and ωL

is the angular frequency of the single photon. After a one period of the mirror

the interference visibility of photon is revived if the entangled state holds. If

decoherence occurs, the visibility goes to zero, so we can measure the decoher-

ence time of the system. This entangled state involves the translational mode

of the center of the end mirror mass.

Also from a viewpoint of a GW detector, the field of optomechanics is

developed. The sensitivity of the detector can reach the SQL. It means that

the system can test the quantum behavior of a massive mirror whose mass

is even over kg scale. Ebhardt et al. [84] proposed that the entanglement of

two mirrors can be generated with a power recycling Michelson interferometer

and measurement of common and differential modes, whose sensitivities are

reaching the SQL. Due to the quantum correlation, the wave function of the

system Ψ(xE, xN) = ψc[(xE + xN)/2]ψd[(xE − xN)/2] cannot be separable,

where xE and xN are the position of two end mirrors, ψc and ψd are the

wave function of the common and differential mode. The entanglement can be
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shown by calculating the logarithmic negativity of the system to be over zero.

Furthermore, optomechanical demonstration of macroscopic quantum state

has been proposed such as measurement-induced superposition with pulse laser

and a quantum tomography [85].

Before moving to the next section, the formula of the SQL is noted. In the

previous chapter we discuss only the free mass SQL. However, the true SQL

in the force spectrum is described as [86]

Sf,SQL =
2ℏ

|χm(ω)|
+ 2ℏωmγmm, (3.3)

where χm = 1/[m(ω2
m − ω2 + iγmω)] is the susceptibility of the oscillator. The

suspended cavities like a GW detector can reach the SQL at free mass range

ω ≫ ωm. On the other hand, the optomechanical device can be cooled to the

SQL at ω = ωm, which means the ground state cooling. The second term of

Eq. (3.3) shows the mechanical zero-point fluctuation. The displacement due

to the zero-point fluctuation is the same as that of the first term at ω = ωm.

3.2 Theories on optomechanics

Optomechanical effects are enhanced by optical cavities consisting of mechan-

ical oscillators. It is clear to apply the optomechanical description to the

cavities and the effect such as an optical spring. In this section, we describe

optomechanical theories of the Hamiltonian, the optical cavity, the optical

spring, and quantum radiation pressure fluctuation.

3.2.1 Optomechanical Hamiltonian

The starting points are the Hamiltonian of the optomechanical system and

deriving the characteristics of the optical cavity. We denote the creation and

annihilation operators of the laser photon as â† and â, those of the phonon

of the mechanical mode as b̂† and b̂, respectively. The Hamiltonian of the

optomechanical system can be shown as

Ĥ = ℏωc(x)â
†â+ ℏωmb̂

†b̂, (3.4)
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Figure 3.1: A conceptual scheme of optomechanics. The cavity consists of
facing mirrors. One of them has a mechanical mode b̂. The mode couples
with the photon field in the cavity â. Their coupling constant is g called the
optomechanical coupling constant.

where ωc(x) is the angular resonant frequency of the photon in the cavity and

the function of the oscillator position x.

It is assumed that the tiny fluctuation of the oscillator around one resonance

of the cavity even though there are other resonances the wave length away. In

other words, x≪ λL is assumed. In this approximation, the resonant frequency

of the cavity is changed linearly by x,

ωc(x) = ω0 − gx, (3.5)

where ω0 is the angular resonant frequency of the cavity at the natural position

of the oscillator, g is the optomechanical coupling constant. The constant can

be written as

g =
2ω0 cos β

Lr

, (3.6)

where β is the incident angle of the light and Lr is the round trip length of the

cavity.

In Fig. 3.1, the conceptual scheme of optomechanics is shown. The photon

59



of the laser light in the cavity and the phonon of the mechanical oscillator are

coupled via the optomechanical coupling constant.

3.2.2 Optical cavity

In this subsection we describe the optical cavity. Time evolution of the anni-

hilation operator of the photon is given by

˙̂a = − i

ℏ
[â, Ĥ]− κâ+

∑
l

√
2κlÂl. (3.7)

The first term comes from the Heisenberg equation, the second term shows

the total transmission including the loss of the intra-cavity field, and the third

term is the input of the photon at each port (κ =
∑

l κl). Âl [Hz] is the driving

field of the each port.

Substituting Eq. (3.4) for Eq. (3.7), and considered in the rotating frame

at the laser frequency ωL (i.e. â→ âe−iωLt), we get

˙̂a = −[κ− i(ωL − ω0 + gx)]â+
∑
l

√
2κlÂl. (3.8)

Then, the time-dependent parameters are divided to the time-averaged value

and the fluctuation component,

â = ā+ δâ, x = x̄+ δx, Âl = Āl + δÂl. (3.9)

In the first order approximation, the equations for each component can be

written as

0 = −(κ− i∆)ā+
√
2κinĀin, (3.10)

δ ˙̂a = −(κ− i∆)δâ+ igāδx+
∑
l

√
2κlδÂl, (3.11)

where ∆ = ωL − ω0 + gx̄ represents the detuning between the laser frequency

and the resonant frequency of the cavity. The index of ”in” means the input

port of the cavity.

The power of reflection and transmission of the cavity can be calculated by
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Figure 3.2: Definition of the indices of the driving field and the input and
output ports. The input Âin and output Âref of the input mirror κin, and the
output Âtrans of the end mirror κout has large coherence amplitude. Actually
there is loss from the cavity of κloss with small amplitude. The input fields
from the output port Âout and the loss port are in the vacuum states.

these equaitons. The input-output relation is given by [55]

Âin + Âref =
√
2κinâ,

Âout + Âtrans =
√
2κoutâ, (3.12)

where the each index is shown in Fig. 3.2. Here the loss of the cavity is

neglected. With Eq. (3.10), the averaged amplitude of the photon number of

the cavity is written as

ā =

√
2κin

κ− i∆
Āin. (3.13)

Substituting Eq. (3.13) and Āout = 0 for Eq. (3.12),

Āref =

(
−1 +

2κin
κ− i∆

)
Āin,

Ātrans =

√
4κinκout
κ− i∆

Āin (3.14)

are satisfied. Therefore, the power of the reflection Pref = ℏωL|Āref |2 and the
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Figure 3.3: Normalized power and phase of the reflection and transmission on
the normalized detuning. The blue and green lines show the reflection and
transmission respectively. Here we assume κin/κ = 0.7 and κout/κ = 0.3, an
over coupled cavity.

transmission Ptrans = ℏωL|Ātrans|2 can be described as

Pref =

[
1− 4κin

κ

(
1− κin

κ

) 1

1 + δ2

]
Pin, (3.15)

Ptrans =
4κinκout
κ2

1

1 + δ2
Pin, (3.16)

where the input power is Pin = ℏωL|Āin|2 and δ = ∆/κ is the detuning nor-

malized by the cavity line width.

In Fig. 3.3, the normalized power and phase of the reflection and trans-

mission are plotted as a function of the normalized detuning. It should be

noted that the phase of the reflection changes from −π to π, totally by 2π

with the over coupled cavity. The dependence of the power is Lorentzian and

the half width half maximum can be written as κ = 2πfp with the cavity pole
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in Eq. (2.46). Then the finesse of the cavity is also written by the κ as

F =
πc

κLr

. (3.17)

At the last, the formula of the intra-cavity power is introduced. With the

round trip time τr = Lr/c of the laser light in the cavity, the intra-cavity power

is given by

Pcirc =
ℏωL

τr
|ā|2

=
2F
π

κin
κ

1

1 + δ2
Pin. (3.18)

The enhanced factor of Pcirc/Pin is around the F . The characteristic of the

cavity changes with the value of κin/κ as below.

1/2 < κin/κ < 1 : over coupling

κin/κ = 1/2 : critical coupling

0 < κin/κ < 1/2 : under coupling (3.19)

When the cavity is the critical coupling, the reflection is nothing Pref = 0. The

intra-cavity power is large with high coupling factor. In the context of arm

cavities of the GW detectors, the over-coupling limit of κin/κ = 1 is assumed.

3.2.3 Optical spring

In the previous subsection the characteristics of the optical cavity is shown.

In this subsection, we derive the spring effect with the detuned optical cavity,

which is called an optical spring [87].

Fig. 3.4 shows a qualitative description of the optical spring. Here a de-

tuned optical cavity with a mechanical oscillator is considered. The radiation

pressure force in the cavity balances the restoring force of the oscillator. When

it slightly moves as the cavity length gets shorter, the intra-cavity power in-

creases due to being near on resonance, and hence the radiation pressure pushes

back, and vice versa.

The quantitive description is as follows. The operator of the radiation
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Figure 3.4: A qualitative description of the optical spring. The green and pur-
ple arrows show the restoring force of the mechanical mode and the radiation
pressure. The detuning is positive δ > 0.

pressure is given by differentiating the Hamiltonian by time,

F̂rad =

∣∣∣∣∣dĤSYS

dx

∣∣∣∣∣
= ℏgâ†â. (3.20)

The averaged component can be represented as

F̄rad = ℏg|ā|2

=
2 cos β

c
Pcirc, (3.21)

with Eq. (3.18) and (3.6).

In the first order approximation, the fluctuation component of the radiation

pressure is written as

δF̂rad = ℏg(āδâ† + ā∗δâ). (3.22)

In Fourier domain, the fluctuation of the annihilation operator, Eq. (3.11), can

be written as

δâ(ω) = χc(ω)

(
igāδx+

∑
l

√
2κlδÂl

)
, (3.23)
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in the definition of Eq. (2.48). The susceptibility of the optical cavity is defined

as

χc(ω) =
1

κ+ i(ω −∆)
. (3.24)

Noting that

δâ(t)† =

∫ ∞

−∞
δâ(−ω)† exp(iωt)dω, (3.25)

we substitute Eq. (3.23) for Eq. (3.22) and get

δF̂rad = iℏg2|ā|2 [χc(ω)− χ∗
c(−ω)] δx

+ ℏg
∑
l

√
2κl

[
ā∗χc(ω)δÂl + āχ∗

c(−ω)δÂ
†
l

]
. (3.26)

The first term

δFopt ≡ iℏg2|ā|2[χc(ω)− χ∗
c(−ω)]δx (3.27)

is the force produced by the displacement δx of the oscillator, in other words,

the effect of the optical spring. The spring constant is described as

K(ω) = −δF̂rad

δx

= 2ℏg2|ā|2 ∆

(κ+ iω)2 +∆2
, (3.28)

with Eq. (3.24).

The slow varying condition: ω ≪ κ is focused on in order to discuss the

characteristics of the optical spring. This is a good approximation when the

oscillator is massive with the low resonant frequency and the cavity length is

not so long. Substituting Eq. (3.13) for Eq. (3.28), the spring constant can be

written as

K(ω) ≃ 16ωLF2Pin cos
2 β

π2c2
κin
κ

δ

(1 + δ2)2

[
1− 2iω

κ(1 + δ2)

]
≡ Kopt + iΓoptω. (3.29)

The real and imaginary parts correspond to the restoring force and the damp-

ing respectively. Their dependence on the detuning is plotted in Fig. 3.5. The

65



Figure 3.5: Dependence of the normalized spring and damping on the normal-
ized detuning. The blue and green line show the spring and damping constant
respectively. The detuning taking their maximum values are shown as black
lines.

detuning of each constant at the maximum is slightly different, δ = 1/
√
3 at

the spring and δ = 1/
√
5 at the damping. The sign of them is always opposite.

3.2.4 Quantum radiation pressure fluctuation

In this subsection, we describe the quantum radiation pressure fluctuation in

the optical cavity. It is the main theme of the thesis. In Eq. (3.10), κin out of

κl is only taken into account at the average component. On the other hand,

all of the fluctuation components are considered in Eq. (3.11). It is because

only the input field has the coherent amplitude, and the vacuum fluctuation

is entered from any ports of the cavity. Exactly writing, the avelaged value of
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the vacuum fluctuation operator is given by

⟨δÂ†
l (t)δÂm(t

′)⟩ = N(ωc),

⟨δÂl(t)δÂ
†
m(t

′)⟩ = [N(ωc) + 1]δlmδ(t− t′), (3.30)

where

N(ωc) =
1

eℏωL/kBTth − 1
(3.31)

is the photon number driven by the thermal bath. Even at toom temperature

Tth = 300 K, the energy scale of the photon ωL/2π ∼ 300 THz is much higher

than that of the thermal bath (ℏωL/kBTth ≫ 1). Therefore, we can suppose

that N(ωc) ≃ 0 and

⟨δÂ†
l (t)δÂm(t

′)⟩ ≃ 0

⟨δÂl(t)δÂ
†
m(t

′)⟩ ≃ δlmδ(t− t′). (3.32)

This fluctuation contributes to the operator of the radiation pressure as the

second term of Eq. (3.26),

δF̂qrp(ω) = ℏg
∑
l

√
2κl

[
ā∗χc(ω)δÂl + āχ∗

c(−ω)δÂ
†
l

]
. (3.33)

This is the quantum radiation pressure fluctuation. The single-sided power

spectrum in the force is given by

Sf,qrp = ⟨δF̂qrp(ω)δF̂qrp(−ω)⟩+ ⟨δF̂qrp(−ω)δF̂qrp(ω)⟩
= 2ℏ2g2κ|ā|2

[
|χc(ω)|2 + |χc(−ω)|2

]
≃ 32ℏωLF2Pin cos

2 β

π2c2
κin
κ

1

(1 + δ2)2
. (3.34)

In the context of the GW detectors, this fluctuation is called the radia-

tion pressure noise. In optomechanics, however, observation of the quantum

radiation pressure fluctuation is one of the benchmarks to reach the quantum

ground state.

The quantum fluctuation is discussed here, and there is also a classical noise

of the laser amplitude. The classical fluctuation causing the displacement of
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the mirror is called the classical radiation pressure noise. The relative shot

noise level of the laser power is defined as

Brsnl =

√
Sp,las

Sp,shot

, (3.35)

where Sp,las and Sp,shot is the power spectrum of the laser intensity noise and the

shot noise, whose units are W2/Hz. The ratio between the quantum fluctuation

and classical radiation pressure noise in the force spectrum can be written as

Sf,crp

Sf,qrp

=
κin
κ
B2

rsnl. (3.36)

In this section, we show the theoretical description of the bases in op-

tomechanics such as the optical cavity, the optical spring, and the quantum

radiation pressure fluctuation, including the background. In the next section,

the optomechanical cooling is introduced.

3.3 Optomechanical cooling

The optomechanical interaction can be used to suppress the mechanical motion

with the radiation pressure. In that way the effective temperature of the

mode is cooled even to its quantum ground state and to observe the zero-point

fluctuation. The ground state cooling is one of the necessary conditions to

realize the entangled state of the mechanical motion.

In this section, at first, phonon number of the mechanical mode is intro-

duced with focusing on the thermal phonon and radiation pressure phonon.

That is followed by the cooling method in the two cases. They are the sideband

cooling in a good cavity and the feedback cooling in a bad cavity.

3.3.1 Phonon number

Here we introduce the concept of the phonon number, especially the thermal

phonon number and the radiation pressure phonon. Total phonon number can
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be defined as

npn ≡ ⟨b̂†b̂⟩ − 1

2
, (3.37)

with the creation and annihilation operators of the mechanical mode in Eq. (3.4).

This value shows how the energy of the mechanical mode is large compared

with the zero-point fluctuation in the unit of one quantum of the mode ℏωm.

With the total mean square of the displacement of the mechanical mode ⟨x2⟩
[m2], the phonon number can be written as

npn =
mωm

ℏ
⟨x2⟩ − 1

2
. (3.38)

When the mode is in the ground state, the mean square is ⟨x2⟩ = ℏ/2mωm,

and hence the phonon number is zero npn = 0.

The total phonon can be separated by the origin. We define the photon

due to the thermal noise, the quantum radiation pressure fluctuation, and the

others as nth, nrp, and not respectively. The sum of these phonon is equal to

the total phonon number,

npn = nth + nrp + nex. (3.39)

In order to observe the zero-point fluctuation, each phonon number is less than

1. The method is discussed how fundamental phonon of nth and nrp can be

reduced below 1.

Thermal phonon

First, the thermal phonon number is calculated. According to the law of

equipartition of energy, the energy of kBTth/2 is distributed to one mechanical

mode,
1

2
mω2

m⟨x2⟩th =
1

2
kBTth, (3.40)

where ⟨x2⟩th is the mean square of the displacement due to the thermal noise,

and hence

⟨x2⟩th =
kBTth
mω2

m

(3.41)
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is satisfied. This can be obtained by integrating the displacement power spec-

trum of the thermal noise at all frequencies,

⟨x2⟩th =

∫ ∞

−∞

S
(2)
f,th(ω)

|m(ω2
m − ω2 + iγmω)|2

, (3.42)

where S
(2)
f,th(ω) = 2kBTthmγm(ω) is the double-sided power spectrum in the

force of the thermal noise. Substituting Eq. (3.41) in Eq. (3.38), the thermal

phonon number is given by

nth ≃ kBTth
ℏωm

, (3.43)

where the energy scale of the thermal bath is much larger than that of the

quantum of the mode, kBTth ≫ ℏωm.

For example, in the case of a suspended mirror at room temperature

(ωm/2π = 1 Hz, Tth = 300 K), the thermal phonon is nth ∼ 6 × 1012, so

we need the cooling by 12 orders of magnitude to the ground state. If we

prepare the high-frequency resonator such as ωm/2π = 10 MHz at cryogenic

temperature Tth = 100 mK, the phonon is nth ∼ 200. Therefore, the required

cooling factor is reduced to around 2 orders.

fQ condition

In optomechanics, the parameter of the frequency times the Q-value of the

mechanical mode is important for the ground state cooling. It is not until the

mechanical mode satisfies so called fQ condition described as below that the

ground state cooling is meaningful.

When the mechanical damping rate of the susceptibility increases from γm

to γeff with some method, the effective temperature of the mode is reduced to

Teff =
γm
γeff

Tth, (3.44)

and the thermal phonon number is also reduced by this factor. The effective

temperature can be decreased by increasing the effective damping rate, but it

must be smaller than the resonant frequency to keep the coherent oscillation

during its one period, γeff < ωm. Under this condition, the thermal phonon
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number has the lower limit of [88]

nth =
kBTeff
ℏωm

>
kBTth
ℏωm

γm
ωm

=
kBTth
ℏωmQm

. (3.45)

Thus, the condition that nth can be lower than 1 with keeping one coherent

amplitude is given by

fmQm > 6× 1012
(

Tth
300K

)
. (3.46)

This is called the fQ condition.

It can be derived from a perspective of decoherence rate of the mechanical

quantum coherence. Here we consider the interaction between the mechanical

oscillator and the thermal bath. Time evolution of the phonon number can be

written as

ṅpn(t) = −γm(npn − nth). (3.47)

Assuming that the oscillator is in the quantum ground state at t = 0, ṅpn(t =

0) = γmnth is satisfied. The phonon number increased after one period is given

by

n+ =
ṅpn(t = 0)

ωm

=
nth

Qm

, (3.48)

which must be below one in order to keep the ground state during the one

period. In other words, the period number until the phonon number is over

one should be above one,

nosc =
1

n+

> 1. (3.49)

We can observe the coherent oscillation at the quantum ground state at least

one time in this condition without being prevented by the thermal decoherence.

This condition can be described as

fmQm
h

kBTth
> 1, (3.50)

which is equivalent to the fQ condition.
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At room temperature fQ > 6×1012 is necessary and it is difficult to realize

with the usual pendulum like a suspended mirror. Nevertheless, the optical

spring enables the pendulum to satisfy the fQ condition. With the optical

spring constant in Eq. (3.29), the effective resonant frequency of the mode is

given by

ω2
eff = ω2

m +
Kopt

m
. (3.51)

When the resonant frequency increases, not only the energy of the one phonon

increases but also the effective temperature can be dramatically decreased.

The condition for the coherent oscillation is changed to γeff < ωeff . The damp-

ing model of the pendulum is structural, and hence the original mechanical

damping rate also decreases because of the dependence of 1/f in Eq. (2.75),

γm(ωeff) =
ω2
m

Qmωeff

. (3.52)

Therefore, the mitigated fQ condition is given by

fmQm > 6× 1012
(

Tth
300K

)(
ωm

ωeff

)3

. (3.53)

The usual pendulum can satisfy the condition if the resonant frequency in-

creases from ωm/2π = 2 Hz to ωeff/2π = 400 Hz and the mechanical Q-value

is Qm = 1× 106 at room temperature. With the feasible parameter, even the

suspended mirror can be cooled to the ground state in terms of the thermal

phonon.

Fig. 3.6 shows the cooling with the increased resonant frequency in both

cases of viscous and structure damping. The shaded areas equivalent to their

thermal phonon number are dramatically reduced. The fQ conditions are

mitigated by factors of (ωm/ωeff)
2 and (ωm/ωeff)

3 when thermal noise of the

oscillator is viscous and structural respectively. In the case of the viscous

damping, the mitigated fQ condition is not satisfied yet. On the other hand,

the structure damping satisfies the requirement. There is a possibility of the

ground state cooling only in the structure damping. It can be explained by

the fact that only structural thermal noise beats the free mass SQL at the

resonant frequency.
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Figure 3.6: Cooling of the mechanical oscillator with the increased resonant
frequency. The original Q-value, mass, original and increased resonant fre-
quency are Qm = 106, m = 10mg, ωm/2π = 2Hz and ωeff/2π = 400Hz. The
magenta and red lines show the original thermal noises of the oscillator fol-
lowing the viscous and structure damping. The green and blue lines show the
thermal noises in each case with the increased resonant frequency. We can get
the thermal phonon number experimentally by calculating the shaded area.

Radiation pressure phonon

Next, the radiation pressure phonon is discussed. The phonon is increased by

the displacement due to the quantum radiation pressure fluctuation. With the

integration of the displacement, we can get the phonon number driven by the

quantum radiation pressure fluctuation.

Without the slow varying approximation, the optical damping Γopt = mγopt
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is decided by

Γopt = Im

[
K(ω)

ω

]
ω=ωeff

= −2ℏg2|ā|2 2κ∆

[κ2 + (ωeff −∆)2][κ2 + (ωeff +∆)2]
, (3.54)

with Eq. (3.28). Here it is assumed that the total damping rate of the system

is determined by the optical damping rate and the sign is positive (∆ < 0).

The mean square of the displacement can be described as

⟨x2⟩rp =

∫ ∞

−∞

S
(2)
f,qrp(ω)

|m(ω2
eff − ω2 + iγoptω)|2

, (3.55)

where S
(2)
f,qrp(ω) = 2ℏ2g2κ|ā|2|χc(ω)|2 in Eq. (3.34) is the double-sided power

spectrum in the force of the quantum radiation pressure fluctuation. Then,

the phonon number of the fluctuation is calculated as [89]

nrp = −1 + (δ + ωeff/κ)
2

4δωeff/κ
. (3.56)

The minimum value of the nrp is given by

nrp ≥
(

κ

2ωeff

)2
2

1 +
√
1 + (κ/ωeff)2

, (3.57)

for the normalized detuning of δ = −
√
1 + (ωeff/κ)2. The magnitude corre-

lation between the effective resonant frequency and the cavity line width is

important for the phonon number of the radiation pressure.

3.3.2 Sideband and feedback cooling

In the previous section we introduce the phonon number caused by the thermal

noise and the radiation pressure fluctuation. From a viewpoint of the thermal

phonon, it is necessary only to prepare the mechanical oscillator and the mode

which satisfies the fQ condition and to give the large damping rate by any

method. On the other hand, the effective method to reduce the radiation
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Figure 3.7: Configuration of the sideband cooling. The green, red, and blue
arrows show the career, lower sideband (Stokes), and upper sideband of the
light, respectively. The detuning is negative and the amplitude is optimized
∆ = −

√
2κ, and the resonant frequency is equal to the line width ωm = κ. In

this stuation the power of the upper sideband subtracted by that of the lower
sideband is maximum.

pressure phonon differs depending on which is larger the mechanical resonant

frequency and the cavity line width. Two cooling methods are introduced in

this subsection [23]. One is a sideband cooling which is valid in the case of the

resonant frequency is larger than the cavity line width [28–30]. The other is a

feedback cooling which is valid in vice versa [90,92].

Sideband cooling in good cavity

Sideband cooling is a passive cooling using the detuned laser light. With

Eq. (3.57), we can realize nrp < 1 only with the laser light if ωm ≳ κ is

satisfied. Moreover, the radiation pressure phonon can be suppressed close to

zero in ωm ≫ κ. This condition is called good cavity limit.

The real part (restoring) and imaginary part (damping) of the optical spring

constant in Eq. (3.28) has the opposite sign. Thus, the positive restoring force

and the positive damping are not compatible. However, mechanical oscillators

with the resonant frequency of MHz region is so stiff that their restoring force

keeps positive even in the positive damping (∆ < 0). When the input power
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increases with the negative detuning, the damping rate also increases and the

oscillation peak is suppressed.

The situation can be described with a sideband picture of the cavity and

laser light. The upper and lower sidebands of the career are generated by

the mechanical resonance. The upper sideband absorbs the energy of the

oscillation (anti-Stokes for a Raman process) and the lower sideband gives the

energy (Stokes). In the good cavity condition, these sidebands are enough

far to affect the optomechanical system differently. As shown in Fig. 3.7, the

upper sideband is close to the resonance of the cavity and the lower one is

far. Therefore, the anti-Stokes effect is dominant and the mechanical energy

is absorbed, in other words, the mode is cooled.

Feedback cooling in bad cavity

In contrast, when the cavity line width is larger than the resonant frequency

κ ≳ ωeff , the radiaton pressure phonon is

nrp ≳ κ

2ωeff

. (3.58)

This means that the phonon cannot be suppressed below 1 only with the laser

light. The condition is called bad cavity limit.

The small cooling performance is because the two sidebands are too close to

cause the different effect to the cavity. In this case, however, a feedback cooling

can be used. In the feedback cooling, the mechanical motion is measured, filters

give the appropriate amplitude and phase to the error signal and generate the

feedback signal, and that is sent to the actuator related to the optomechanical

system. A schematic picture is shown in Fig. 3.8. An example of the filter is a

high-pass filter. The signal proportional to the velocity can be made from the

displacement signal with the high-pass filter. The limit of the feedback cooling

is determined by the sensing noise for the displacement signal.

In both cases of the good and bad cavity, the total phonon number below

1 can be realized with the sideband and feedback cooling, including the ther-

mal phonon and radiation pressure phonon. The cooling limit in each case is

calculated to be almost the same level in the previous work [23].
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High-pass
filter

Actuator

Feedback force

Figure 3.8: A schematic picture of the feedback cooling. The displacement of
the oscillator is measured with the PD. The signal enters in the filter, which is
assumed high-pass filter here, and the signal is changed to be proportional to
the velocity of the oscillator. Then, the feedback force is generated and added
via a some actuator.

3.4 Previous works

Theories on optomechanics are described until the last section. Here we intro-

duce previous woks, especially about the experimental optomechanics and the

current status. The cooling level is evaluated by the phonon number npn or

the effective temperature Teff . Their relation is given by

npn =
kBTeff
ℏωeff

. (3.59)

3.4.1 Ground state cooling and beyond

One of the goals of optomechanics is generating macroscopic superposition

states. Mechanical oscillators are enough massive to test it because such states

have been realized only at the molecular scale. Towards the ground state

cooling from a viewpoint of the fQ condition and the good cavity, high resonant

frequency is favorable. Therefore, the optomechanical devices with the fg-ng

scale resonator have been searched well.
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Radiation pressure fluctuation measurement

The research of optomechanics is aimed at the ground state cooling of the

mechanical mode, and in terms of that the quantum radiation pressure fluctu-

ation is the noise. On the other hand, its measurement is regarded as one of

the benchmarks because it can show that the other classical noises are below

the quantum fluctuation of the laser light. We introduce two previous works

emphasizing observation of quantum radiation pressure fluctuation with a me-

chanical oscillator.

Purdy et al. [26] reported observation on a 7-ng membrane in 2013. Their

membrane is a square plane with 40-nm thickness, 0.5-mm side length, and

has a mechanical resonant frequency of 1.55MHz. It is located in an optical

cavity whose line width is 0.89MHz (a good cavity) at the base temperature

of 4.9K. Two laser lights are entered into the cavity, the signal beam and

the meter beam. The signal beam around on the cavity resonance drives the

mechanical motion by its quantum radiation pressure fluctuation. The meter

beam is for the sideband cooling and the displacement sensing of the position

of the membrane. They observed the fluctuation at the signal to noise ratio

over 1 and measured the
√
P dependence of the displacement spectrum on the

input power. The correlation measurement of the amplitude and phase of two

beams was also done.

Another experiment is referred in the GW detector’s chapter, demonstrated

by Cripe et al. The 55-ng cantilever is used for broadband observation of

the radiation pressure fluctuation. The cavity line width is 500 kHz and the

mechanical resonant frequency is originally 876Hz and increased up to 100 kHz

due to the positive restoring force of the optical spring, so it is a bad cavity. The

detuning is heating side, in other words having the negative damping effect,

but the cavity length is controlled by feedback. Even though the radiation

pressure fluctuation is observed only at the mechanical resonance in the other

experiments, they realized the broadband measurement.

Ground state cooling

Some mechanical oscillators were already cooled to its quantum ground state.

In 2011, Teufel et al. [28] reported the ground state cooling of a microme-

78



chanical resonator. The oscillator is 100-nm-thick aluminum membrane with

a diameter of 15µm, and the mass is 48 pg. The cavity line width is around

200 kHz and the mechanical resonant frequency is 10.56MHz, so the good cav-

ity level is extremely high. They operated the experiment at the cryogenic

temperature of 20mK and achieved the sideband cooling down to the phonon

number of 0.34.

Also in 2011, Chan et al. [29] demonstrated the ground state cooling of a

nanomechanical oscillator. The oscillator is a patterned silicon nanobeam at

µm scale, whose mass is 311 fg. The mechanical resonant frequency and the

cavity line width are 3.68GHz and 500MHz respectively. The temperature of

the system is 20K. They made use of the sideband cooling in the good cavity

condition and reached the phonon number of 0.85.

In 2016, the Purdy group demonstrated not only the ground state cooling of

the membrane but also reached the backaction limit in the paper of Peterson

et al [30]. The backaction limit comes from the radiation pressure phonon

nrp in Eq. (3.57). They suppressed thermal phonon number enough, adjusted

the optimal detuning of the cavity, and finally reached the radiation pressure

phonon number of 0.20.

Squeezing

Above three groups also demonstrated the squeezing of the laser light with their

mechanical oscillators. The quantum fluctuation is the noise for observing the

zero-point fluctuation. Therefore, the squeezing to reduce the quantum noise

is effective.

In 2016, the Teufel group reported the improvement of the displacement

sensitivity of the resonator with injection of the squeezed light in the paper

of Clark et al [93]. They succeeded in observing the 3 dB reduction of the

quantum noise with amplitude squeezing light under the radiation pressure

dominant regime. They also measured the quantum radiation pressure fluctu-

ation at the high signal to noise ratio, and realized the quantum non-demolition

measurement by 13 dB with upper and lower sidebands of two lights.

In 2013, the Chan group demonstrated the ponderomotive squeezing of

0.4 dB with the homodyne detection in the paper of Safavi-Naeini et al [92].
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The measurement bandwidth is a few MHz around the mechanical resonant

frequency of 28MHz.

Purdy et al. [94] also demonstrated the ponderomotive squeezing of 1.7 dB

using their membrane in 2013. The realization is due to the strong radiation

pressure fluctuation overwhelming the thermal noise.

Entanglement

After cooling the resonator to the quantum ground state, the next goal is

generating entangled states of the mechanical mode. Even the entangled state

of mechanical oscillators have been reported recently.

Mechanical resonators whose entangled states are demonstrated are as fol-

lows: the pg-scale membrane of Teufel group by Palomaki et al. [31] in 2013,

the sub-pg-scale nano beam by Riedinger et al. [32] in 2018, and a pg-scale

drum-type oscillator similar to the Teufel group’s one by Ockeloen-Korppi et

al. [33] also in 2018.

3.4.2 Massive scale above microgram

As shown in the previous subsection, recent progress of optomechanics is dras-

tic especially with the mass scale below ng. On the other hand, however,

demonstration in massive regime above µg scale is still challenging. It is be-

cause isolating the mechanics from the thermal bath and interacting strongly

with laser light are difficult in such heavy scale.

Neuhaus et al. tried the ground state cooling of a mm-scale micropillar.

The mass was 34µg, which is much heavier than resonators cooled to the

ground state ever. The mechanical resonant frequency was 3.58MHz and the

cavity line width was 16.3MHz, so the cavity was bad cavity, but they used

the sideband cooling whose backaction limit was nrp = 2.4. This large line

width came from the short cavity length of 58µm. The shortness was in

order to narrow the beam waist on the mirror and avoid clipping loss. The

mechanical Q-value was 7 × 107, satisfying the fQ condition. The achieved

lowest phonon number was 20. It was limited by the heating of the pillar

through absorbed laser light. The effective temperature was originally 50mK

at the base increasing up to 4K at the maximum laser input.
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cantilever, LSU (2018)

pendulum, U Tokyo (2016)

nanobeam, CIT (2011)

pendulum, 
MIT (2007)

membrane, 
NIST (2011)

cantilever, ANU (2008)

pillar, LKB (2018)

pendulum, 
iLIGO (2009)
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Figure 3.9: The noise to SQL ratio of previous works. We represent the results
of cooling experiments (the nanobeam by Chan et al. from CIT [29], the
membrane by Teufel et al. from NIST [28] and by Peterson et al from JILA [30],
the pillar by Neuhaus et al. from LKB, the pendulum by Coribitt et al. from
MIT [98] and by Matsumoto et al. from U Tokyo [95], the cantilever by Mow-
Lowry et alfrom ANU [96], and the iLIGO test mass [99]) as blue rhomboids,
and works for radiation pressure measurement (the cantilever by Cripe et al.
from LSU [71]) as a green square.

Above mg-scale, oscillators which is used to observe the quantum radiation

pressure noise from a viewpoint of the GW detector has been also demonstrated

in the context of the cooling. In mg-scale, Matsumoto and Komori et al. [95]

were cooling the pendulum mode of the 5-mg suspended mirror. A pendulum

had the low resonant frequency such as 1Hz, but it could be increased with

the optical spring. We generated the optical spring increasing the resonant

frequency from 2.14Hz to 660Hz and combined the feedback cooling. The

effective temperature of the mode decreased down to 15mK (npn = 4.7× 105).

The limiting factor was the frequency noise of the laser light.
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The 1-g cantilever was cooled by Mow-Lowry et al [96]. They also made use

of the feedback cooling and realized the effective temperature of 70mK (npn =

1.7 × 107) without any excess noise at off resonance frequency. The thermal

noise limited the cooling ability. Coribitt et al. performed the cooling of the 1-

g suspended mirror with two methods. One was a double optical spring. They

injected two laser light detuned differently and realized the positive restoring

force and damping [97]. The other was the feedback cooling with an optical

spring [98]. The achieved effective temperature is 0.8K and 6.9mK (npn =

1.4 × 105) respectively, both of which were limited by the frequency noise of

the laser light.

Finally, even a kg-scale oscillator was demonstrated as the optomechanical

cooling [99]. In the first generation of LIGO, the test mass of 10 kg was cooled

to the effective temperature of 1.4µK (npn = 230) with the feedback cooling

at the increased resonant frequency of 133Hz. The sensitivity was limited by

the shot noise around the resonant frequency, but it could reach the ground

state if the sensitivity would be improved to the SQL at the frequency.

The noise to SQL ratio of representative previous works is summarized in

Fig. 3.9. It is equal to
√
npn for the cooling experiments. Below ng scale, zero

point fluctuation of some oscillators was observed and the quantum behaviors

were tested on various ways as shown above. Those on µg and kg scales reached

close to their quantum limits. However, mg- and g-scale oscillators are still far

from the SQL.

3.5 Summary of this chapter

The interaction between the mechanical oscillation and the radiation pressure

of the laser light can be described in optomechanics. Using the optomechanical

effect, we can cool the oscillator to its quantum ground state and search for

macroscopic quantum mechanics. It is important to test quantum behavior

with oscillators on various mass scales. One of the necessary conditions for

the ground state cooling is observing quantum radiation pressure fluctuation

acting on the test mass. Compared with light mass scales between fg and µg,

mg- and g-scale oscillators is far from their quantum limit.
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Chapter 4

Experimental setup

It is important to observe quantum radiation pressure fluctuation around the

frequency band of the GW detectors, especially between 10Hz to 100Hz with a

suspended mirror in terms of more detection of the GW and the optomechanics

on various mass scales. System of a torsion pendulum having two optical

cavities on both edges is devised in order to observe that. In this chapter we

describe the experimental setup to realize the observation.

In Section 4.1, the concept of our torsion pendulum and the advantages

are shown with the design sensitivity of our experiment. Next, in Section 4.2,

we discuss the main system including the cavities and the torsion pendulum.

Moreover, we describe the associated system such as frequency and intensity

stabilization of the laser light for realizing observation of quantum radiation

pressure fluctuation in Section 4.3.

4.1 Concept and design

our goal is observing quantum radiation pressure fluctuation with a torsion

pendulum. The target frequency band is between 10Hz to 100Hz where the

sensitivities of actual GW detectors are limited by the quantum radiation

pressure noise. In order to achieve the observation, a torsion pendulum is

used. The advantages of the torsion pendulum are described in this section.
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fixed input 
mirror

controlled 
mirror

torsion 
pendulum

actuator

Figure 4.1: A schematic picture of two cavities with a torsion pendulum. The
blue rectangular solid is the torsion pendulum as a test mass. The input
mirrors are close to the torsion pendulum, whose incident angle is around 45◦.
Actuators are attached to the controlled mirrors. In our case the actuator
consists of coil-magnets

4.1.1 A torsion pendulum consisting of cavities

One of the most fundamental issues for measuring quantum radiation pressure

fluctuation is thermal noise related to the system, especially the suspension

thermal noise of the targeting mechanical mode. In order to overwhelm the

thermal noise, it is advantageous to use as light a mirror as possible because

the mechanical susceptibility gets larger.

In our group a mg-scale suspended mirror (5mg) is developed in optome-

chanical experiments [20,95]. The mirror size is a mm scale (4mm diameter).

That is the smallest of mirrors which can be treated by hand. It is technically

difficult to make such a small mirror with a negative curvature, so it must be

flat and cannot avoid the Sidles–Sigg instability in a linear cavity [16]. In order

to head off the instability, we use a triangular cavity. The negative spring con-

stant in the rotational mode of the tiny mirror gets positive with the triangular
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cavity because there is one more sign flip at the reflection [100].

In the previous experiment with the 5-mg suspended mirror, the quantum

radiation pressure fluctuation was estimated to be larger than the suspension

thermal noise above several 100Hz. It was because we succeeded in realizing

high intra-cavity power of 7W with the triangular cavity and the suspension

with an ultra thin wire of 3µm diameter. The thin wire contributed to the

low suspension thermal noise with the gravitational dilution [48]. However,

the suspension thermal noise was larger than radiation pressure fluctuation

between 10Hz to 100Hz, and the frequency and classical radiation pressure

noise of the laser light were dominant noise sources. We need to reduce those

noises.

Then, we come up with the idea of two cavities consisting of a torsion

pendulum. Fig. 4.1 shows a schematic picture of the setup. The torsion

pendulum is widely used to do precise measurement with its high susceptibility

due to the low resonant frequency of the rotational mode. Each cavity contains

three mirrors to keep the optomechanical stability of the rotational mode like

the previous triangular cavity. The input mirrors are fixed and the end mirrors

have actuators to control the cavity length. Here we describe how those noises

can be suppressed .

Low suspension thermal noise

Here the suspension thermal noise is shown again in Eq. (2.76),

Sx,sust =
4kBTthω

2
mϕm

mω5
, (4.1)

where ωm is the angular resonant frequency and ϕm is the loss angle of the

mechanical mode. Typically reducing the loss angle (increasing the Q-value)

is aimed to suppress the thermal noise. The dependence on the loss angle is

linear to the power spectrum of the thermal noise. In contrast, the spectrum

is proportional to the square of the resonant frequency.

In the tabletop-scale experiments, the resonant frequency and the Q-value

of the pendulum mode are several Hz and the order of 105 at the most re-

spectively. On the other hand, the Q-value of the torsion pendulum is the

order of 103, but the resonant frequency can be easily below 0.1Hz. Therefore
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decreasing the resonant frequency is better even at the cost of the loss angle.

Common mode rejection

One of the other issues is the frequency and intensity noise of laser light.

These are not fundamental noises but must be reduced to observe the quantum

radiation pressure fluctuation.

When one cavity on one edge of the bar mirror is controlled to be on res-

onance, the DC radiation pressure pushes and rotates the bar-shaped mirror,

resulting in the breakdown of the cavity resonance. Therefore, two cavities

are necessary on both edges of the bar. In order to sense the rotational mode

of the torsion pendulum, we have to subtract the signal of two cavities. The

subtraction has the other advantages. The classical noise such as the frequency

and intensity noise of the laser light, and vibration noise of the usual pendulum

mode can be subtracted at the same time. In principle, all common noises can

be evaded and we get only the independent or differential fluctuation.

This common mode rejection ratio is estimated to be above 10, so it can be

expected to subtract the frequency and intensity noise by a factor of 10. Here

we also assume the ratio of 10 on the translational noises such as the vertical

thermal noise and the pendulum thermal noise.

Light effective mass

The rotational mode of the torsion pendulum has lighter effective mass than

that of the usual pendulum mode. This fact enhances the sensitivity for tiny

force with the higher susceptibility. Here we show what is the enhancement

factor.

Assuming that the random force of F [N/
√
Hz] is added to the center of the

usual pendulum whose mass is m, the displacement spectrum can be written

as

xpend(ω) =
F

mω2
[m/

√
Hz]. (4.2)

In contrast, the situation is different when the same random forces are added

to both edges of a rigid body whose length is L. The differential component

of force is F/
√
2 [N/

√
Hz], so the torque fluctuation is FL/

√
2 [N·m/

√
Hz]

and the rotation spectrum can be given by FL/(
√
2Iω2), where I = αmL2

86



Figure 4.2: Design sensitivity of our setup. The red solid line represents the
target quantum radiation pressure fluctuation.

is the moment of inertia and α differs depending on the shape of the object.

Therefore, the differential displacement spectrum is written as

xrot(ω) =
FL√
2Iω2

× L

=
1√
2α

F

mω2
[m/

√
Hz]. (4.3)

In the experiments the rotation is sensed as the differential displacement

signal. Thus, the effective mass of the rotational mode is lighter by a factor of√
2α than that of the usual pendulum mode. This high sensitivity is tolerant

of the sensing noise including the vibration noise to the pendulum. In the case

of the simple bar, α = 1/12, so the enhancement factor is 6
√
2.
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Property Requirement

Rotational Q-value Qrot > 2× 103

Pendulum Q-value Qpend > 5× 104

Vertical transfer function 0.01
(

100Hz
f

)2
Frequency noise [Hz/

√
Hz] 1

(
100Hz

f

)
Relative shot noise level Brsnl < 6

Pressure [Pa] ∼ 3× 10−4

Table 4.1: Requirement of the experimental parameters.

4.1.2 Design sensitivity

We aim at observing quantum radiation pressure fluctuation acting on the

bar-shaped mirror with these advantages. The design sensitivity is shown in

Fig. 4.2. It is difficult to isolate the test mass from the vertical seismic noise

on table-top scale experiments, so our target sensitivity is set to be 50-100Hz.

In this band, the signal to noise ratio is more than 1.

Requirement of experimental parameters is set in order to realize this sen-

sitivity and not to cover the radiation pressure. It is summarized in Table 4.1.

The vertical transfer function means the transfer function from the vertical

seismic noise to displacement of the test mass. Details of noises in Fig. 4.2 and

the measured results of parameters in Table 4.1 are described in the following

subsections: the thermal noises and Q-values in Subsection 4.2.1, the seismic

noises and transfer function in Subsection 4.2.3, the frequency noise in Sub-

section 4.3.2, the intensity noise in Subsection 4.3.3, and the vacuum system

in Subsection 4.3.5.

4.1.3 Whole setup

In this subsection, the whole setup to observe quantum radiation pressure

fluctuation is shown. Fig. 4.3 shows the conceptual design of the experimental

setup. The set up can be separated to 4 parts, the input optics, the stabiliza-

tion and alignment, the main cavities, and the auxiliary optics.

In the input optics, we give phase and amplitude modulation to the Nd:YAG

laser light whose wave length is 1064 nm, which is followed by the frequency
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• phase modulation
• intensity modulation
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• alignment
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Differential signal

Figure 4.3: A conceptual design of the whole experimental setup. The paths
of the laser light and the electrical signal are described as red and black solid
lines respectively. Black triangles show each filter circuit. Black dotted line
shows the area in vacuum.

and intensity stabilization of the laser light. The frequency is stabilized by

the rigid reference cavity and feedback to the laser system. With picking off

the laser light toward the main cavities, the intensity signal is used for the

intensity stabilization with the AOM. After the adjustment of the beam path,

the light enters the main cavities. The reflection is measured and used as the

feedback signal to the coil-magnet actuator on the controlled mirror. We get

the rotation fluctuation by subtraction of the two error signals of the cavity

length. Quantum radiation pressure fluctuation can be observed by analyz-

ing them. Using the auxiliary system, we measure the actuator efficiency and

control a platform of the main cavities.

4.2 Main setup

The main setup is described in this section. After focusing on the test mass of

the torsion pendulum, schematic pictures of the main cavities system such as

double pendula for the bar mirror and the controlled mirror.
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Figure 4.4: Shapes of the bending modes of the bar mirror whose length is
15mm. The left (right) shows the first (second) bending mode. These are
results from the finite element analysis by COMSOL. The red area means that
the amplitude of the oscillation is large, and the blue area shows the node.

4.2.1 A torsion pendulum

Our test mass is a bar-shaped mirror used as a torsion pendulum to observe

quantum radiation pressure fluctuation. The mass of the bar mirror should

be as light as possible to enhance the radiation pressure. In order to reduce

the suspension thermal noise of the rotational mode, the test mass has to be

suspended by the ultra thin wire. The bar is fixed to the wire with ultraviolet

curing resin.

Substrate

Sigma-koki company produced the thin bar-shaped mirror. The substrate is

made of fused silica. One side of the mirror has a high reflective coating.

A longer bar mirror has higher signal to noise ratio between the radiation

pressure fluctuation and the suspension thermal noise. A thinner and lower

one is lighter, so it has higher susceptibility. However, the thermal noise of

the bending mode of the bar can be an issue because the resonant frequency

of the bending mode is low in the case of too long bar. Also, it is technically

difficult to handle the very thin and long mirror. Moreover, it cannot be too

low because the low height results in the larger clipping of the beam and the

low finesse of the cavity.

The following aspects are selected: the length is 15mm, the height is

1.5mm, and the thickness is 0.2mm. The resulting mass is 10.3 ± 0.5mg.

The theoretical resonant frequencies of the first and second bending mode are
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Figure 4.5: A photograph of the bar mirror from the front and side views.
Our test mass seems to be warped at the mirror coating. The curvature is
measured to be around 200mm.

5.26 kHz and 14.5 kHz respectively. The mode shapes are shown in Fig. 4.4.

This thermal noises of these modes should be enough small not to cover the

quantum radiation pressure fluctuation. The contribution of the bar thermal

noise to the sensitivity of the main cavities can be estimated with the displace-

ment spectrum around the first and second resonance of the bending modes.

The detailed result is represented in Sec. 5.3.

Photographs of the substrate are shown in Fig. 4.5. The curvature of the

produced mirror is around -200mm even though it should be flat. This value

is measured by the beam profiling of the reflection from the bar mirror. The

convex surface seems to be caused by the coating (high-reflection coating of

over 99.99% at the incident angle of 43◦) of the thin and long substrate. It

is required to use a more concave mirror as the controlled mirror to construct

the optical cavity with the test mass.

Suspension fiber

In order to suppress the suspension thermal noise, as thin a suspension fiber

as possible is favorable because the thin wire has a small restoring force of

the rotational mode and contributes to reducing the low resonant frequency,

resulting in the low thermal noise. The restoring force of a wire related to the

rotational mode is given by

Krot =
πGwϕ

4
w

32lw
, (4.4)
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Property Carbon fiber Tungsten

Young’s modulus [GPa] 294 345

Tensile strength [GPa] 5.9 3.8

Density [103 kg/m3] 1.81 19.3

Minimum thickness [µm] 5-7 2.5

Table 4.2: Properties of the carbon fiber and the tungsten wire. The tensile
strength is the value at the diameter of ∼ 10µm.

where Gw is the shear modulus, ϕw is the diameter, and lw is the length of

the wire, respectively. As shown in this equation, the dependence of the wire

diameter is very sharp, the fourth order. It is the most important how thin

wire we use.

In the previous experiment of the 5-mg suspended mirror, a tungsten wire

whose diameter is 3µm. This thickness is the thinest in wires in the market.

However, we use a double pendulum system on the test mass for reducing

the residual amplitude of the pendulum mode at locking the cavity and two

pendula should be aligned, so the metal wire, which has the residual shear, is

not preferable. A carbon fiber is used as the suspension fiber for the test mass.

Carbon fibers are made from an acrylic fiber or a pitch carbonized at

high temperature. The advantages are low weight, high stiffness, high tensile

strength, high temperature tolerance, high chemical resistance and low ther-

mal expansion. The carbon fiber used in our experiments is offered by Toray

industries. In Table 4.2, properties of the carbon fiber are shown with com-

pared to tungsten. The Young’s modulus is similar, but the tensile strength

of carbon fiber is almost twice than that of tungsten. Moreover, the density

is smaller by one order. It is advantageous from a view point of the suspen-

sion thermal noise. The suspension thermal noise of the pendulum mode gets

worse over the frequency of the violin mode [101]. The violin mode frequency

is inversely proportional to square root of the density, so the low density wire

avoids making the suspension thermal worse.

Q-value of the carbon fiber

It is necessary to measure the Q-value of the carbon fiber to estimate the

suspension thermal noise of the rotational and pendulum mode. Here the
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Property Q-value measurement Test mass

Bar material Aluminum Fused silica

Bar length (designed) [mm] 15 15

Height (designed) [mm] 1.5 1.5

Thickness (designed) [mm] 0.2 0.2

Mass [mg] 12.0 ± 0.1 10.3 ± 0.1

Wire length [mm] 18 ± 1 22 ± 1

Resonant frequency [mHz] 97.1 ± 0.1 90 ± 1

Table 4.3: Properties of the torsion pendulum for the Q-value measurement
and the test mass.

results of the Q-value measurement are represented.

A carbon fiber and an aluminum bar are combined as a torsion pendulum.

Their properties are listed in Table 4.3, where those of the test mass are also

shown for the comparison. The Q-value is measured by an optical lever and

a position sensitive detector (PSD). The PSD can sense the position of the

reflection beam spot from the bar, so the rotational and pendulum mode can

be measured by the signal along the horizontal and vertical axis respectively.

First, the ringdown oscillation of the rotational mode is measured after

the excitation. The result is shown in Fig. 4.6. The resonant frequency is

97.1 ± 0.1mHz, that is, the period is 10.30 ± 0.01 s. The time series data of

the envelope y(t) is fitted by a function of

y(t) = a exp

(
−ωrott

2b

)
+ c, (4.5)

where a, b, c are the fitting parameters and ωrot/2π = 97.1mHz. The b is the

Q-value of the rotational mode. It is estimated to be Qrot = (2.6± 0.2)× 103,

which satisfies the requirement. The error comes from the values changed by

the selection of the start and end time of the fitting.

Next, we measure the power spectrum density of signals along each axis of

the PSD in the equilibrium state to estimate the Q-value of the rotational and

pendulum mode. Assuming that the added force spectrum is the same in the

equilibrium state, the displacement spectrum around the resonant frequency
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Figure 4.6: Ringdown oscillation of the rotational mode. The blue line at the
upper figure indicates the raw data cleaned by a sharp butterworth filter. The
green line shows the fitting of the envelope data. The data is averaged every
30 second.

can be written as √
Sx ∝

∣∣ω2
m − ω2 + iω2

m/Qm

∣∣−1
. (4.6)

The fitting results in log-scale of the displacement spectrum of rotation and

pendulum modes are shown in Fig. 4.7. The measurement time is not long

enough to reconstruct the sharp spectrum, so the number of frequency bins is

short even at nav = 3. Therefore, we can get the lower limits of each Q-value

such as Qrot ≳ 3.2× 103, Qpend ≳ 8.2× 104. The requirement of the pendulum

Q-value is also satisfied.

The rotational Q-value is a little higher than the estimated one by the ring-

down measurement. However, the ringdown measurement has the dependence

of peak shear strain at the excitation and the estimated Q-value is lower when

the excitation is larger [102]. Therefore, it is consistent that the estimated
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Figure 4.7: Power spectrum density of the displacement signals of the rotation
and pendulum modes. The blue dots show the measured spectrum data and the
red lines represent the fitting results around each resonant frequency. nav = 3.

value without the excitation is larger. This rotational Q-value is higher than

that of the 3-µm tungsten wire (Qrot = 1.9× 103) [20].

The pendulum Q-value is also consistent in terms of gravitational dilution

of the pendulum mode [48]. The gravitational dilution is the effect enhancing

the Q-value compared with the intrinsic one of the thin wire. It is because the

energy is lost at whole area on the wire in the rotational mode, on the other

hand the energy loss occurs only near the clamp point in the pendulum mode.

The dilution factor Qpend = αdilQrot in the single fiber suspension is given by

αdil =
lw
ϕ2
w

√
128mg

πEw

, (4.7)

where g is the gravitational acceleration and Ew is the Young’s modulus of the

wire. In our case the dilution factor is αdil ∼ 60, so the pendulum Q-value
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++3 mm

1.5 mm
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15 mm

Intermediate mass
Al (5N), 130 mg

Test mass
Fused Silica, 10.3 mg

Peek screw

2.3 mm

0.2 mm

CuBe, ø=20 µm

Carbon Fiber, ø=6 µm

36 mm

22 mm

Front view Side view
(without damping magnets) (without damping magnets)

Top view

magnet1: ring, ø=15 mm × 10 mm, t=4 mm
magnet2: cylinder, ø=3 mm, t=3 mm

Figure 4.8: Top, front, and side view of the suspension of the test mass. For
the clean description, there is no damping magnet in the front and side views.

has potential to be enhanced up to Qpend ∼ 1.5× 105. The difference between

the theoretical and measured values can be regarded to show the clamp loss.

The clamp method using a pure aluminum bar is common in the Q-value

measurement and the main experiment, so the Q-values are similar.

4.2.2 Main cavities

In this subsection, the setup for main cavities is described. As shown in

Fig. 4.1, the main cavities consist of aone torsion pendulum (the test mass),

and two fixed input mirrors and two suspended controlled mirrors with coil-

magnet actuators.
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Figure 4.9: A photograph of the suspension for the test mass. This consists of
the pillar, the rotational stage with the picomotor, the damping magnet, the
intermediate mass made of pure alminum, and the bar mirror.

Suspension for the test mass

In order to lock the cavities, it is necessary to suppress the residual oscillation

of the pendulum mode caused by seismic noise. All components of the cavi-

ties are located on a double-suspended platform to reduce the seismic noise.

Moreover, similarly to the platform, the residual motion can be suppressed by

the intermediate mass which is damped by a magnet.

Fig. 4.8 shows top, front, and side views of the suspension of the test mass.

The intermediate mass is damped by Nd magnets for reducing the residual

amplitude of the test mass due to the seismic noise. The intermediate mass

of usual aluminum is trapped by the magnetic field, so we use high-purity

aluminum of 99.999% (5N). The carbon fiber is clamped by the pure aluminum

of a 2-mm main body and a 0.3-mm lid with peek (not metal) screws, which is

also used to avoid the magnetic trap. The mass is 129.5± 0.1mg. This value

should be the same as the test mass in terms of the optimal damping, but that
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heavier mass is necessary for the intermediate mass to be equipped with the

clamp system.

The damping is done by ring and cylinder magnets given by Magfine com-

pany. The ring magnet is fixed to a pole for this suspension, and the cylinder

magnet is attached by the magnetic force to the ring one. It can be realized

because the ring magnet has the magnetic field to the radial direction. These

two magnets damp two horizontal pendulum modes of the intermediate mass.

The intermediate mass is suspended by a CuBe fiber adhering with curing

of Locktite. The CuBe fibers are produced by Tokusai company. The diameter

is 20µm and the length is 36±1mm. CuBe fibers have relatively large intrinsic

Q-value [102] and small Young’s modulus of 130GPa in metallic material. At

the top the CuBe fiber is clamped by a stainless steel jig.

A photograph of this whole suspension for the test mass is shown in Fig. 4.9.

It is fixed to a rotation stage of Sigma-koki. The stage is used to adjust the

rotation angle of the bar mirror. A picomotor of Newport model 8353 is fixed

to the rotation stage for remote control from outside the vacuum chamber.

Input mirrors

Here two input mirrors for the main cavities are introduced. They are fixed to

the platform, which is a suspended alminum plate including the main cavities.

These can be main noise sources of vibration noise such as the residual seismic

noise of the platform and thermal noises of components on the platform and

mechanical modes of the input mirror holder. It is because they are not isolated

by suspension and these vibrations can directly contribute to the cavity length

change.

Properties of the input mirrors are shown in Table 4.4. These are also

produced by Sigma-koki company. We place a special order of mirror holder

used for the input mirror of the cavity with an oblique incidence to Newport.

The holders are equipped with picomotors of Newport model 8353-V also for

remote control of the alignment. The front surface of the input mirrors are

close to the test mass, where the distance is below 1 cm.

The reflectivity and transmissivity of the mirrors are set to be 99.8% and

0.2% respectively. The finesse of the cavity is determined to be several thou-
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Property Value

Substrate Fused silica

Diameter [mm] 12.7 (half inch)

Thickness [mm] 3

Curvature ∞ (flat)

Front surface reflectivity 99.8%

Rear surface reflectivity <0.2%

Incident angle [degree] 43

Table 4.4: Properties of the input mirrors.

sand. This finesse can realize the enough intra-cavity power to measure quan-

tum radiation pressure fluctuation. Also, we know that the suspended cavity

with the finesse of a few thousand can be locked without local control.

Suspension for the controlled mirrors

Finally suspension for the controlled mirrors is shown. The mirrors control

the cavity length with coil-magnet actuators. These are also suspended for

vibration isolation and enough actuating range. Therefore, it is necessary to

construct double-pendulum system and damp the intermediate mass similarly

to the test mass.

In Fig. 4.10, the suspension for the controlled mirrors are shown from top,

front, side, and back views. The controlled mirror consists of a half-inch curved

mirror made of fused silica and brass body with 2 small magnets for the actu-

ation. The mirror is concave and the curvature is 150mm. The curvature is

decided by the requirement of a stable cavity with the convex test mass. The

reflectivity is 99.99% at the incident angle of 0◦ although the actual incident

angle is a few degree. They are produced by Lattice Electro Optics. The brass

has the hole for the mirror of 12.9mm. It is buried and attached to the body

with ultra-violet curing resin. The mass of the controlled mirror is 63 g. This

value is heavier than that of the test mass by more than 3 orders of magnitude.

Therefore, the cavity can be considered to have only one pendulum. At the

right and left edges of the controlled mirror, there are two Nd magnets. These

are a part of the coil-magnet actuator.

The intermediate mass is made of copper, whose mass is 60 g. Copper
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Intermediate mass
Cu, 60 g

Controlled mirror
Brass, 63 g

Front view Side view

++

++

++

ø=30 mm

ø=33 mm
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Curvature: +150 mm
Reflectivity: 99.99 %
ø=12.7 mm, t=6.35 mm

Piano wires
ø=0.1 mm

10 mm

28 mm

13 mm

Back view

++
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++

Damping magnets
ø=8 mm, t=10 mm
4 pieces

Top view

Magnets for actuator
ø=2 mm, t=5 mm
2 pieces

Figure 4.10: Top, front, side, and back view of the suspension for the controlled
mirrors. The green circle shows the curved mirror for the cavity buried in the
brass body.
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is one of metals with the lowest electrical resistivity as well as silver. The

damping magnets also produced by Magfine are supported by the aluminum

plate like a cantilever. Four pieces magnets are used with alternate magnetic

poles because loops of the magnetic fields are closed and they do not largely

affect the other system.

These masses are suspended by piano wires of 0.1mm diameter of Niraco. A

piano wire has some advantages for the suspension compared with a tungsten

wire as explained at the next subsection. The clamps for the intermediate

mass and the controlled mirror are done by an aluminum thin plate and peek

screws. Both masses are suspended by 2 wires for the remote alignment with

stages of Sigma-koki controlling the pitch and yaw direction. At the top of the

suspension, the piano wires are clamped to stages with picomotors of Newport

model 8353. The back stage can move to horizontal direction and the front

stage can move to vertical direction. They change the pitch and yaw modes of

the controlled mirror. All setup for these suspension is fixed to pillars of thick

aluminum plate and the pillars are fixed to the platform.

4.2.3 Vibration isolation

Vibration isolation system of the platform is needed to reduce the residual

seismic motion of the suspended mirrors and suppress the vibration noise of

the fixed input mirror which is directly coupled with the displacement noise

of the cavity. In this subsection the vibration isolation of the platform is

described.

First, we show top, front, and side views of the platform in Fig. 4.11. There

are the test mass suspension, the controlled mirrors suspension, the input mir-

rors, and the coil-magnet actuators on the platform. Pillars for the controlled

mirrors suspension are 200mm tall. From the top and center of the pillars,

the platform is suspended by single piano wire, which is included in double

suspended system. In the previous experiment we suspend the platform with

3 tungsten wires. It is treated easily, however, the resonant frequency of the

pitch and bounce modes of the platform can be almost the same, introducing

the large seismic noise. Moreover, in our case, the low frequency sensitivity

is important and the pitch motion of the platform directly contributes to the
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200 mm

10 mm

ø=220 mm

Side view
(with pillars)

Top view

+
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+

Coil

Coil holder

Pillar for the 
controlled mirrors 
suspension

Vertical 
stage

Rotation stage
with a picomotor

Pillar for the 
test mass 
suspension

(with cavities and coils)
Piano wire
ø=0.2 mm

Front view
(with pillars)

Figure 4.11: Top, front, and side views of the platform. For clear description,
we show the top view without pillars and the front and side views without
cavity mirrors or coils. The vertical and horizontal stages for the alignment of
the controlled mirrors are also omitted.

input mirror and changes the two cavity length differentially. Therefore, the

single wire suspension is adopted to avoid the issues. A photograph of the

platform is shown in Fig. 4.12.

Our vibration isolation system for the main cavities is shown from top,

front, and side views in Fig. 4.13. We construct the building on the 3 viton

rubbers suspending the double pendulum and the damping mass. The building

consists of a floor, a roof, and 3 poles made of alminum. A magnetized stainless

steel as the 4.5-kg damping mass is suspended from the roof by 3 piano wires,

and a copper as the 1.8-kg intermediate mass is suspended by a single piano

wire. The 2.6-kg platform is suspended from the intermediate mass. The
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Figure 4.12: A photograph from the front and back views of the platform.
There are the test mass suspension, the input mirror holders, the controlled
mirror suspensions, and the coil-magnet actuators.

Property Piano Tungsten

Young’s modulus [GPa] 206 345

Tensile strength [GPa] 3.1 2.8

Density [103 kg/m3] 7.85 19.3

Minimum thickness [µm] 80 2.5

Table 4.5: Properties of the piano wire and the tungsten wire. The tensile
strength is the value at the diameter of ∼0.1mm.

damping mass has 8 Nd magnets to damp the intermediate mass with the

hole of the diameter of 70mm and the depth of 15mm in order to bring the

suspension point close to the center of mass to reduce the resonant frequency

of the pitch mode. The mass of the building is 14 kg including other optics on

the floor.

All piano wires have the diameter of 0.2mm. They are favorable to tungsten

wires in terms of small Young’s modulus, large tensile strength, and low density

as compared in Table 4.5. That contributes to reducing vertical seismic noise of

the cavities. In general, it is more difficult to suppress the vertical seismic noise

than the horizontal seismic noise because the bounce mode of the suspended
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10 mm

øout=400 mm

Top view
(with roof and poles)

Front view
(without intermediate mass)

øin=200 mm

Floor:

Roof:
ø=300 mm

Top view
(with intermediate and damping mass)

øout=220 mm
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Damping mass:
Stainless steel
(magnetized)

ø=128 mm

Intermediate 
mass: Cu

ø=21 mm
t=4.5 mm

Nd magnet:
8 pieces

600 mm

10 mm

ø=14.5 mm
t=24.7 mm

Rubber:
3 pieces

25 mm

120 mm
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170 mm

130 mm

ø=26 mm
t=600 mm

Pole:
3 pieces

Side view
(without damping mass)

4.5 kg 2.1 kg

2.6 kg

Piano wires
ø=0.2 mm

Figure 4.13: Top, front, and side views of the vibration isolation system for the
main cavities. Similarly, we select which parts are shown for clear description.
The poles and piano wires for the damping mass are located at the shape of
an equilateral triangle, whose center are common.
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Figure 4.14: A photograph of the entire apparatus of the second chamber. The
building suspends the damping mass, the intermediate mass, and the platform.

mass is much stiffer than the pendulum mode. The resonant frequency of the

bounce mode can be low with a coil spring, but the internal eigen modes can

be the issues. Therefore, softer and stronger wires, which enables suspension

with thiner ones, should be used. Even though the piano wire cannot be as

thin as several µm, it is one of the best wire to suspend kg-scale objects. A

photograph of the building is shown in Fig. 4.14.

Measurement of the seismic noise

The seismic noise of the platform and vibration isolation ratio of our system

are measured and estimated. First, the theoretical description is shown in

a simple model for coupled oscillators. A conceptual scheme of our coupled

oscillator is shown in Fig. 4.15. In our case, The coordinates of xb, xd, xi, and

xp correspond to the displacement of the whole building, the damping mass,

the intermediate mass, and the platform. The seismic motion is shown as X

and the effective mass can be regarded as infinity. Equations of motion of the
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Figure 4.15: A conceptual scheme of our coupled oscillator. The position, mass,
and spring constant of each object are labeled as x, m, and k respectively. The
damping constant of the rubber and damping magnet are Γb and Γd.

system are as follows:
mbẍb = −kb(xb −X)− Γb(ẋb − Ẋ)− ki(xb − xi)− kd(xb − xd)

miẍi = −ki(xi − xb)− kp(xi − xp)− Γd(ẋi − ẋd)

mpẍp = −kp(xp − xi)

mdẍd = −kd(xd − xb)− Γd(ẋd − ẋi),

(4.8)

where the internal loss of the spring is ignored. These can be rewritten in

frequency domain as
αb −ki 0 −kd
−ki αi −kp −iΓdω

0 −kp αp 0

−kd −iΓdω 0 αd




xb(ω)

xi(ω)

xp(ω)

xd(ω)

 =


kb + iΓbω

0

0

0

X(ω),

(4.9)
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Figure 4.16: Vertical seismic noise on the ground and on the platform. The
green and blue lines show the displacement spectrum on the ground and on
the platform respectively. The thick dotted black line is the dark noise of the
geophone. The typical seismic noise level is shown as the thin dotted line.
Sharp spikes come from power supply and the harmonics.

where 
αb = −mbω

2 + kb + iΓbω + ki + kd

αi = −miω
2 + ki + kp + iΓdω

αp = −mpω
2 + kp

αd = −mdω
2 + kd + iΓdω.

(4.10)

The vibration isolation ratio of xp(ω)/X(ω) can be calculated by the multipli-

cation of the inverse matrix in the left side of Eq. (4.9) to the right side.

A similar setup to the main experiment is constructed to confirm the vi-

bration isolation ratio. The vertical mode is focused on. The mode can be a

larger issue than the other mode because of its high resonant frequency. The
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Figure 4.17: Vertical vibration isolation ratio of the platform. The upper blue
line shows the result of getting the ratio of two spectra. The lower blue line
expresses coherence of the two spectra. The modeled spectrum is also plotted
as the red line.

different points are the number of suspension wires and the diameter. The

intermediate mass and the platform are suspended by 3 piano wires of the

0.1mm diameter. It is because a geophone used in the vibration measure-

ment cannot be located at the center of the platform under the pillars for the

controlled mirrors suspension, and wider space is needed.

The used geophones L4C are made by Sercel company. The calibration

factor from the velocity of a target for measurement to the output voltage was

measured to be (2.6±0.3)×102V/(m·s) above 1Hz [103]. The displacement can

be obtained by dividing the velocity by ω. Fig. 4.16 shows the displacement

spectrum of the vertical seismic noise on the ground and on the platform.

The noise level on the ground is larger than that of the typical amplitude of

10−7/f 2m/
√
Hz. Here the ’ground’ means the place on a table for vacuum

chambers. The broad peak around a few 100Hz is considered to be caused
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Property Model Main experiment

Young’s modulus [GPa] 180 180

Mass of the platform [kg] 2.5 2.6

the intermediate mass [kg] 2.1 1.8

the damping mass [kg] 5.0 4.5

the building [kg] 14 14

Diameter of the piano wires [mm] 0.17 0.20

Wire length for the platform [mm] 240 130

the intermediate mass [mm] 190 170

the damping mass [mm] 170 120

Table 4.6: A parameter list of the suspension for the main cavities.

by the structure of the table and acoustic vibration. The sensitivity for the

spectrum of the platform is limited by the dark noise of the geophone above

60Hz. The vibration isolation succeeds over 30Hz.

The calculated vertical vibration isolation ratio is shown in Fig. 4.17. This

ratio is evaluated by dividing the measured spectrum on the platform by that

on the ground. The theoretical model of the ratio is acquired by tuning the

parameters of the suspension and calculating xp(ω)/X(ω). Above 50Hz there

is almost no correlation between the two signals because of the dark noise of the

geophone and the data and the modeling do not match. However, the model

succeeds reconstruction of the measured structure of the spectrum below 50Hz

with the coherence over 0.5. It means that the suspension with 3 wires can be

regarded as the single suspension effectively and this model can be used at the

estimation of the seismic noise.

In Table 4.6, we compare the parameters related to the suspension for the

main cavities at the model in this measurement and at the main experiment.

The wire diameter of 0.1
√
3mm in the model is the effective value of the single

suspension with 3 wires whose diameters are 0.1mm.

The vibration isolation ratio at the main experiment is estimated and shown

in Fig. 4.18 with the requirement. The vertical requirement is determined by

assuming that the seismic noise level is typical and the displacement noise is

smaller by 1/10 than that of radiation pressure fluctuation. It is also supposed

that the coupling from vertical to horizontal mode is 1/100 and the common
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Figure 4.18: vibration isolation ratio estimated at the main experiment. The
model curve in the previous figure is plotted again for the comparison as the
green dotted line. The red and blue lines show the isolation ratio of the
vertical and horizontal mode. The dotted black lines mean each requirement
for observation of quantum radiation pressure fluctuation.

mode rejection ratio of the vertical vibration is 1/10. As shown in Table 4.6,

the wire length at the main experiment is shorter and the dimeter is larger

than that at the measurement of vertical seismic noise. Therefore, the red

curve is above the green dotted one, but it still satisfies the requirement.

There are two components causing the horizontal seismic noise, the pitch

and pendulum modes of the platform. Due to the high resonant frequency of

several Hz, the pitch mode can become the larger problem. Here we set that

ki = miω
2
i , kp = mpω

2
p, where ωi/2π = ωp/2π = 3Hz to do pessimistic esti-

mation, and the other parameters are the same as the model. The horizontal

mode is coupled with the differential mode of the main cavities, and hence the

requirement is much more strict than the vertical one. Even so, the horizontal

isolation ratio is much smaller than the requirement. It can be confirmed that
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Figure 4.19: A schematic picture of the Input optics. Optics except for parts
in the vacuum chamber is covered by a shield box made of acrylic plates.

our vibration isolation system enables reduction of seismic noises enough not

to hide the radiation pressure fluctuation.

4.3 Sub setup

Sub setup is also important to achieve the observation. Before the main cavi-

ties the laser light is injected from the input optics with an EOM, AOM, and

frequency and intensity stabilization. There is auxiliary optics for the main

experiment such as the Michelson interferometer for measurement of actuator

efficiencies of the coil-magnet actuators and optical lever to control the plat-

form suspended by the single wire. A part of the system including the cavities

are located in 2 vacuum chambers. They are introduced in this section.
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ø=300 mm

Top view

Platform:

Roof and floor:
300 mm × 300 mm

Side view

ø=21 mm, t=4.5 mm
Nd magnet: 4 pieces

ø=14.5 mm, t=24.7 mm
Rubber: 3 pieces

7 mm

Piano wires
ø=0.1 mm

20 mm × 20 mm
Pillar: 4 pieces

7 mm

7 mm
400 mm

250 mm

Figure 4.20: Top and side views of the vibration isolation system for the input
optics and the frequency and intensity stabilization. The parts on the platform
are not shown for the clear description.

4.3.1 Input optics

A schematic picture of the input optics is shown in Fig. 4.19. The light source

(Mephisto 2000 NE) is Nd:YAG laser with the wave length of 1064 nm and the

output power of 2W produced by Innolight. The laser light goes through a FI

to avoid return beam and is split to the light going to the associated optics

and the main one. Phase of the main beam is modulated by an EOM and

amplitude is modulated by an AOM whose first order light is used. Moreover,

the light is divided by a PBS whose branching ratio is changed by a HWP. One

is used for frequency stabilization with a reference cavity. The other enters the

main cavity after the intensity stabilization with light picked off by another

PBS. The length of the optical path is adjusted for mode matching of the

cavities. Black triangle means each filter circuit of the stabilization.

The reference cavity, the PDs for the intensity stabilization, and steering

mirrors for the alignment of the main cavities are on a platform. The platform

has a vibration isolation system described in Fig. 4.20. It is suspended by a

building on 3 rubbers. The building consists of a square floor and roof and
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Figure 4.21: Photographs of the entire apparatus of the input optics. The
building at the left suspends the platform including the reference cavity, the
intensity stabilization system, and the steering mirrors for the cavity align-
ment.

4 pillars at the corners. The vibration isolation system is simpler than that

of the platform for the main cavities. It is not a double but single pendulum,

and the damping magnet is not fixed to the suspended damping mass but

to the building. Three piano wires of the 0.1mm diameter are used for the

single suspension of the platform. These suspension points also form an equi-

lateral triangle. Mirror holders after the last splitting of the beam have each

2 picomotors to do the alignment for the pitch and yaw directions. Optical

and mechanical parts introduced at this paragraph are located in a vacuum

chamber to eliminate the effect of the air and sound. Photographs of the input

optics are shown in Fig. 4.21.

4.3.2 Frequency stabilization

Frequency noise of the laser light can be a large issue. As described in Eq. 2.90,

the frequency noise of a linear cavity ∆f [Hz/
√
Hz] contributes to the displace-

ment noise as
√
Sx,freq = Lr∆f/(2fL) [m/

√
Hz]. In the case of a triangular
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Side viewFront view

Screw

500 mm

440 mm

25 mm

25 mm

HR mirror

Figure 4.22: Top and side views of the reference cavity. The white dotted area
whose diameter is 10mm shows the space in the reference cavity.

Figure 4.23: A photograph of the reference cavity.

cavity, these have the relation of

√
Sx,freq =

2π∆f

g
, (4.11)

where g is the optimechanical coupling constant. Here the requirement of the

frequency noise is set to be below the SQL of the test mass. It is enough small

to observe the radiation pressure fluctuation.

The reference cavity is used to suppress the frequency noise of the laser

source. When the displacement noise is much smaller than the corresponding

frequency noise of the light, the frequency fluctuation is stabilized toward

the displacement level of the reference cavity by the feedback control. Our
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Property Value

Spacer material Super Invar

Cavity length [mm] 44

FSR [GHz] 3.4

Mirror substrate Fused silica

Diameter [mm] 12.7 (half inch)

Thickness [mm] 6.35

Front surface reflectivity ∼99.994%

Rear surface reflectivity <0.2%

Curvature [mm] 1000

Designed finesse 5.24× 104

Measured finesse 6.14× 104

Table 4.7: Properties of the reference cavity.

reference cavity consists of a rigid body made of super Invar, which has ultra

low coefficient of thermal expansion, and two mirrors with the high reflection

coating. A schematic picture , photograph, and properties of the reference

cavity are represented in Fig. 4.22, Fig. 4.23, and Table 4.7. Two high reflection

mirrors are buried by 3mm in the hole at edges of the spacer. They are fixed

to the spacer by screws.

The frequency stabilization is done with this reference cavity. We get

Pound–Drever–Hall (PDH) signals from the reflection light of the cavity with

the 15-MHz phase modulation by the EOM [104]. The EOM of Newport 4003

is a resonant type and the modulation index is 0.1 rad/V. In the frequency

stabilization the signal amplitude of the 15-MHz modulation is 4V and the

demodulation signal is also 4V. The used PD is Hamamatsu Photonics G10899

InGaAs photodiodes with the diameter of 1mm, which can response at 15MHz.

The filter includes low-pass filters and a high-pass filter to compensate the

phase delay and keep the stable feedback control. It generates the feedback

signals which go to the two actuators. Main one is the PZT attached to the

cavity for the laser emission, and the other is the temperature of the laser

crystal. The temperature actuator has larger dynamic range than the PZT.

These actuator efficiencies are measured by the cavity scan. By changing the

frequency of the laser light with shaking the input voltage to each actuator,
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Figure 4.24: An openloop transfer function of the frequency stabilization. The
blue dots show the measured data and the red line shows the fitting result with
the gain. The unity gain and the frequency are described as the black dotted
line.

the reflection power varies at the FSR of 3.4GHz or the sideband frequency of

15MHz. The coefficient of the frequency over the input voltage to the actuator

can be obtained by using the FSR (temperature) or sideband (PZT) as the

reference. The actuator efficiencies are estimated to be 2.65± 0.01GHz/V at

the temperature and 1.51± 0.01MHz/V at the PZT.

An openloop transfer function of the frequency stabilization is shown in

Fig. 4.24. The UGF is around 14 kHz and the phase margin at the frequency

is 24◦. The temperature actuator has much larger but slower efficiency, so the

temperature control loop is dominant below ∼1Hz and the PZT actuator is

dominant in the shown frequency band. The fitting function is generated with

the openloop gain divided by the measured filter gain. The fitting parameters

are the whole gain and the cutoff frequency of the optical gain, which is the

same as the cavity pole. The cavity pole and the finesse of the reference cavity
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Figure 4.25: Frequency noise of the laser light. The red line shows the noise
level of the freerun. The blue line is calculated by summation of the measured
in loop signal (the black line) and the sensor noise (the green line). nav = 44.

are measured to be

fp = (2.71± 0.02)× 104Hz, F = (6.30± 0.04)× 104, (4.12)

respectively. These values are consistent with the calculated ones from the

designed reflectivity of ∼99.994%. From the fitting result of the overall gain

and the actuator efficiency of 1.51 ± 0.01MHz/V, the optical gain below the

cavity pole is calculated as 11.4±0.1V/MHz. The input power to the reference

cavity is 1.5mW at the measurement of the openloop transfer function and

the frequency noise spectrum.

The frequency noise of the laser light is described in Fig. 4.25. The calibra-

tion is based on the optical gain and the openloop gain. The estimated freerun

level is consistent with the typical spectrum of the NPRO laser source, which

is roughly 104/f Hz/
√
Hz. The estimation in the control loop only gives the
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Figure 4.26: An openloop transfer function of the intensity stabilization. The
blue dots show the measured data and the red line shows the fitting result
with the gain.

lower limit of the real frequency noise. For example, it cannot be stabilized be-

low the sensor noise. The sensor noise is measured by getting the PDH signal

with the laser frequency far from resonance of the cavity. It can be considered

that the structure is caused by the seismic noise. The thermal noises of spacer

of the reference cavity and coating of the cavity mirror is also the issues, but

they are smaller than the error signal. Here, It is assumed that the actual

frequency noise represented by the blue line, which satisfies the requirement.

As noted previously, the requirement is set not to cover the SQL of the test

mass with the common mode rejection ratio of 1/10 at both arms.

4.3.3 Intensity stabilization

Intensity stabilization is also important because the classical radiation pressure

noise and the amplitude fluctuation entering main PDs must be reduced to
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Figure 4.27: Intensity noise of the laser light. The relative intensity noise at
the vertical axis means the voltage spectrum divided by the DC voltage. The
spectrum of out of loop measurement is represented by the blue lines. The
red, green, black solid lines correspond to the noise level of the freerun, error
signal in the control loop, and dark noise of the PDs, respectively. nav = 44.

observe the quantum radiation pressure fluctuation. An AOM is used in order

to do the stabilization. The AOM diffracts and shifts the laser light with the

sound waves at radio frequency typically over MHz. When the sound waves

are added to the AOM crystal, the input beam is sprit to the zeroth and first

order lights. The divided ratio is determined by the amplitude of the radio

wave, so it can be used for the actuator of the intensity stabilization.

Our AOM (Brimrose QZF-80-20) has the shift frequency of 80MHz and the

first order light is used as the main beam. The amplitude can be changed by

the input voltage to the AOM driver. After the AOM, the main beam enters

the first vacuum chamber and the light is picked off by a PBS, followed by one

more junction at another BS before 2 PDs. One is used in the control loop of

the intensity stabilization, and the other is for monitor out of the loop. These
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PDs are Perkinelmer C30642 InGaAs photodiodes with the diameter of 2mm.

In Fig. 4.26, an openloop transfer function of the intensity stabilization is

shown. We have the UGF of 23 kHz and the phase margin of 38◦. A high-

pass filter is inserted in series at the filter circuit, and hence the offset to the

AOM driver is not changed but the intensity fluctuation can be controlled at

the measurement band. The responsibility of the PDs were measured to be

0.79 ± 0.08 A/W in the previous work [105]. The current voltage conversion

is done by the resister of 390Ω and the capacitor of 0.22µF in parallel (the

cutoff frequency of 1.86 kHz). With these parameters and the measurement of

the transfer function of the circuit, we can estimate the actuator efficiency of

the AOM driver to be 4.4± 0.4mW/V.

We show intensity noise of the laser light in Fig. 4.27. The averaged DC

voltage is 5.9V, so the input power to each PD is calculated as around 19mW.

A broad peak around 500Hz comes from the vibration of the AOM driver. A

structure from 10Hz to several 10Hz is thought of due to the seismic noise.

The freerun and dark noise signals of the two PDs have similar spectra. Thus,

the averaged spectra of the two are shown.

The requirement of the intensity noise is determined as the classical radia-

tion pressure noise becomes smaller than the quantum fluctuation by 1/10 with

considering the displacement of common and rotational modes. Here we again

note the relative shot noise level given in Eq. 3.35 As discussed at Sec. 4.1, the

rotational mode has the effectively light mass. The ratio of the displacement

in the two modes by common and differential radiation pressure noise is given

by Brsnl/6. With the common mode rejection ratio is assumed to be 1/10, the

requirement of the relative shot noise level is Brsnl < 6.

The relative intensity shot noise is given by

√
Sshot =

√
2e

ρPDPin

[1/
√
Hz], (4.13)

where ρPD is the responsibility of the PD and Pin is the input power. It is

typically the order of 10−9 /
√
Hz at the input power of a few 10mW. On the

other hand, the relative intensity noise
√
Srin of the NPRO laser is around the

order of 10−7 /
√
Hz. Thus, about 100-times stabilization is necessary toward

the shot noise level. Even though the openloop gain is high enough, a noise
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penalty cannot be avoided owing to the method picking the light off. Fluctu-

ation of electrical fields at reflection δEr and transmission δEt of a BS can be

described as δEr = r1δbin + t1δαas

δEt = t1δbin − r1δαas,
(4.14)

where r1 and t1 are the amplitude reflectivity and transmissivity of the BS,

δbin is the electrical field of the input light, and δαas is the vacuum field from

anti-symmetric port of the BS. When we suppress the fluctuation as δEr = 0,

δbin = −t1/r1αas is satisfied. With substituting it, the measured transmission

goes to

δEt = −δαas

r1
. (4.15)

It means that the relative shot noise level can never be below 1/r1. In our case

the penalty factor is
√
2 because we use the BS of r1 = 1/

√
2.

4.3.4 Auxiliary optics

In Fig. 4.28, we describe the auxiliary optics for the main cavities. It includes

2 CCD cameras for monitoring transmission light from the test mass, 2 PDs

for getting the main amplitude signals, and steering mirrors with picomotors.

These are located on the floor of the building for the suspension of the main

cavities. Moreover, there are 2 asymmetric Michelson interferometers to mea-

sure the actuator efficiencies of the controlled mirrors, and the control system

of the yaw mode of the platform with an optical lever and a coil-magnet ac-

tuator. Laser light for these system is injected from the back of the second

vacuum chamber. Steering mirrors and lenses for mode matching of the beam

in the Michelson interferometers are also on the floor of the building. A mirror

with a magnet at its side for the optical lever and the control is attached to

the edge of the platform. In Fig. 4.29, a photograph of the auxiliary optics is

shown.

121



Platform

CCD

HWPPBS

Vacuum chamber

Shield box

f=750 mm

BS BS

BS QPD

PD

PD

Coil-
magnet

filter2

filter1

From
input optics

From
input optics

Control of
the platform

Actuator efficiency 
measurement

f=200 mm

Figure 4.28: A schematic picture of the associated optics. The components
on the platform are simplified. Similarly to the input optics, parts out of the
vacuum chamber is in an acrylic shield box.

Figure 4.29: A photograph of the entire apparatus of the auxiliary optics.
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Figure 4.30: Openloop transfer functions of the control of the Michelson inter-
ferometers. The blue and brown dots show the measured data of each control
and the red and magenta lines show the fitting result with the actuator effi-
ciencies.

Actuator efficiency measurement

The actuator efficiencies of the 2 controlled mirrors should be measured for

calibration from measured voltage to displacement of the main cavities. Each

efficiency is measured by constructing the Michelson interferometer with a

fixed mirror close to the BS in the shield box and the controlled mirror from

whose back the light comes. The interferometers are locked in the mid fringe.

Fig. 4.30 represents openloop transfer functions of the control of the Michelson

interferometers. The actuator efficiency of force added to the controlled mirror

per unit voltage (N/V) can be calculated by dividing the openloop transfer

function by the sensor efficiency, the measured transfer function of measured

filter and the susceptibility of the controlled mirror.
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Figure 4.31: An openloop transfer function of the control of the yaw platform.
The blue dots express the measured data and the red line shows the fitting
result with the overall gain multiplied by the transfer function of the filter
circuit.

The error signal of the Michelson interferometer is given by

VMI(x) = A sin

(
4π

λL
x

)
, (4.16)

where A is the voltage amplitude and x is the displacement. The locked point

is x = 0. Therefore, the sensor efficiency can be calculated as V ′
MI(x = 0) =

4πA/λL [V/m]. A can be measured by observing the error signal caused by the

free oscillation of the controlled mirror. After measuring each sensor efficiency,

we calculate the actuator efficiency at different frequencies and get the average.

They are estimated to be (3.7 ± 0.4) × 10−4N/V and (3.3 ± 0.3) × 10−4N/V

respectively. The errors derive from the standard devision of the data.
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Control of the platform

The platform for the main cavity is suspended by a single wire. The resonant

frequency of the rotational mode is around 10mHz and it can be easily excited

due to touch to the platform following the long time taking until it gets stable.

Thus, it is necessary to control the yaw motion of the platform. We pick off a

part of the laser light for the actuator efficiency measurement and use it as an

optical lever. The beam reflects from the mirror attached to the edge of the

platform and enters the QPD. The yaw motion of the platform is sensed by

the horizontal signal of the QPD. The signal goes to the coil-magnet actuator

for the feedback control.

In Fig. 4.31, an openloop transfer function of this control is shown. The

UGF is around 0.8Hz and the phase margin is about 25◦. The reason of this

slow control is for the actuator not to give the motion of the platform around

several Hz. The resonant frequency of the yaw mode is around 15mHz with-

out any components on the platform, but it can be changed by the damping

magnets for the control mirror. Actually, the stable position of the platform

varies by whether the magnets are installed on the platform or not. It is also

the reason why the damping magnets for the controlled mirror consist of 4

pieces. Susceptibility of the platform for magnetic field out of the platform is

made to be as small as possible by combining 4 magnets with alternating N

and S poles.

4.3.5 Vacuum system

As described in the previous figures, sensitive components are located in the

vacuum chambers to avoid the effect of the residual gas. A schematic picture

of the vacuum chambers and the table are represented in Fig. 4.32. The table

is on 4 pieces of rubbers at each leg for vibration isolation. The input optics is

in the right chamber and the main cavities are in the left one. Measurement of

the pressure and vacuum leak is done via the port behind the right chamber.

Signals for picomotors and coils go through the lead ports. Entrance windows

for laser light have the anti-reflection coatings.

Two types of vacuum pumps for evacuation are used, although they are

not drawn in the figure. The evacuation is done from the floor of the right
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Figure 4.32: Top and side views of the vacuum chambers and the table.
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chamber. One pump is an oil-sealed rotary one (Edwards RV12) for the rough

evacuation. The other is a turbo-molecular pump (Osaka vacuum TG450F) for

as low pressure as possible. The reached vacuum level goes below 2× 10−4 Pa

without any components in the chambers and 3×10−4 Pa with all parts inside

for a few days.

The sound and the air flow are the issues at air pressure, and at low pressure

thermal noise of the residual gas molecules hitting the test mass randomly can

be the noise of the measurement. The dissipation of the residual gas is given

by [48].

γgas =
P

Chρ

√
mmol

kBTth
, (4.17)

where P , h, ρ, and mmol are the pressure, the thickness of the mass, the

density of the mass, and the mass of dominant molecules, respectively. C is a

dimensionless constant of order unity depending on the shape of the oscillator.

It is viscous damping without frequency dependence of the dissipation because

the force proportional to the velocity is added. In our experiment, the residual

gas noise at the pressure of 2× 10−4 Pa is smaller than the quantum radiation

pressure fluctuation. Finally, we show a photograph of the entire apparatus of

our setup in Fig. 4.33.

4.4 Summary of this chapter

A bar-shaped mirror as a torsion pendulum which has two optical cavities at

both edges is designed in order to realize observation of quantum radiation

pressure fluctuation. The rotational mode is measured by subtracting one of

the displacement signals from the other. This setup has advantages such as

the low suspension thermal noise, the common mode rejection, and the light

effective mass. We show all setup designs and associated results.
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Figure 4.33: A photograph of the entire apparatus of our setup. The apparatus
consists of the input optical table, the first vacuum chamber including the
intensity and frequency stabilization system, the second chamber containing
the main cavities, and the associated optics from the front to the back. The
time series data are recorded in a logger at the right top. We see outputs of
the CCD cameras with a monitor for the cavities resonance.
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Chapter 5

Experimental result

In the previous chapter, we describe the experimental setup and the associated

system to observe the quantum radiation pressure fluctuation at 50-100Hz.

The stabilization of the laser frequency and intensity and the vibration isola-

tion reach enough level for the goal. Here, the main result of the experiment

is shown.

The displacement spectra of the torsion pendulum cavities are described in

section 5.1. We discuss how the spectra are calibrated from the error signals

to the displacement in section 5.2. In section 5.3, the displacement due to the

quantum radiation pressure fluctuation is estimated with based on a theoretical

equation and the bar thermal noises. Estimation and measurement errors are

discussed and summarized in section 5.4.

5.1 Main result

First of all, we focus on our main results of the displacement spectra. Method

of controlling the cavity length is also introduced here.

5.1.1 Displacement spectrum

In Fig. 5.1, we show the displacement spectra of the measured differential mode

and the estimated quantum radiation pressure fluctuation acting on the test

mass. The measured differential spectrum reaches 3 × 10−15m/
√
Hz between

60Hz and 100Hz. During this measurement, the quantum radiation pressure
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Figure 5.1: Differential displacement spectrum of the cavities. The gold line
shows the measured spectrum, nav = 44. The estimated quantum radiation
pressure fluctuation acting on the bar mirror is represented as the red line.

fluctuation contributes to the spectrum by 3.6× 10−16m/
√
Hz. The signal to

noise ratio is estimated to be 0.14±0.03. This value is the most highest signal

to noise ratio for measurement of quantum radiation pressure fluctuation.

The displacement spectra of each cavity are described in Fig. 5.2. We get

the differential signal by subtracting each voltage signal as

Vdiff = VB − 0.575VA, (5.1)

calculate the spectrum, and calibrate it with the calibration factor from voltage

to displacement of the B cavity. The factor of 0.575 is determined from a view

point of the common mode rejection. It gives the best common mode rejection

ration of 0.05 to the peak height at 73Hz. This peak is due to the vibration

of the vacuum pump. The floor sensitivity is also improved the most with the

factor of 0.575.
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Figure 5.2: Displacement spectra of each cavity. The blue and magenta lines
represent the spectra of the cavity A and B.

5.1.2 Control method

In the main experiment, we lock the cavity length at one side of a shoulder of

the cavity Lorentzian where the restoring force of the optical spring is positive,

and do not use the PDH method. The amplitude of the reflection from the

cavity is detected by a PD (Hamamatsu G10899-03K). The offset is adjusted

as the targeting point of the Lorentzian becomes zero before the filter. The

filter circuits has phase compensation around 1 kHz. The feedback signal goes

to a coil driver for the coil-magnet actuator, and the cavity length is controlled

to keep the resonance.

It takes a period of time, typically several 10 s, to lock the cavities. When

the one arm is locked, constant radiation pressure pushes the bar mirror and

rotates it, resulting in breaking the lock. Therefore, the simultaneous locking

is required. Both of initial locked points are far from the resonance peaks.

They are not zero points of each error signal. After the initial lock, we change
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the offset of the coil drivers and push the controlled mirrors to the zero points

which are close to the peak. We need to take care of the filter gains during

the adjustment of the locked points. It is because the optical gain gets larger

as the locked point is close to the peak and the feedback control cannot help

oscillating with the same filter gain owing to some oscillation sources.

This manipulation is done with looking at the error signals and videos of

CCD cameras. A small rotation of the controlled mirror is caused by unbalance

of actuator efficiencies at the right and left coil-magnets. That rotation can be

judged by the CCD camera, and it is modified by differential offset to change

its yaw mode manually. These cameras are also used at the adjusting the

alignment of the cavities and improving the mode matching of the TEM00

modes.

5.2 Calibration

In this section we discuss the calibration from the voltage signal to the dis-

placement. The calibration is one of the most important factors for observing

the target signal. First, a block diagram for our feedback control system is

described. Next, our experimental key technic of the optical spring is shown

with the result of openloop transfer function measurements.

5.2.1 Block diagram

A block diagram of the transfer functions described in Fig. 5.3 can help clearer

understanding. This diagram shows the control loop of one cavity and at which

points noise sources are introduced. We have 2 loops in the block diagram.

One corresponds to the optical spring, and the other is for the active feedback

control of the cavity length. These openloop gains are defined as G1 and G2

respectively.

The error voltage signal is calibrated to the displacement. Especially, we

consider the displacement xdis when the measured force is added to the torsion

pendulum as a free mass. The displacement of one cavity can be expressed by
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Figure 5.3: A block diagram of the control used in the main experiment.
Each blue box with the unit shows the transfer function at each experimental
component. Hpend [m/N] and Hcon [m/N] mean the mechanical susceptibilities,
and g1 and g2 are the optomechanical coupling constant of the test mass and
the controlled mirror, respectively. Hcav, HPD, Hfil, and Hact show the optical,
PD, filter, and actuator gain. The filter includes the circuit to change the
offset of the error signal. δF1 and δF2 are force noises added to the test mass
and the controlled mirror, and ns is the sensing noise in the cavity such as the
frequency noise.

the error signal Verror and the transfer functions as

xdis =

∣∣∣∣1 +G0

G0

g2
g1
HfilHactHcon

∣∣∣∣Verror, (5.2)

where G0 = G2/(1 +G1) is the total openloop gain. Then, we obtain two dis-

placement spectra of each cavity and the differential spectrum. The optome-

chanical coupling constants of g1 and g2 and the mechanical susceptibility of

the controlled mirror Hcon are decided by the mechanical design. The actuator

efficiency Hact is already measured by the Michelson interferometer. Therefore,

the filter and openloop transfer functions are required to be measured in order

to calibrate the signal.
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Figure 5.4: Openloop transfer functions of the cavity controls. The blue and
brown dots show the measured data of each control and the red and magenta
lines show the fitting result with the resonant frequencies and the optical gains.

5.2.2 Optical spring

We measure the openloop transfer function by injecting sine waves at var-

ious frequencies after the filter circuit and getting the ratio of signals just

before and after the injection port. This openloop gain is equal to G0 and

includes the susceptibility of the optical spring. The optical spring constant

is given by Kopt = Hoptg1 = mω2
opt, where m is the mass of the torsion pen-

dulum and ωopt is the angular resonant frequency due to the optical spring.

In our configuration, the mechanical susceptibility Hpend and Hcon can be ap-

proximated as those of free masses above 10Hz, i.e., Hpend ≃ −1/(mω2) and

Hcon ≃ −1/(Mω2), where M is the mass of the controlled mirror. Hence, the

total openloop gain is proportional to

G0 ∝
Hcon

1 +G1

≃ 1

M(ω2
opt − ω2)

, (5.3)
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without the damping constant.

In Fig. 5.4, measured openloop transfer functions are represented on two

cavities. We can observe the peak due to the optical spring at 0.88± 0.02 kHz

and 1.03±0.02 kHz. The original mechanical resonant frequency of about 3Hz

is increased by a few 100 times higher. This strong optical springs realize

the robust locking of the cavities. The frequency region whose gain is over

unity is around the optical spring resonance. The difference between two

resonant frequencies is due to the different finesse, detuning, mode matching,

and input power of the two cavities. Moreover, we estimate the optical gain

from the displacement of the bar mirror to the voltage signal from another

fitting parameter. These values are (6.3 ± 0.6) × 109V/m and (1.0 ± 0.1) ×
1010V/m.

5.3 Quantum radiation pressure fluctuation

Here, we discuss how the displacement caused by quantum radiation pressure

fluctuation can be estimated. It is important at calculating the signal to noise

ratio of the target. Our estimation method making use of the optical resonant

frequency is tolerant of various systematic errors. Moreover, we can measure

the beam spot position of the bar mirror using the resonance of the internal

modes, and estimate the normalized detuning during the operation also using

the optical resonant frequency.

5.3.1 Expression with optical spring

As described in Eq. 5.5, the theoretical force spectrum of quantum radiation

pressure fluctuation

Sf,qrp =
32ℏωLF2Pin cos

2 β

π2c2
κin
κ

1

(1 + δ2)2
, (5.4)

has a large systematic error of Pin. Experimentally, the effective input power

includes the mode matching ratio of the input beam to the cavity. The align-

ment is slightly changed because of the DC radiation pressure, so it is difficult

to estimate the precise mode matching ratio when the cavity is resonating.
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Moreover, the PD responsibility has also large errors about 10%, and κin/κ of

the cavity is not easy to be measured.

However, we find the method which is tolerant of these systematic errors

with the optical spring resonant frequency. According to Eq. (3.29), the real

part of optical spring constant is given by

Kopt =
16ωLF2Pin cos

2 β

π2c2
κin
κ

δ

(1 + δ2)2
. (5.5)

This spring constant can be written as Kopt = mω2
opt, so substituting this to

Eq. (5.4) we get a simple formula as follows:

Sf,qrp =
2ℏ
δ
mω2

opt. (5.6)

Therefore, the differential displacement of the test mass due to quantum radi-

ation pressure fluctuation is calculated as

√
Sx,qrp =

12(LA + LB)

L2ω2

√
2ℏ
m

(
L2
Aω

2
opt,A

δA
+
L2
Bω

2
opt,B

δB

)
, (5.7)

where LA and LB are the beam spot positions from the center of the bar,

and the indices of A and B show each cavity. Our next step to estimate the

displacement is measuring the beam spot positions on the bar mirror.

5.3.2 Beam spot position

We can measure the beam spot positions on the test mass with the resonance

peaks of the bar bending modes. As described in Fig. 4.4, the test mass has

the eigen modes of the substrate. In Fig. 5.5, we show displacement of position

at the bar. The beam spot position decides the displacement of the modes.

Therefore, the position can be calculated by getting the ratio of the peak hight

of these two modes.

The spectra of the error signals around the bending modes are shown in

Fig. 5.6. Measured resonant frequencies of the 1st and 2nd bending modes are

5.779 kHz and 15.91 kHz. The ratio of these frequencies are different from that

of theoretical values only by 0.2%. The absolute values are higher by 10%,
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Figure 5.5: Displacement of position at the bar. The red and blue lines show
the displacement of the 1st and 2nd bending modes. Both axises are normal-
ized. The origin of the position is the left edge of the test mass, and the right
edge corresponds to the position of 1. The vertical dotted lines mean measured
positions of each cavity.

which can result from the larger Young’s modulus by 20% or lower density of

the substrate by 20%.

The fitting results, whose function is the mechanical susceptibility multi-

plied by a constant, are also described. The fitting parameters are the floor

value and the Q-value of each mode. The estimated Q-values are 2− 3× 103.

This low values for the substrate are due to a kind of feedback cooling with the

filter circuit. Actually, the feedback control of the cavities are broken owing to

the oscillation of the 1st bending mode when the filter gain is not large enough.

With another fitting parameters of the floor value, we calculate the ratio of

the displacement amplitude of the modes in order to corresponding the beam

spot positions. The positions are estimated to be LA = 4.82 ± 0.05mm and

LB = 5.22± 0.04mm. That is to say, the effective bar length for the radiation
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Figure 5.6: Error signals around the bending modes. The blue and magenta
dots show the measured spectrum, and the blue and magenta lines represent
the fitting result of each cavity. nav = 44. The origins of the frequency are at
5.779 kHz and 15.91 kHz, respectively.

pressure is LA+LB = 10.0mm. The result of the position estimation is shown

in Fig. 5.5 as vertical dotted lines.

5.3.3 Normalized detuning

Finally, we need to calculate the normalized detuning of the cavities during the

operation. The normalized detuning is determined by comparing the reflection

power with the result of the cavity scan. The result, however, can be changed

with the cavity resonating because the radiation pressure pushes the mirror

and gets the mode matching worse. Thus, it is difficult to estimate the precise

detuning. Here the normalized detuning are calculated with the optical spring

frequencies. The resonant frequencies are around their maximum theoretically

predicted with the cavity optical parameters. It has the maximum at the
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Figure 5.7: Cavity scans of the main cavities around the resonance peak. The
blue and magenta dots show the measured data, and the lines show the fitting
result of cavity A and B, respectively. The vertical axis expresses the actual
voltage output of PDs measuring the reflection.

normalized detuning of δ = 1/
√
3, so we can estimate it to be around 1/

√
3.

The cavity parameters are measured by cavity scans. First, information

around the resonance peak of the TEM00 mode gives the cavity line width.

In Fig. 5.7, the result of the cavity scans around the peak is represented. The

cavity is scanned spontaneously by the residual oscillation caused by seismic

motion. The frequency reference is the 15-MHz sideband. The error of the

estimated line width derives from the difference of the sideband interval which

is due to changing speed of the pendulum oscillation.

Next, the scan across the FSR is used to measure the cavity FSR and

mode matching ratio. The frequency reference for the FSR measurement is

also the sideband, and the FSR value is averaged with some intervals. The

FSR gives the cavity round trip length, and the ratio of the doubled cavity line

width and the FSR is equal to the finesse. We get the mode matching ratio
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Property cavity A cavity B

Finesse (3.0± 0.3)× 103 (2.4± 0.2)× 103

Cavity line width [MHz] 0.67± 0.03 0.49± 0.02

FSR [GHz] 3.0± 0.3 3.4± 0.2

Round trip length [cm] 9.9± 0.9 8.9± 0.6

κin/κ 0.65± 0.04 0.66± 0.04

Input power [mW] 18± 1 19± 1

Mode matching ratio 77± 3% 75± 3%

Table 5.1: List of measured parameters related to the cavities.

by dividing the TEM00 peak height by sum of the height of all peaks. The

maximum effective input power to the cavity can be given by the calibrated

reflection voltage with the impedance and responsibility of the PD multiplied

by the mode matching ratio. Based on the mode matching ratio and the

reflection voltage on resonance, the coupling rate of the injection, κin/κ, can

be calculated. Over and under coupling degenerate only with information of

the reflection, but in our experiment the cavity can be concluded to be over

coupling because the under coupling cavity with the measured finesse cannot

realize the measured optical spring. These parameters are listed in Table 5.1.

We can predict the optical resonant frequencies with these parameters as

shown in Fig. 5.8. This figure represents the estimated optical resonant fre-

quency of normalized detuning including the error with the shaded area. The

estimation error mainly results from that of the cavity finesse, which is a little

less than 10%. When our cavities are under coupling, the assumed κin/κ is

half and cannot reproduce those high resonant frequencies, so the cavity is

over coupled. The normalized detuning exists in the overlapped region of the

dotted line and shaded area. Each detuning is estimated to be δA = 0.6± 0.2

and δB = 0.6± 0.3.

With these measured parameters such as the optical resonant frequency,

the beam spot position, and the normalized detuning, we can estimate the

differential displacement caused by the quantum radiation pressure fluctuation

described in Eq. (5.7). The estimated displacement spectrum is

√
Sx,qrp = (3.6± 0.8)× 10−15

(
100Hz

f

)2

m/
√
Hz, (5.8)
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Figure 5.8: Optical resonant frequency of normalized detuning on the cavity.
The blue and magenta areas show the predicted resonant frequencies including
their errors. The horizontal dotted lines mean the measured resonant frequen-
cies.

and the signal to noise ratio is 0.14 ± 0.03 between 60Hz and 100Hz. The

error of the estimated normalized detuning has the largest contribution.

5.4 Summary of errors

In this section we summarize measurement errors of experimental parameters

and discuss the estimation error of the signal to noise ratio.

• Calibration error for the displacement noise

We calibrate the voltage signal to the displacement one based on Eq. (5.2).

Dominant sources of the measurement error are Hact and Verror. The rel-

ative errors of the actuator efficiency and the measured voltage spectrum
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Property Relative error

Beam spot position 1%

Detuning 30-50%

Optical resonant frequency 2%

Displacement spectrum 20%

Table 5.2: Relative errors of parameters for estimation of radiation pressure
fluctuation.

are 10% and 15% (≃
√

1/nav), respectively. The error of actuator ef-

ficiency comes from the fitting to calculate it. Those of other transfer

functions are negligible because they are a few percent at the most.

• Estimation error of the radiation pressure fluctuation

The displacement spectrum of the quantum radiation pressure fluctua-

tion is estimated with Eq. (5.7). Parameters are the beam spot position,

the detuning of the cavity, the optical resonant frequency. Relative er-

rors for these parameters and the estimated displacement spectrum are

shown in Table 5.2. A dominant parameter for the estimation error is

the detuning. The other errors are derived from the fitting.

Relative errors for calibration of the measured data and estimation of the

quantum radiation pressure fluctuation are 18% and 20%, respectively. The

signal to noise ratio is estimated to be 0.14 ± 0.03 with the relative error of

27%.

5.5 Summary of this chapter

We show the main result of our experiments. Achieved signal to noise ratio

of quantum radiation pressure fluctuation of 0.14± 0.03 is the highest one on

the measurement around the detector band around 100Hz and on the mass

scales above mg. The estimation error of the cavity detuning is dominant in

that of the signal to noise ratio. Our result is compared with previous works

in Fig. 5.9.
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Figure 5.9: Comparison of our result with previous works. The red point
means our result.
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Chapter 6

Discussion

The results of our main experiment using the torsion pendulum cavities are

described in the previous section. In the most sensitive band of 60-100Hz, the

signal to noise ratio of the quantum radiation pressure fluctuation is evaluated

to be 0.14 ± 0.03. The displacement noise is about 7 times larger than the

signal. In this chapter, we discuss the possible noise sources contributing to

the measured displacement spectra.

6.1 Noise analysis

In this section various noise sources are analyzed. We evaluate the contribu-

tion of the thermal, seismic, electronic, and other noises to the displacement

spectra.

6.1.1 Thermal noise

Important thermal noises on our experiment are separated to 3 types, the

residual gas, suspension, and substrate thermal noise.

Residual gas noise

The effect of the residual gas is searched for by changing the pressure in the

vacuum chamber and measuring the displacement noises. In Fig. 6.1, we rep-

resent 4 results at each pressure, 100Pa, 1.3Pa, 3.8 × 10−2 Pa, and the main
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Figure 6.1: Displacement spectra at various pressure. The blue, magenta,
cyan, and gold lines show the measured spectra at each pressure, nav = 44.
The dotted lines mean the theoretical residual gas thermal noise correspond-
ing to the pressure. The red line represents the quantum radiation pressure
fluctuation.

one already shown (2.4 × 10−4 Pa). Theoretical residual gas noises are also

described. This estimation is based on Eq. (4.17). The assumed molecules,

temperature, and shape factor are water, Tth = 300K, and C = 1, respectively.

The line of P = 1.3Pa explains the measured data well, and measured

spectra at P = 3.8 × 10−2 Pa is consistent with the sum of the displacement

noise shown as the gold line and the theoretical value. The 100Pa line is

larger than the measured data. It seems to be because the approximation of

particle description of residual gas molecules cannot be applied anymore and

the viscous effect is dominant at such high pressure. The estimated gas noise

at P = 2.4× 10−4 Pa is much smaller than the displacement noise, so it is not

a dominant noise for the main result.
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Figure 6.2: Estimated displacement spectra of the pitch and bounce modes,
and the thermal noise of the input mirror holders. The blue and magenta
lines show each cavity spectrum, and the black solid lines express 3 suspension
thermal noises. The black dotted lines mean the holder thermal noises.

Suspension thermal noise

Suspension thermal noise is one of the largest obstacles for observation of

quantum radiation pressure fluctuation. Our set up avoids it because the

rotational suspension thermal noise is small due to the low mechanical resonant

frequency. However, we find that the other suspension thermal noise of wires

can be the issues.

In Fig. 6.2, we show the measured displacement spectra of each cavity and

the estimated suspension thermal noise of the pitch mode of the test mass

and bounce modes of the carbon fiber and CuBe wire. At frequencies of these

resonant peaks, coherence between error signals of two cavities is almost 1 as
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Figure 6.3: Measured coherence between the error signals from each cavity.
The measured data is represented as the brown line.

shown in Fig. 6.3. The coherence C(f) is defined as

C(f) =
|Sab(f)|2

Saa(f)Sbb(f)
, (6.1)

where Sab(f) is the correlation spectrum of the two signals, and Saa(f) and

Sbb(f) are the power spectra of each signal. When the signals are absolutely

correlate (independent), the coherence is 1 (0). Therefore, these motions can

be concluded to come from the oscillation of the test mass, which is a common

mirror for the cavities.

Actually, these resonant frequencies are consistent with the estimated ones

from the moment of inertia of the test mass and the length and Young’s mod-

ulus of CF and CuBe fibers. The assumed Q-values and coupling constant

from vertical motion to horizontal one (VHC) of the modes are listed in Ta-

ble 6.1. The coupling from the pitch oscillation varies with the vertical beam
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Property Pitch CF bounce CuBe bounce

Frequency [Hz] 38.5 231 499

Q-value 250 250 300

VHC NA 0.01 0.13

CMRR 0.16 0.13 0.1

Table 6.1: List of the assumed Q-values, the measured vertical horizontal
coupling, and the common mode rejection ratio of the pitch and bounce modes.

spot position on the bar. It is required for us to adjust the positions with

seeing the CCD cameras and move them near the center. The pitch Q-value

is much lower than that of the pendulum mode because the energy loss occurs

the adhesion point just above the test mass, which is much lossier than the

energy loss of the bending wire. This pitch coupling and the bounce thermal

noises limit the sensitivity of each cavity.

Dominant noises above a few 100Hz are derived from thermal noises of the

independent input mirror holders. Their estimated contributions are shown

also in Fig. 6.2. These broad peaks only exist on each displacement spectrum.

Therefore, the origin is not vibration of the test mass and the platform which

should be common for two spectra. The different parts are the input mirrors

and the controlled mirrors. The controlled mirror does not have the broad

resonance peak around 100Hz because it is a pendulum. The input mirror

holder consists of the main bode with picomotors and the front panel including

the mirror. These are connected by two coil springs. The resonance of the small

coil spring can have the resonant frequency from several 100Hz to kHz, and

the low Q-value around 10.

Furthermore, we show the comparison of the spectra of the error signals

with slightly different input mirror holders in Fig. 6.4. The error signal spectra

for our main data are represented in the upper figure. On this measurement

we use the holder whose front panel is made in the machine shop and it is

constructed by ourselves. The different holder with almost the same structure

is made by Newport based on 9761-K. That holder is used in the measurement

shown in the lower figure. The resonant frequency of the marked peaks change

slightly. Thus, we can judge that these peaks are generated by the input mirror

holder.
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Figure 6.4: The comparison of the spectra of the error signals with different
input mirror holders. The marked resonant peaks are caused by the input
mirror holders. The upper spectra come from the main data, and the lower
spectra is measured with the different holders.

Peak number Frequency [Hz] Q-value Effective mass [g]

A1 360 20 300

B1 310 20 300

A2 530 10 250

B2 520 10 250

A3 1160 10 15

B3 1280 10 15

Table 6.2: List of the modeled resonant frequencies, Q-values, and effective
masses of the input mirror holders.
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Figure 6.5: Estimated suspension and substrate thermal noises. Each noise
source is put down with the line. The solid lines are based on the fitting, and
the dotted lines are calculated by the results of Q-values measurement.

The modeled resonant frequencies, Q-values, and the effective masses for

the thermal noise are listed in Table 6.2. The front panel of the input mirror

holder has the mass of around 10 g. This is much lighter than the effective

mass of two modes represented in the table. It is considered to be because

the motions are parallel to the mirror surface, and the coupling factors to

the direction of the cavity length are about 5. Here, these thermal noises are

assumed to obey the viscous model [106].

In addition to the displacement spectra of the suspension thermal noises,

the differential spectra of the pendulum and rotation suspension thermal noises

are represented in Fig. 6.5. The common mode rejection ratio (CMRR) is

optimized based on the vibration noise around 73Hz, so those of the pitch, CF

bounce, and CuBe are not as large as that of the 73Hz peak. They are also

listed in Table 6.1. The thermal noise of the pendulum mode, whose common
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Figure 6.6: Measured coherence between the vertical seismic noise and each
cavity displacement. The blue (magenta) line means the measured coherence
between the geophone output and the cavity A (B) signal.

mode rejection ratio is assumed to be 0.1, and the rotational mode are much

lower than the measured spectrum. We adopt their Q-values measured by the

ringdown on the rotational mode and the monitor of the equilibrium state on

the pendulum mode.

Substrate thermal noise

Thermal noise of the bending modes of the bar mirror causes the displacement

not only at their resonant frequencies but also at the lower frequency band.

The frequency dependence is f−1/2 because it obeys the structure model. The

voltage signals are calibrated by the same factor as that of the main experi-

ment. Similarly to the pitch and bounce modes, the common mode rejection

of the 1st mode is not large. The contribution of the 2nd mode is enhanced

because the mode is differential. The fitting result is shown in Fig. 6.5. In
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Figure 6.7: Contribution of the vertical seismic noise. The black line shows
the displacement due to the vertical seismic noise of the platform multiplied
by 0.02, which is estimated to be the coupling factor.

this figure, suspension thermal noises discussed in this subsection are summa-

rized. Around the targeting frequency band, they are lower than the quantum

radiation pressure fluctuation.

6.1.2 Seismic noise

The seismic noise, in particular, the vertical seismic noise is a dominant noise

source below 50Hz in our setup. It is confirmed by the coherence measure-

ment between the vertical seismic noise and each cavity displacement, which

is described in Fig. 6.6. The vertical seismic noise data comes from the output

of the geophone on the table for the vacuum chamber. The contribution can

be estimated from the result of vertical seismic noise on the chamber table

multiplied by the transfer function to the platform described in Fig. 4.18.

In Fig. 6.7, we show contribution of the vertical seismic noise of the platform
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to the measured spectrum. When the coupling factor including the common

mode rejection is assumed to be 0.02, the measured displacement noise is

explained between 30-50Hz. The dip of the seismic noise around 30Hz derives

from the transfer function. It appears in the short measurement, but gets dull

owing to some small glitches in the long measurement. Between 10Hz and

30Hz, the measured data has better sensitivity. The coupling of the seismic

noise is considered to be smaller than 0.01 around this frequency range. Peaks

at 37Hz and 73Hz are due to not the seismic noise but vibration of the turbo-

molecular pump because they appear only with the pump on.

The common mode rejection ratio of the vertical seismic noise is around 0.5

below 50Hz, which is worse those of the other common noises. It is because the

optimization is not done based on that frequency band and the optimal factor

at the subtraction is different from that for the 73Hz peak. The difference is

considered to be caused by the variance of transfer function from the vibration

noise to the displacement signal.

6.1.3 Electric noises

One of the most significant technical noises is an electric noise such as the

sensor, filter, and actuator ones whose unit is V/
√
Hz. The sensor noise Vsens

contributes to the displacement spectrum as

xdis =

∣∣∣∣g2g1HfilHactHcon

∣∣∣∣Vsens, (6.2)

and the filter and actuator noises Vfil,act behave as

xdis =

∣∣∣∣g2g1HactHcon

∣∣∣∣Vfil,act. (6.3)

The estimated result is represented in Fig. 6.8. The sensor noise is measured

by monitoring the reflection from the input mirror keeping cavities misaligned.

We measure the filter and actuator noises with putting a terminator of 50Ω into

the input port and monitoring the voltage fluctuation of the output. These

are not dominant noise sources but above the quantum radiation pressure

fluctuation. Therefore, it is necessary to suppress the electric noises or enhance
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Figure 6.8: Contribution of the sensor, filter, and actuator noises. The black
lines show each noise calibrated to the displacement.

the radiation pressure to realize the signal to noise ratio over 1.

6.1.4 Laser frequency and intensity noise

Here we estimate how the stabilized frequency and intensity (classical radiation

pressure) noise contribute to the measured spectrum. As shown in Eq. (4.11),

the frequency fluctuation ∆f turns the displacement noise of

√
Sx,freq =

2π∆f

g1
. (6.4)

The classical radiation pressure noise is given by Eq. (3.36). The displacement

spectrum can be written as√
Sx,crp =

κin
6κ
B2

rsnl

√
Sx,qrp. (6.5)
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Figure 6.9: The displacement spectra due to the frequency and classical radi-
ation pressure noises. The common mode rejection of the frequency noise is
not assumed.

The factor of 6 comes from the effective mass ratio between the pendulum and

rotational modes as described in Sec. 4.3.

In Fig. 6.9, we represent the displacement spectra due to the frequency and

classical radiation pressure noises. They are much smaller than the measured

spectrum even though the common mode rejection of the frequency noise is

not considered. In fact, however, the frequency noise level is not confirmed

because tit is estimated only from the in-loop error signal and the sensor noise

for the stabilization.

The following is a summary of the above discussion of noises. The displace-

ment spectrum of the estimated total noise is shown in Fig. 6.10. Around the

most sensitive range of 50-150Hz, the sum is lower than the measured data

by a factor of about 2, so there are other contributions to the displacement

noise. The vertical seismic noise can explain the measured spectrum below

50Hz. Over 150Hz, the thermal noise of the input mirror holders limit the

156



Figure 6.10: The displacement spectrum of the estimated total noise.

sensitivity.

6.1.5 Other possible noises

In this subsection we consider what noises can limit the sensitivity around

the most sensitive region. One candidate is a scattering noise. In the case

of a linear cavity, the light on the way and on the way back is superposed

and enhanced. On the other hand, the light propagates on one way in the

triangular cavity and the tiny light on the inverse direction can be generated

by the scattering on the mirror surface. Also, our bar mirror does not have

the anti-reflection coating on the rear surface resulting in the reflectivity of

several percents. The reflection can couple with the main beam because the

thickness of the mirror is as thin as the beam radius. Moreover, the small dust

can attach to the surface and generate inhomogenous. Actually, we see tiny

scattered light of the transmission on the CCD camera, and the sensitivity
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around the sensitive band changes with the beam spot position as shown in

Fig. 6.4. These scattering light has the possibility to behave as the floor noise

around 50-150Hz.

The other candidate is other vibration noise on the platform which directly

couples with the cavity displacement because the input mirrors are fixed to

it. In particular, the translation and pitch modes of the platform along the

direction perpendicular to the input mirror surface causes the differential dis-

placement of two cavities. Jagged structures around 80Hz and 120Hz seem to

be caused by vibration noises. We have to also suspend the input mirrors to

avoid these noises.

6.1.6 Common mode rejection

Here we summarize the discussion of the common mode rejection at our anal-

ysis. The reference to determine the subtraction factor is the peak of 73Hz,

which is caused by the vibration of the turbo-molecular pump. The rejection

ratio is 0.05. With this subtraction factor, the common motions of the test

mass such as the pitch and bounce thermal noises are reduced by a factor of

about 0.1. It enables the differential sensitivity to reach the signal to noise

ratio of 0.14 ± 0.03, which is limited by unknown independent noises. The

ratio for the vertical seismic noise is 0.5. The small ratio is derived from the

difference of the transfer path of the noise to the differential signal. The laser

frequency and intensity noises are small enough to require the common mode

rejection ratio.

6.2 Summary of this chapter

We discuss various noises which can limit the measured sensitivity, such as the

thermal noises, electrical noises, seismic noise, and laser noises. The vertical

seismic noise is dominant below 50Hz. Above 150Hz, the thermal noises of the

input mirror holders limit the sensitivity. There are unknown noises between

50-150Hz, but the scattering noise and the vibration noise of the platform are

candidates.
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Chapter 7

Future and conclusion

Quantum radiation pressure fluctuation can be observed with the signal to

noise ratio over 1 using improved experimental designs. The future plans are

described in Section 7.1, and the thesis is concluded in Section 7.2.

7.1 Future plan

In this section, we discuss future plans towards observation of quantum radi-

ation pressure fluctuation with the signal to noise ratio above 1. One method

is evolving our bar mirror cavities. The other is using a torsion pendulum like

a dumbbell having mg-scale curved mirrors at both edges. In the future plan-

ning, it is assumed that the unknown noise is reduced, and the input mirror

with the holder is replaced with a monolithic or suspended one so that their

thermal noises disappear. Also, we focus on the vertical seismic, filter, actua-

tor, pitch noises which can be the issue particularly in all noises described in

Fig. 6.10.

7.1.1 Bar mirror

Here the upgrading plan for a short term is shown with the similar bar mirror.

It is important to enhance the signal, quantum radiation pressure fluctuation.

By changing the bar length from 15mm to 10mm, the mass decreases by 2/3

and the signal gets larger by 1.5. Further enhancement factor of 1.5 can be

obtained with changing the beam spot positions closer to the edges, LA,B =
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Figure 7.1: Improved displacement sensitivity with the bar mirror. The mea-
sured spectrum in the main experiment is plotted by the gold dotted line.

4mm. Also, when we increase the finesse of cavities from current 3000 to 5000,

the optical restoring force is approximately doubled. The quantum radiation

pressure fluctuation is enhanced totally by 4.5.

We can decrease the filter gain to the half because the optical gain is also

doubled and the openloop gain can keep with the half filter gain. Therefore,

the filter noise gets half. In Fig. 7.1, the future displacement sensitivity for

this upgrade is shown with noises whose contribution is critical. It is assumed

that the classical radiation pressure noise is suppressed enough by distributing

higher power to the PDs for the intensity stabilization. The other noises such

as thermal noise of pendulum, rotation, bounce, and bending modes are much

lower than those represented in the figure. Between 50-100Hz, the signal to

noise ratio is estimated to be over 1.
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Figure 7.2: Displacement spectra of the dumbbell cavities.

7.1.2 Dumbbell with curved mg-scale mirrors

In this section, another future plan is described. A curved mg-scale mirror

can be produced now. The diameter is 3mm, the thickness is 0.5mm, the

curvature is 100mm, and the mass is 8mg. The triangular cavity is not nec-

essary anymore because a linear cavity is stable with mirrors whose g-factors

are negative, that is to say, the Sidles–Sigg instability is avoided. Therefore, a

dumbbell consisting of two curved mirrors at the edges and a thin fiber between

them can be used as torsion pendulum cavities.

In the future experiment, coil springs is used for improved vertical vibra-

tion isolation of the platform. The coil spring realizes the vertical resonant

frequency of a few Hz. The additional noises at the resonant frequency of the

eigen modes can be the issue, but they are typically over 100Hz The fiber

between two curved mirrors is assumed to be made of silica whose diameter

is 0.3mm and length is 20mm. The total mass is about 20mg, which is three

times larger than the previous future test mass. The radiation pressure fluc-
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tuation is 1/3 times, but we can reduce the electric noises also by 1/3 with

the mass of the controlled mirrors triple. The interval between the suspension

point and the position of the center of mass is 0.15mm, namely 1/5, so the

resonant frequency of the pitch mode decreases to 8.1Hz and the thermal noise

is suppressed.

In Fig. 7.2, the displacement spectra of this plan are shown. The frequency

region where the signal to noise ratio is over 1 expands down to the 30Hz

due to the improved vertical seismic noise and the pitch thermal noise. In

addition, all mirrors for the cavities are not fixed but suspended, and hence

the vibration noise from the platform seems to be dramatically decreased. In

the case of the two linear cavities, we can construct a Fabry–Perot Michelson

interferometer. Therefore, the common mode rejection ratio can be enhanced.

7.1.3 Application

After observation of the quantum radiation pressure fluctuation with the dumb-

bell cavities, there are mainly two directions to make use of the device.

For reduction of quantum noise

When we prepare the Fabry–Perot Michelson interferometer whose sensitiv-

ity is limited by quantum radiation pressure fluctuation, the ponderomotive

squeezing and the homodyne detection can be demonstrated. As shown in

Fig. 2.14, the displacement spectrum of the radiation pressure noise has a dip

corresponding to each homodyne angle. A small homodyne angle is required

to reduce the radiation pressure noise around the frequency region much lower

than the SQL frequency. In our experiment the SQL frequency is above kHz,

so that is the case. By demonstrating the reduction below 100Hz, we can

confirm the method for future gravitational wave detectors whose sensitivity

is limited by the radiation pressure noise.

For test of macroscopic quantum mechanics

The dumbbell cavities are useful in terms of the optomechanical device. We

can reach the SQL with those including a silica suspension fiber (the diameter
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of 10µm, the Q-value of 105) and a silica connecting fiber (the diameter of

0.2mm, the Q-value of 107) at 300Hz. They are current feasible parameters.

The ground state cooling can be realized by adjusting the resonant frequency

of the rotational mode at the SQL frequency with the feedback cooling. We can

make use of the cooled test mass for test of macroscopic quantum mechanics

proposed by Balushi et al [107]. This is an expanded experiment proposed

by Marshall et al. [24] with cooled torsion pendulum cavities. Measurement

of the interferometric visibility reveals the existence of gravitational effects in

quantum regimes.

7.2 conclusion

Quantum radiation pressure fluctuation play two important roles. One is in

gravitational wave detectors. The detectors have ultra high sensitivity so as

to detect gravitational waves. One of the most fundamental noises for the

detection is the radiation pressure noise. It originates from the quantum fluc-

tuation of the vacuum field coupling with the laser light. The noise will limit

the sensitivity of future detectors around 10-100Hz which is an important fre-

quency band for observation of gravitational waves. Therefore, it is important

to measure it directly and demonstrate its reduction on table-top experiments

ahead of the actual detectors. However, it has not been observed yet with

suspended mirrors like gravitational wave detectors around the detector band

of 10-100Hz.

The other role is in optomechanics. One of the largest problems about

quantum mechanics is how massive it can scale and how to combine it with

general relativity. The experimental realization of macroscopic quantum states

across various mass scales has the potential to shed light on these questions.

Even though mechanical oscillators at the nano- and micro-scale has been

developed enough to be cooled to the quantum ground state and entangled,

quantum behavior of those heavier than a milligram is hidden due to classical

noises such as the thermal noise. It is important to develop macroscopic oscil-

lators and realize ground state cooling. Observing quantum radiation pressure

fluctuation is one of the necessary condition for that.

Thus, we have developed a mg-scale torsion pendulum as a bar-shaped
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Figure 7.3: Comparison of our result with previous works.

mirror. The mirror is used as a common mirror of two triangular cavities at

both edges. The rotational mode is measured by subtracting the signal from

the cavities and getting the differential displacement spectrum. This setup has

advantages of low suspension thermal noise due to the low resonant frequency

of the yaw mode, the light effective mass, and the common mode rejection.

We succeed in locking the cavities simultaneously and achieve stable opera-

tion with a stiff optical spring. The sensitivity of the differential displacement

spectrum reaches around 3× 10−15m/
√
Hz at 100Hz. The signal to noise ra-

tio of the quantum radiation pressure fluctuation is estimated to be 0.14±0.03

around 60-100Hz. This is the highest ratio ever measured around the detector

frequency band, especially radiation pressure noise regimes, with oscillators

heavier than a milligram as shown in Fig. 7.3. The vertical seismic noise and

the thermal noise of the input mirror holders limits the sensitivities below

50Hz and over 150Hz, respectively. There are unknown noises around 50-

150Hz, which are likely vibration noise and scattering noise. By reducing the

noise which limits the current sensitivity and enhancing the signal with the

higher finesse cavities, we can increase the signal to noise ratio to over 1. That

benchmark would enable us to demonstrate the reduction method of radia-

tion pressure noise with the homodyne detection and would be an important

milestone in cooling the rotational mode of the bar to its quantum ground

state.
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Appendix A

Non-equilibrium thermal noise

In this appendix we show a direct approach for the fluctuation dissipation

theorem under non-equilibrium steady-state conditions. This work is reported

by Komori et al [108].

A.1 Concept and theory

In KAGRA and future gravitational wave detectors, the test masses and the

main suspensions are cooled in order to reduce the suspension and mirror

thermal noises. The mirrors absorb the heat energy from the huge intra-cavity

power of main arms. The heat goes through the suspension fibers to the upper

stages connected with heat links of the cryogenic system. The suspension fibers

have temperature distribution. The fluctuation dissipation theorem predicts

the precise thermal noise corresponding to the energy loss, but it is only valid

for the equilibrium states. Therefore, the theorem cannot be directly applied to

the system with non-uniform temperature. Here we show the non-equilibrium

thermal noise under steady state conditions. This research can be used to

estimate suspension thermal noises of cryogenic gravitational wave detectors

and other mechanical oscillators with temperature depending on the position.

It is assumed that the system is divided to numerous tiny parts and they

have constant temperature each other in the equilibrium. According to the

Levin’s approach [49], the single-sided displacement spectrum of the thermal
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noise should be written as

Sx =
8kB
ω2

∫
d3r

wdiss(r⃗, f)

F 2
0

T (r⃗), (A.1)

where T (r⃗) is the stationary temperature profile, wdiss(r⃗, f) is the power dissi-

pation density related to driving the system with the external force, F0 is an

arbitrary normalization of the drive amplitude. This equation can be rewritten

with the loss angle ϕ(r⃗, f) and maximal elastic energy density umax(r⃗, f) via

wdiss(r⃗, f) = ωumax(r⃗, f)ϕ(r⃗, f),

Sx =
8kB
ω

∫
d3r

umax(r⃗, f)

F 2
0

ϕ(r⃗, f)T (r⃗). (A.2)

It means that the contribution to the thermal noise of the whole system is large

at the points where the stored elastic energy is high at the modal deformation.

On the other hand, the spectrum can be described by not continuous but

discrete model with a finite number of degrees of freedom. The impedance

matrix of the whole system Z, relating the velocity vector v and force vector

F via

Zv = F, (A.3)

can be split up to individual pieces Zl. The temperature of the l-th part is Tl.

Then the force spectrum matrix is given by

SF = 2kB
∑
l

Tl

(
Zl + Z†

l

)
, (A.4)

and the displacement spectrum matrix is

Sx(f) =
2kB
ω2

∑
l

TlZ
−1
(
Zl + Z†

l

)
Z−1†. (A.5)

When all temperatures Tl are the same value, the sum in Eq. (A.5) reduces to

T (Z−1 + Z−1†). This is equivalent to the equilibrium form of the fluctuation

dissipation theorem.
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A.2 Application

In this section we apply the above theorem to the actual mechanics such as a

simple spring, a suspension fiber, and the KAGRA suspension.

A.2.1 Simple spring

First, the thermal noise of a simple spring is discussed with a non-uniform

temperature profile attached to a test particle. The spring is divided to n

pieces and each piece except for the test particle has the small mass of ml, l =

1, ..., n − 1. We label the total spring constant K and the test particle mass

mn = M(≫ ml). The displacement, spring constant, and temperature are

defined as xl, k̄l, and Tl at every point l = 1, ..., n. The spring constant is a

complex value of k̄l = kl(1 + iϕl), where ϕl is the loss angle.

The total potential energy of the system Vtotal is described as

Vtotal =
1

2

∑
l

kl(xl − xl−1)
2, (A.6)

where x0 = 0. The equation of motion of each piece is given by

−mlω
2xl = −∂Vtotal

∂xl
+ Fl, (A.7)

where Fl is the external force added to ml. Then, we get
−m1ω

2x1 + k̄1x1 + k̄2(x1 − x2) = F1

−mlω
2xl + k̄l(xl − xl−1)− k̄l+1(xl+1 − xl) = Fl

−Mω2xn + k̄n(xn − xn−1) = Fn,

(A.8)

where we have written down the cases l = 1 and l = n explicitly, and take

l = 2, ..., n − 1 for the middle equation. Here we set the small mass of the

spring m to be zero. It means neglecting the internal degrees of freedom of
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the spring. The impedance of the system is then

iωZ =



k̄1 + k̄2 −k̄2
−k̄2 k̄2 + k̄3 −k̄3

−k̄3 k̄3 + k̄4
. . .

. . . . . . −k̄n
−k̄n k̄n −Mω2


, (A.9)

where a blank implies that the matrix element is zero. Since each individual

spring element l has a unique temperature Tl, this equation not only describes

the full impedance matrix Z , but also splits it up into a sum of individual

pieces.

Assuming that the spring constant and the loss angle of all pieces are the

same, kl = k, ϕl = ϕ, the force spectrum matrix can be calculated using

Eq. (A.4) as

SF =
4kBkϕ

ω



T1 + T2 −T2
−T2 T2 + T3 −T3

−T3 T3 + T4
. . .

. . . . . . −Tn
−Tn Tn


. (A.10)

Describing the inverse of the impedance matrix in terms of row vectors ζT
l as

Z−1 = (ζT
1 ; ζT

2 ; ζT
3 ; · · · ; ζT

n ), the displacement spectrum of the last (n-th)

piece, i.e. the test particle, is given by

Snn =
2kB
ω2

ζT
n

∑
l

Tl

(
Zl + Z†

l

)
ζ∗
n, (A.11)

where the last (n-th) row vector is

ζT
n =

iω

k(1 + iϕ)− nMω2

(
1 2 3 · · · n

)
. (A.12)
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Noting that k = nK, the displacement spectrum can be calculated as

Snn =
4kB
ωn

∑
l

Tl
Kϕ

(K −Mω2)2 +K2ϕ2
. (A.13)

This result means that the average temperature of the whole system con-

tributes to the displacement of thermal noise. Since the dissipation in this

example is uniform across the spring, the result is expected based on Eq. A.1.

A.2.2 Suspension fiber

Next, the thermal noise of a suspension fiber is calculated with temperature

gradient. As with the case of a simple spring, the suspension fiber is divided to

n pieces. Each n− 1 piece and the n-th mass has the mass of m and M . The

angle of l-th piece against vertical direction is defined by θl ≡ (xl − xl−1)/∆z,

where xl is the displacement of the l-th fiber along horizontal axis and ∆z is

the length of the l-th fiber. Total potential energy of that case can be described

as

Vtotal =
n+1∑
l=1

mlg∆z

2

l∑
k=1

θ2l +
n+1∑
l=1

ĒlI

2∆z
(θl − θl−1)

2, (A.14)

where Ēl ≡ El(1+iϕl) is the complex Young’s modulus of the fiber, I =
∫
x2dA

is the area moment of inertia in the direction of the horizontal axis, and g

represents gravitational acceleration. The first term is derived from the gravity

potential of each piece and the second term is derived from the elastic energy

of each fiber. We set the boundary condition of θ0 = θn+1 = 0, θ1 = x1/∆z.

That is, the upper clamp point is fixed, and the fiber is completely vertical

at the upper and lower clamp points. While other boundary conditions are

possible for a single fibers, this choice is required for the case of four-fiber

suspensions as in KAGRA.

The total impedance of the whole system is calculated from the equations of

motion as in the case of a simple spring. It is again assumed that the Young’s

modulus of the fiber El, and in particular its loss angle ϕl, are independent of

the position along the fiber. Using our boundary conditions, the equations of
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motion on the 1st, 2nd, a generic i-th, (n− 1)-th, and n-th piece are given by

−mω2x1 +
Mg
∆z

(2x1 − x2) +
E(1+iϕ)I

∆z3
(6x1 − 4x2 + x3) = F1

−mω2x2 +
Mg
∆z

(−x1 + 2x2 − x3)

+E(1+iϕ)I

∆z3
(−4x1 + 6x2 − 4x3 + x4) = F2

−mω2xi +
Mg
∆z

(−xi−1 + 2xi − xi+1)

+E(1+iϕ)I

∆z3
(xi−2 − 4xi−1 + 6xi + 4xi+1 + xi) = Fi

−mω2xn−1 +
Mg
∆z

(−xn−2 + 2xn−1 − xn)

+E(1+iϕ)I

∆z3
(xn−3 − 4xn−2 + 6xn−1 − 3xn) = Fn−1

−Mω2xn +
Mg
∆z

(−xn−1 + xn) +
E(1+iϕ)I

∆z3
(xn−2 − 3xn−1 + 2xn) = Fn.

(A.15)

Dividing total impedance into three parts Ztotal = Zfree + Zgrav + Zelas, they

can be written as

iωZfree =



−mω2

−mω2

−mω2

. . .

−Mω2


, (A.16)

iωZgrav ≃
Mg

∆z



2 −1

−1 2 −1

−1 2
. . .

. . . . . . −1

−1 1


, (A.17)

iωZelas =
E(1 + iϕ)I

∆z3



6 −4 1

−4 6 −4
. . .

1 −4 6
. . . 1

. . . . . . . . . −3

1 −3 2


. (A.18)
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Figure A.1: Displacement spectra of thermal noise from discrete numerical
calculation and continuous analytical calculation. The solid cyan and dotted
red lines show the numerical and analytical calculation of the suspension ther-
mal noise of a fiber, respectively. We set M = 1kg, the length of the fiber
L = 30 cm, the radius of the fiber r = 0.5mm, ϕ = 1× 10−2, and T = 300K.
The material of the fiber is assumed to be sapphire. In the numerical calcula-
tion the fiber is divided to 100 pieces.

Here, we do not consider m in Zfree to be zero in order to recover the violin

modes of the fiber. It should be noted that we could choose the loss angles ϕl

of all fiber pieces not to be the same. In the case Eq. (A.18) becomes a sum

of matrices over individual segments l.

The thermal noise of a suspension fiber numerically can be calculated with

this total impedance. First, the validity of the calculation with the simple

situation is demonstrated. Assuming that the temperature is constant, we

compare the displacement spectra of thermal noise from discrete numerical

calculation of Eq.( A.5) and continuous analytical calculation. The result is

shown in Fig. A.1. The floor level of the noise, the resonant frequency of the
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Figure A.2: Elastic energy distribution along the suspension fiber for two fre-
quencies, 0.5 Hz (the blue line) and 400 Hz (the green line). The distributions
are calculated using the analytical model, but agree with our numerical model.

pendulum mode and violin modes are different by less than 1%, around 1%

and 2%, respectively. The values are reasonable because the number of divided

pieces is n = 100 and the precision should be on the order of 1/n. The first

peak around 1Hz is the pendulum mode, while the peaks at 140Hz and higher

harmonics are the violin modes of the fiber.

Next we focus on non-uniform temperature distributions. To get an intu-

itive understanding of the physics involved, we start with plotting the elastic

energy distribution in Fig. A.2 for two examples:

• A frequency below the pendulum mode frequency. The fiber is mostly

bending near the clamp point and the test mass attachment point, while

the center of the fiber is not deformed.

• A frequency between violin modes. The dips correspond to nodes of

the induced motion, where the fiber is not deformed. The traces are
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Figure A.3: Numerical and analytical calculation of the suspension thermal
noise with a non-uniform temperature distribution. The cyan solid and the
magenta dotted lines show the results of the numerical and analytical calcu-
lation. For reference, the red dotted line shows the same noise as in Fig. A.1,
i.e. for a uniform temperature everywhere along the fiber. The parameters
are all the same as for the previous simulation, except for the number of fiber
sections, which is set to n = 500.

calculated using the analytical model, which describes the elastic energy

distribution along the position of the fiber, but agree with our discrete

model.

The two traces illustrate that different frequencies have the energy losses that

dominates at different locations along the fiber, in accordance with Eq. (A.2).

In order to demonstrate the effect of non-uniform temperature distribu-

tions, we start with an extreme, although unphysical example. We choose the

extreme temperature distribution shown in the inset of Fig. A.3. An elevated

temperature (300K) for only the middle section of the fiber is assumed, as il-

lustrated in the inset. The main part of the figure shows the thermal noise for
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platform

MN

IM (16 K)

MNR

IMR

RMTM (22 K)

4 CuBe fibers

4 sapphire blades4 sapphire fibers

considered area for thermal noise

Figure A.4: Left: Schematic picture of the KAGRA cryopayload. Suspension
thermal noise on KAGRA derives from the surrounded area by dotted lines.
Right: Temperature distribution of the KAGRA sapphire fibers suspending the
test mass. The boundary condition is T (z = 0) = 16K, and T (z = 0.35) =
22K.

this temperature distribution, calculated using our numerical model, as well

using the analytical model. For reference the figure also represents the ther-

mal noise for a uniform temperature of 300K along the fiber. This is the same

trace as in Fig. A.1. Compared to this red line, the noise level at low frequen-

cies is improved significantly because the energy loss of the pendulum mode

comes from the large distortion around the clamp point and attachment point,

where the temperature is much lower than that at the center. Being different

from low frequencies, the noise of violin modes does not change largely because

some of the antinodes of the energy distribution profile lie in the 300K region.

Finally, the blue and green traces agree within the numerical uncertainties,

validating our discrete model and Eq. (A.1).

A.2.3 KAGRA suspension

Finally, the theorem is applied to the actual KAGRA suspension thermal noise.

The main test masses of KAGRA are suspended by an eight-stage pendulum

called Type-A system. The last four-stage payload of the Type-A system

is cooled down to cryogenic temperature and is called a cryopayload. Here

we calculate the thermal noise of the KAGRA cryopayload for the input test

mass (ITM). The brownian thermal noise is considered since it is dominant as

compared with the thermo-elastic noise.
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In Fig. A.4, the schematic picture of the KAGRA cryopayload is shown at

the left side. The platform is suspended from upper room temperature stages.

The marionette is suspended from the platform with 1 maraging steel fiber.

The intermediate mass (IM, 20.8 kg) is suspended from the marionette with

4 copper beryllium (CuBe) fibers (26.1 cm long, 0.6mm diameter). Finally,

the sapphire test mass (TM, 22.7 kg) is suspended from the 4 sapphire blades

(0.1 kg) attached to the intermediate mass with 4 sapphire fibers (35 cm long,

1.6mm diameter).

Aluminum heat links are attached to the marionette, and the marionette

is cooled down to 15K. Heat absorption of the laser beam and the thermal

conductivity of the fibers determine the test mass temperature. Estimated

temperature profile along the sapphire fiber is plotted at the right side in

Fig. A.4. Here we assumed temperature of the IM and the TM to be 16K and

22K, respectively; the incident beam power from the back surface of the input

test mass to be 674W; the mirror substrate absorption to be 50 ppm/cm; and

the coating absorption to be 0.5 ppm [9]. This results in a nominal power load-

ing of 0.724W for the input test mass. By solving a differential equation about

the temperature function of the cramp point, the temperature distribution can

be derived. We used the measured thermal conductivity of the sapphire fiber

of κ(T ) = 7.98×T 2.2W/K/m [109]. The detail of these calculations is written

in Appendix B.

We discuss horizontal suspension thermal noise including the system below

the CuBe fibers. It is enough to consider only the pendulum mode at the

second pendulum consisting of the CuBe fibers and the IM. This is because the

displacement thermal noise derived from the second pendulum has dependence

of f−4.5 above resonant frequency of the differential pendulum mode (1.9Hz),

which results in the violin modes of CuBe fibers getting negligible. Therefore,

4 CuBe fibers can be regarded as effective one fiber, whose tension is 1/4 but
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the spring constant is 4 times larger. The horizontal potential is given by

Vhor =
1

2
kIM,hx

2
IM +

∑
µ=a,b,c,d

[
1

2
kbl,h,µ(xbl,µ − xIM)

2

+
n+1∑
l=1

mlg∆z

2

l∑
k=1

θ2l,µ +
n+1∑
l=1

Ēl,µI

2∆z
(θl,µ − θl−1,µ)

2

]
, (A.19)

where kIM,h, kbl,h,µ are the horizontal spring constant of the IM and blade

springs and xIM, xbl,µ are the displacements. The labeling of a, b, c, and d

means 4 blade springs and 4 sapphire fibers. The boundary conditions are

θ0,µ = θn+1,µ = 0 and θ1,µ = (x1,µ − xbl,µ)/∆z. We can get full horizontal

thermal noise by doing the same numerical calculation with this potential.

Similarly, we consider the vertical thermal noise below CuBe fibers. A

spring constant of the vertical bounce mode can be written as kv = ES/L,

where E is the Young’s modulus, S is the surface area, and L is the length of

the fiber. Thus, 4 fibers can be regarded as one fiber with 4 times the surface

area. The vertical potential is written as

Vver =
1

2
kIM,vx

2
IM +

1

2
kbl,v(xbl − xIM)

2 +
1

2

n∑
l=1

ĒlS

∆z
(xl − xl−1)

2, (A.20)

where kIM,h, kbl,v is the vertical spring constant of the CuBe fibers and blade

springs and x0 = xbl.

These two suspension thermal noises and their sum in strain sensitivity

are shown in Fig. A.5. Here horizontal and vertical resonant frequencies of the

blade spring are assumed to be 2 kHz and 14.5Hz with the suspended test mass,

respectively. First two peaks come from the common and differential pendulum

modes. The peak around 30 Hz is due to the resonance of CuBe fiber bounce.

The resonant frequency of the first violin mode is around 180Hz. In this figure

the full numerical result is also compared to a simplified suspension thermal

noise calculation which uses the average temperature of the IM and TM. The

noise level between the two only differs by around 2% in the frequency range

of about 10Hz to 50Hz, where suspension thermal noise contributes the most

to the total noise. This result can be intuitively understood because the elastic

energy is symmetric and the upper and lower edge of the fibers provide the
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Figure A.5: Total suspension thermal noise of KAGRA in strain considering
the temperature distribution. The red and blue lines show the horizontal and
vertical thermal noise, and the green line represents the sum of them. The
suspension thermal noise using an averaged temperature of the IM and TM,
and the level of other expected noise sources in KAGRA are expressed as the
black dotted lines.

largest contributions. Thus, we conclude that it is enough to average the IM

and TM temperature and apply the equilibrium formulation of the fluctuation-

dissipation theorem for the practical purpose of predicting KAGRA and future

detectors’ suspension thermal noises.

It is assumed that the loss angle and the Young’s modulus of fibers are

uniform for simplicity in this section. However, in fact, the loss angle can have

frequency dependence and both depend on the temperature. Even in this case,

we can apply our theorem with each value of them at the corresponding point

along the fiber.
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A.3 Summary of this chapter

We expand the application of the fluctuation dissipation theorem for mechani-

cal systems to non-equilibrium steady-state conditions where the temperature

is only defined locally. In order to calculate the thermal noise, the correct

weight for averaging the temperature field is given by the dissipation density

of the mechanical system. This result is applied to a simple spring and a

fiber suspension for illustration purposes, and finally thermal noise of the KA-

GRA gravitational-wave interferometer suspension is derived with the actual

temperature distribution. We conclude that it is a good approximation for

the estimation of the accurate suspension thermal noise of KAGRA to average

temperatures at the upper and lower edges of the fibers and use the equilibrium

formulation.
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Appendix B

KAGRA sensitivity and the

upgrade plan

In this appendix, the best estimated sensitivity of KAGRA and the future plan

are shown. We reconsider calculation for the design sensitivity of KAGRA.

That is modified by the new estimation based on the Appendix A about the

non-equilibrium suspension thermal noise. The other parts are also cleaned

up and the best estimated sensitivity of KAGRA is introduced. Moreover, we

consider some possibilities to upgrade the KAGRA facility and realize higher

sensitivity in the near future.

B.1 Current design sensitivity

In this section we introduce the current design sensitivity of KAGRA. The

sensitivities on three configurations are shown at first, followed by describing

relation of the most important parameters in KAGRA, namely, laser power

and mirror temperature. After that we summarize used parameters.

B.1.1 Sensitivities on three configurations

In Fig. B.1, we show the current best estimated sensitivities of KAGRA on

three different configurations such as broadband resonant sideband extraction

(BRSE) without the homodyne detection, BRSE with the homodyne detection,
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Figure B.1: Current best estimated sensitivities of KAGRA on three different
configurations. The green, cyan, and blue lines show the sensitivities on BRSE
without homodyne detection, BRSE with homodyne detection, and DRSE,
respectively.

and detuned resonant sideband extraction (DRSE). Here how to decide these

sensitivities is discussed.

The laser power and the mirror temperature are in one-to-one correspon-

dence relation with the mirror absorption, which is shown in the next subsec-

tion. First, the sensitivity of DRSE configuration is optimized in terms of an

inspiral range of a binary neutron star merger by changing the homodyne and

detune angle, and the mirror temperature. The maximum range is 153Mpc,

and at that sensitivity the mirror temperature is 22K, and hence correspond-

ing laser power at BS is calculated to be 674W to keep the temperature. Next,

the power on BRSE without the homodyne detection is determined. In that

configuration, the best sensitivity is 131Mpc at the BS power of 1.25 kW and

the temperature of 25K. However, the power over 1 kW is too high and the

range of 128Mpc can be realized even at 674W and 22K. Therefore, we decide
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to fix the power and temperature. The sensitivity of BRSE with the homodyne

detection configuration is optimized by the same power and temperature with

varying only homodyne angle. The best inspiral range is 135Mpc.

B.1.2 Relation between laser power and mirror temper-

ature

The relation between the laser power and the mirror temperature is derived

as follows. Heat flow of fibers in the steady state is the same as the energy

absorbed by a suspended mass. Therefore, we get [9]

Kabs = Nf

∫ Tl

Tu

Sfκ(T )

lf
dT, (B.1)

where Kabs is the absorbed energy, Nf is the number of fibers, Tu (Tl) is the

temperature of an upper (lower) end, Sf is the area, lf is the length, and κ(T ) is

the thermal conductivity of the fiber. The marionette of the suspension system

is connected to the platform by a thick heat link and the CuBe fibers have the

high thermal conductivity. Thus, the temperature of the IM, the CuBe fibers

and the marionette can be cooled down to Tu = 16K. Here we assume that

the test mass temperature is Tl = 22K. κ(T ) is measured to be [109],

κ(T ) = 5.8× 103
(

df
1.6mm

)(
T

20K

)2.2

, (B.2)

where df is the diameter of the fiber. Substituting Nf = 4, lf = 0.35m, and

Sf = π(1.6× 10−3/2)2m2, the total heat flow is calculated as Kabs = 0.724W.

The absorbed energy can be divided to that from the sapphire substrate,

coating, and radiation from outside as

Kabs = 2βsubtmPmich + γcoaPcirc +Krad, (B.3)

where βsub is the absorption rate of the substrate, tm is the mirror thickness,

Pmich is the power between the BS and ITM, γcoa is the absorption of the coat-

ing, Pcirc is the intra-cavity power of the main arm, and Krad is the radiation

energy from outside. The mirror thickness is designed to be tm = 15 cm. The
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Property Value

Configuration VRSE

Baseline length 3 km

Wavelength 1064 nm

Laser power at BS 674W

Power transmission of ITM 0.004 [10]

Amplitude reflectivity of SRM 0.92 [10]

Power transmission of PRM 0.1

Round trip loss of arm 100 ppm

Power loss at SRM 0.002

Power loss at PD 0.1

Detuning phase 86.5◦

Homodyne Phase (broadband) 119.1◦

Homodyne Phase (detuned) 135.1◦

Table B.1: Interferometer parameters.

loss parameters of βsub = 50ppm/cm and γcoa = 0.5 ppm are the requirement.

Transmittance of the ITM is designed to be TITM = 0.004, so the intra-cavity

power is Pcirc = 4Pmich/TITM = 103Pmich. Radiation from an opened window

for the main beam is dominant in that from outside. That is estimated to be

Krad = 50mW [110]. With these parameters the laser power between the BS

and ITM can be increased to be Pmich = 337W in order to keep the mirror

temperature of 22K. Therefore the laser power at the BS is twice than that,

PBS = 674W. As described above, the laser power is determined by the mirror

temperature. We optimize the design sensitivity of DRSE configuration based

on this relation.

B.1.3 Parameters of KAGRA

Here we summarize the KAGRA parameters in tables below. First, the pa-

rameters related to the interferometer are represented in Table B.1. VRSE

means variable resonant sideband extraction configuration. Compared with

LIGO and Virgo, the transmission of the input test mass is lower, in other

words the finesse of the main arm is higher. In the case of KAGRA, the laser

power inside the substrate of the ITM cannot be increased very high because
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Property Value

Material Sapphire

Radius 11 cm

Thickness 15 cm

Mass 22.8 kg

Temperature 22K

Loss angle 1.0 ×10−8 [111]

Absorption 50 ppm/cm

Table B.2: Mirror parameters.

Property Value

Material silica/tantala

Numbers of coating layers 22/40 (ITM/ETM)

Loss angle of silica 3.0 ×10−4 [9, 112]

Loss angle of tantala 5.0 ×10−4 [9, 112]

Beam Radius 3.5 cm [10]

Absorption 0.5 ppm

Table B.3: Coating parameters.

we have to keep the cryogenic temperature of the ITM. Instead of that, the

finesse of the main cavity is increased and realize the low shot noise level. The

power recycling gain is set to be 10. The loss parameters are decided by the

requirement.

Next, we show the mirror parameters in Table B.2. The material is sap-

phire, which is the unique point of KAGRA. Sapphire has the small loss angle

and low absorption at the wave length of 1064 nm. The mirror size is lower

and the mass is lighter than that of the mirrors of LIGO and Virgo (35 cm

diameter, 20 cm thickness, 40 kg mass). It is because making larger sapphire

substrate is technically difficult. The development for heavier sapphire is on

going.

Moreover, the coating parameters are described in Table B.3. The coating

thermal noise of KAGRA is better than that of the other detectors because

of the cryogenic temperature. However, the loss angle of the silica-tantala

coating is a little bit worse at the cryogenic temperature than that at the

room temperature. Also, we cannot expand the beam radius on the test mass
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Figure B.2: DRSE sensitivity of KAGRA. The magenta, green, blue, and red
lines show the displacement spectrum due to the seismic, suspension thermal,
mirror thermal, and quantum noises. The total noise is given by the black line.

due to the small substrate. Thus, the coating thermal noise is not better by a

ratio of the mirror temperature compared with LIGO and Virgo (300K).

Finally, the suspension parameters are shown in Table B.4. The sapphire

fibers need to be thick enough to extract the heat from the test mass. The

thickness causes the high resonant frequency of the bounce mode which lies in

the observation band, and requires the blade springs to decrease the resonant

frequency. Suspension thermal noise also should be better owing to the low

temperature, but actually it is not the case. The thickness of the fiber con-

tributes to the small dilution factor of the suspension Q-value, and the light

mass of the substrate leads to the high suspension thermal noise.

With these parameters we estimate the design sensitivity. In Fig. B.2,

we show the sensitivity of DRSE configuration including the contribution of

the fundamental noises. These are calculated by the theoretical equations
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Property Value

IM suspension

Material CuBe

Number 4

Length 26.1 cm

Diameter 0.6mm

Loss angle 5 ×10−6

IM mass 20.5 kg

Temperature 16K

Blade spring

Material Sapphire

Number 4

Horizontal res. freq. 2 kHz

Vertical res. freq. 14.5Hz (with TM)

Loss angle 7 ×10−7

Mass 55 g

Temperature 16K

TM suspension

Material Sapphire

Number 4

Length 35 cm

Diameter 1.6mm

Loss angle 2 ×10−7

Temperature 19K (averaged)

Vertical-Horizontal Coupling 1/200

Table B.4: Suspension parameters.
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described in Sec. 2.2. The seismic noise includes the gravity gradient noise.

The quantum noise is dominant over almost all frequency ranges. The mirror

thermal noise is comparable with the quantum noise at the most sensitive band

around 100Hz. The peaks around 12Hz and 31Hz come from the resonant

frequency of the blade spring and the CuBe bounce mode. The violin modes

of the sapphire fiber appear as the peaks above 100Hz.

B.2 Upgrade plan: KAGRA+

In this section we describe the future upgrade plan of KAGRA, which is called

KAGRA+. The second-generation detectors succeed in opening the gravita-

tional wave astronomy, and the plans of the third-generation detectors such as

Einstein telescope and Cosmic Explorer are proceeding. Also, LIGO and Virgo

are planning their near future upgrades of the current facilities like A+ [113],

Voyager, and AdV+ as a step toward the third generation. Many ultimate

techniques will be used in the third generation, so it is important to construct

these near future detectors and confirm their validity. Moreover, the detectors

themselves which have the larger inspiral range by a few can contribute to

more detections by around one order of magnitude.

In order to test the ultimate techniques and take part in the near future de-

tector network, KAGRA is required to have a plan of the upgrade. Currently,

this plan is called KAGRA+. Here we discuss some candidates of the upgrade

focusing on the high frequency, low frequency, and broadband improvement,

followed by the further future plan of KAGRA++. Each sensitivity is opti-

mized by a particle swarm optimization method [114].

B.2.1 High frequency

In Fig. B.3, the upgraded sensitivity especially at the high frequency is shown.

This version is called KAGRA high frequency (HF). The optimized parameter

is localization of a binary neutron star merger, which is 0.114 deg2, where it is

assumed that the LIGO and Virgo are operating with their design sensitivities.

The important parameters are the input power of 340W, the mirror temper-

ature of 30K, the suspension fiber diameter of 2.4mm and length of 20 cm,

186



Figure B.3: Strain sensitivity of KAGRA HF. The solid lines show the same
noise as the previous figure. The black dotted line means the DRSE total
sensitivity.

and the frequency independent squeezing factor of 4 dB at the detection of the

squeezed light.

By increasing the laser power dramatically and using the phase squeezing,

the shot noise is much lower than that of KAGRA. The suspension thermal

noise is worse because the fiber is shorter and thinner owing to the necessity

of heat extraction. It is difficult to realize such a huge power with avoiding

the angular instability, parametric instability, and the other additional noises.

Preparation of the stable high power laser source is also the issue.

Even though the binary neutron star range of 123Mpc is not so high,

digging the high frequency regime can reveal the equation of state of neutron

stars, and test of general relativity further with harmonics of ringdown at

binary black hole mergers. The HF sensitivity in kHz range is higher than

that of A+ and AdV+, so we can get the strictest constraint on the equation
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Figure B.4: Strain sensitivity of KAGRA LF.

of state and modified general relativity.

B.2.2 Low frequency

In Fig. B.4, we show the sensitivity improved at the low frequency region. This

is the sensitivity of KAGRA low frequency (LF). The optimized parameter is

a binary black hole range which has an intermediate mass of 100M⊙, which

reaches 4.3Gpc. The key parameters are the input power of 1.7W, the mirror

mass of 100 kg, the fiber diameter of 1mm, and length of 200 cm, and the large

detuning phase of 61◦.

The suspension thermal noise and radiation pressure noise are much lower

because of the long and thin wire resulting in the large dilution factor, and

the tiny laser power. Also, the large detuning contributes to improving the

most sensitive band. There are many technical problems such as making the

heavy sapphire substrate of 100 kg, constructing the long suspension system
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Figure B.5: Strain sensitivity of KAGRA broadband.

in current limited space, and the locking scheme to keep the large detuning

phase. Moreover, it is typically difficult to reduce many technical noises around

several 10Hz.

The target of this upgrade is the first observation of the intermediate mass

black hole. Confirmation of the existence gives huge impact to astronomy

associated with star and galaxy formation. The possibility of the detection is

higher than those of upgraded LIGO and Virgo by a factor of 3. In addition,

the higher sensitivity at the low frequency helps us to detect the gravitational

wave signals earlier. This results in sending the earlier alert to electro-magnetic

wave observatories, and even to the other gravitational wave detectors.

B.2.3 Broadband

We describe the sensitivity improved over broad frequency ranges in Fig. B.5.

This version is called KAGRA broadband. The sensitivity is optimized by
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Property HF LF broadband

Input power [W] 340 1.7 73

Mirror temperature [K] 30 23 22

Mirror mass [kg] 23 100 23

Fiber diameter [mm] 2.4 1 1.6

Fiber length [cm] 20 200 27

Detuning phase [degree] 89.9 60.7 89.6

Squeezing 10 dB w/o FC N.A. 10 dB w FC

BNS range [Mpc] 123 177 181

BBH30 range [Gpc] 315 2285 1177

BBH100 range [Gpc] 117 4327 470

BNS Localization [deg2] 0.114 0.479 0.135

Table B.5: Parameters for the near futue upgrade plans.

the binary neutron star range, which improves up to 181Mpc The notable

parameters are the input power of 73W, the fiber diameter of 1.6mm and

length of 27 cm, and the squeezing of 10 dB with a 100-m filter cavity.

The frequency dependent squeezing reduces the quantum noise broadly.

Especially, a little bit higher power and the phase squeezing suppresses the

shot noise floor. The filter cavity technic is already on the stage of being

developed for the second-generation detectors. It is necessary to discuss how

to secure a space for the 100-m filter cavity in the KAGRA tunnel.

This broadband configuration has the biggest inspiral range of the other

two upgrade plans, although it is smaller than those of A+ and AdV+. The

certain improvement of the binary range with the feasible technic results in

the reliable contribution to the detector network signal to noise ratio and the

localization. Also, it helps taking more statistics of binary merger population.

B.2.4 KAGRA++

As a further future plan, the KAGRA++ is considered. Combining the key

point on each configuration such as the input power of 320W, the mirror mass

of 100 kg, and the 10 dB squeezing with the filter cavity, we can reach the

binary neutron star range of 355Mpc which is higher than that of A+ and

AdV+. The sensitivity is shown in Fig. B.6. Main parameters of the upgrade
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Figure B.6: Strain sensitivity of KAGRA++. The KAGRA+ sensitivities are
also described as the dotted lines for the comparison.

Property KAGRA ++

Input power [W] 67 320

Mirror temperature [K] 22 20

Mirror mass [kg] 23 100

Fiber diameter [mm] 1.6 3.6

Fiber length [cm] 35 34

Detuning phase [degree] 86.5 89.4

Squeezing N.A. 10 dB w FC

BNS range [Mpc] 153 355

BBH30 range [Gpc] 1095 1956

BBH100 range [Gpc] 353 785

Localization [deg2] 0.183 0.100

Table B.6: Parameters for KAGRA and the further upgrade plan.
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plans are listed in Table B.5, and those of the KAGRA and the further future

plan are in Table B.6.

B.3 Summary of this chapter

KAGRA parameters and the designed sensitivities are described. We also

introduce the future upgrade plan of KAGRA which focuses on the high fre-

quency, frequency dependent squeezing, and low frequency. In addition, there

is a further future plan of KAGRA++ reaching the doubled inspiral range of

the designed original KAGRA.
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[101] G. I. González & P. R. Saulson, J. Acoust. Soc. Am. 96, 207 (1994).

Brownian motion of a mass suspended by an anelastic wire

[102] M. K. Bantel & R. D. Newman, J. Alloy. Comp. 310, 233-242 (2000).

High precision measurement of torsion fiber internal friction at cryogenic

temperatures

[103] T. Shimoda, N. Aritomi, A. Shoda, Y. Michimura, & M. Ando, Phys.

Rev. D 97, 104003 (2018).

Seismic cross-coupling noise in torsion pendulums

204

https://journals.aps.org/pra/abstract/10.1103/PhysRevA.94.033822
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.94.033822
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.100.010801
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.98.150802
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.99.160801
http://iopscience.iop.org/article/10.1088/1367-2630/11/7/073032/meta
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-22-11-12915
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-22-11-12915
http://scitation.aip.org/content/asa/journal/jasa/96/1/10.1121/1.410467
https://www.sciencedirect.com/science/article/pii/S0925838800010100
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.97.104003
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.97.104003


[104] R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A.

J. Munley, & H. Ward, Appl. Phys. B 31, 97-105 (1983).

Laser phase and frequency stabilization using an optical resonator

[105] P. Kwee, B. Willke, & K. Danzmann, Opt. Lett. 34, 2912-2914 (2009).

Shot-noise-limited laser power stabilization with a high-power photodiode

array

[106] F. Antonucci, E. Majorana, P. Puppo, P. Rapagnani, F. Ricci, S. Ric-

ciardi, & A. Schirone, Phys. Lett. A 315, 409-417 (2003).

Influence of a mirror holder on thermal noise in gravitational wave in-

terferometers

[107] A. A. Balushi, W. Cong, & R. B. Mann, Phys. Rev. A 98, 043811 (2018).

Optomechanical quantum Cavendish experiment

[108] K. Komori, Y. Enomoto, H. Takeda, Y. Michimura, K. Somiya, M. Ando,

and S. W. Ballmer, Phys. Rev. D 97, 102001 (2018).

Direct approach for the fluctuation-dissipation theorem under nonequi-

librium steady-state conditions

[109] A. Khalaidovski, et al. Classical Quantum Gravity 31, 105004 (2014)

Evaluation of heat extraction through sapphire fibers for the GW obser-

vatory KAGRA

[110] Y. Sakakibara, et al. Class. Quantum Grav. 31, 224003 (2014).

Progress on the cryogenic system for the KAGRA cryogenic interfero-

metric gravitational wave telescope

[111] T. Uchiyama, et al. Phys. Lett. A 261, 5 (1999).

Mechanical quality factor of a cryogenic sapphire test mass for gravita-

tional wave detectors

[112] E. Hirose, et al. Phys. Rev. D 90, 102004 (2014).

205

https://link.springer.com/article/10.1007%2FBF00702605
https://www.osapublishing.org/ol/abstract.cfm?uri=ol-34-19-2912
https://www.sciencedirect.com/science/article/pii/S0375960103009502
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.98.043811
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.97.102001
http://iopscience.iop.org/article/10.1088/0264-9381/31/10/105004/meta
http://iopscience.iop.org/article/10.1088/0264-9381/31/22/224003/meta
http://www.sciencedirect.com/science/article/pii/S0375960199005630
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.90.102004


Mechanical loss of a multilayer tantala/silica coating on a sapphire disk

at cryogenic temperatures: Toward the KAGRA gravitational wave de-

tector

[113] J. Miller, L. Barsotti, S. Vitale, P. Fritschel, M. Evans, & D. Sigg, Phys.

Rev. D 91, 062005 (2015).

Prospects for doubling the range of Advanced LIGO

[114] Y. Michimura, K. Komori, A. Nishizawa, H. Takeda, K. Nagano, Y.

Enomoto, K. Hayama, K. Somiya, & M. Ando, Phys. Rev. D 97, 122003

(2018).

Particle swarm optimization of the sensitivity of a cryogenic gravitational

wave detector

206

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.91.062005
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.91.062005
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.97.122003
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.97.122003


Acknowledgement

I appreciate numerous supports from various people. Here I introduce a part

of them.

First, I would like to thank my supervisor Masaki Ando for his huge sup-

ports. Since I entered his laboratory, he watched over my research of the fiber

interferometer experiment when I was an under graduated student, the cool-

ing experiment on my master thesis, and this work on my doctoral thesis. He

always answered my question clearly, which enabled me to improve my theo-

retical works and experiments. Also, many experimental setups on my works

were purchased by him and I have never felt financial issues. I had much great

experience in Ando laboratory, and it is one of my best prides in my life to be

his first student.

Next, I cannot thank Yuta Michimura enough. He is assistant professor

in our laboratory, and the person I discussed everything with the most times.

When I consulted him about from important things such as my experimental

motivation to trivial matters, he listened to me and gave various advice every

time. He bought me even expensive parts obligingly, so the progress of my

experiment was very smooth. I was able to take part in important works

of calculation of KAGRA sensitivity thanks to his suggestion. I looked at

his activity on various fields and I am convinced that he is one of the best

scientists, my role model, and person I should go above.

My excellent colleagues in our laboratory are always exciting me.

Yutaro Enomoto surprised me many times with his great insight, in parti-

207



cluar on quantum noises. He deepens my understanding with our discussion

related to optomechanics, thermal noise, and so on. I thank him for his help of

my thesis work with constructing the setup and making high quality circuits.

Koji Nagano has balanced knowledge and experience with high standard in

the field of gravitational wave detector. He answered even my tiny questions

instantly and discussed with me for long times.

Tomofumi Shimoda gave me much knowledge, especially about suspension

and thermal noise. His attentive logical thinking and outstanding experimental

technique stimulated me.

Naoki Aritomi has the comprehensive faculty associated with both theory

and experiment. His knowledge of filter cavity recalled me the necessity of my

more learnings.

Hiroki Takeda is outstanding at theory and analysis of the gravitational

wave. Thanks to discussion with him, I can also get the theoretical under-

standing which I had never touched without him.

Ching Pin Ooi is familiar with Q-values on mechanical experiments. He

taught me not only the Q-value but also foreign values in scientific research.

He helped me measuring the Q-value of the suspension fiber in my thesis

experiment.

Takuya Kawasaki has keen thought, particularly on quantum mechanics

and measurement theory. Also, I would like to learn his balancing of experi-

ments in the laboratory and theoretical works at home.

Satoru Takano combines ability and enthusiasm to his experiment, which

encouraged me many times. We discussed various things in our laboratory

until late at night frequently.

Naoki Kita absorbs knowledge new knowledge and experimental sense fast.

I learned important capacity for researchers anytime of the adaptability from

him.

Yuki Miyazaki’s activities in our laboratory and in KAGRA are surprising

and driving me. He also helped me constructing the setup and doing frequency

stabilization in my thesis work.

Moreover, I would like to appreciate people out of Ando laboratory.

208



Kimio Tsubono was my supervisor at the physics seminar when I was an

under graduated student. He taught me much attraction of the gravitational

wave and that lecture was definitely a beginning of my research life in the field.

I gratefully thank him for leading me to this fantastic world.

Seiji Kawamura is also the person who took me into the field of gravitational

wave. He was a supervisor at the spring school in ICRR just before I entered

Ando laboratory. I was able to work in the gravitational wave group in the

school thanks to his recommendation. He always encouraged me to do my

experiments after the school.

Stefan W. Ballmer gave me a chance of writing the non-equilibrium thermal

noise paper. His suggestion of writing the paper just after short discussion of

KAGRA suspension thermal noise resulted in progressing my understanding

of thermal noises and accumulating experience of writing and publishing the

paper.

Matthew J. Evans was my supervisor at my stay in MIT for two months.

I was surprised to look at his energetic activities on both theories and exper-

iments. I appreciate his approval of my stay in MIT at that time and for the

following two years as a postdoc with the JSPS fellowships.

Lee McCuller kindly took care of my working on the experiment related

to the filter cavity in MIT. With his super grate support, I was able to do

experiments without any troubles and learn many things about optics and

quantum noise.

Kentaro Somiya attracted me with his clear understanding and description

on quantum and thermal noises. The works for KAGRA design sensitivity and

KAGRA+ are progressing with his great help. I always enjoyed discussion with

him.

Nobuyuki Matsumoto gave me the research theme of optomechanics and

trained me from my under graduated student era. He was always an adviser

after leaving here. I learned much simple qualitative understanding from him.

I would like to thank previous members of our laboratory: Yoichi Aso,

Ayaka Shoda, Kazunori Shibata, Takafumi Ushiba, Yuya Kuwahara, Yuzuru

Sakai, Shotaro Wada, Jake Guscott, Meng Luo, Donatella Fiorucci, and Teng

209



Zhang.

Shigemi Otsuka, Yoshikatsu Nanjo, and Togo Shimozawa made huge amount

of mechanical parts for my experiment in the mechanical shop. Their rapid

works were also the great help.

Mayuko Niwata and Ami Ito were current and previous office staff for our

laboratory. Thanks to their help, I was able to concentrate my research.

Shoji Asai, Takao Nakagawa, Yasunobu Nakamura, Izumi Tsutsui, and

Junji Yumoto were reviewers of this thesis. I believe their comments improve

the thesis so much.

This work was financially supported by JSPS KAKENHI Grant No. 16J01010.

I also recieved financial support and great experience in MIT from ALPS (Ad-

vanced Leading Graduate Course for Photon Science) program at the Univer-

sity of Tokyo.

Finally, I appreciate all supports of my father, mother, sister, aunt, uncle,

grandfather, and grandmother who went to heaven this year. I would like to

dedicate my thesis to them as one of compilations of my life.

210


	Abstract
	Glossary
	Introduction
	Quantum noises in a gravitational wave detector
	Theories on the GW and the detector
	Derivation of the GW
	GW sources
	Interferometric GW detectors

	Noises in GW detectors
	Power spectral density
	Quantum noise
	Thermal noise
	Other technical noises

	Quantum noise reduction
	Input squeezing
	Homodyne detection
	Motivations for reduction of quantum noises

	Previous works
	Generation and injection of squeezed light
	Towards measurement of radiation pressure noise

	Summary of this chapter

	Radiation pressure fluctuation in optomechanics
	Background
	Massive superposition
	Application of optomechanics

	Theories on optomechanics
	Optomechanical Hamiltonian
	Optical cavity
	Optical spring
	Quantum radiation pressure fluctuation

	Optomechanical cooling
	Phonon number
	Sideband and feedback cooling

	Previous works
	Ground state cooling and beyond
	Massive scale above microgram

	Summary of this chapter

	Experimental setup
	Concept and design
	A torsion pendulum consisting of cavities
	Design sensitivity
	Whole setup

	Main setup
	A torsion pendulum
	Main cavities
	Vibration isolation

	Sub setup
	Input optics
	Frequency stabilization
	Intensity stabilization
	Auxiliary optics
	Vacuum system

	Summary of this chapter

	Experimental result
	Main result
	Displacement spectrum
	Control method

	Calibration
	Block diagram
	Optical spring

	Quantum radiation pressure fluctuation
	Expression with optical spring
	Beam spot position
	Normalized detuning

	Summary of errors
	Summary of this chapter

	Discussion
	Noise analysis
	Thermal noise
	Seismic noise
	Electric noises
	Laser frequency and intensity noise
	Other possible noises
	Common mode rejection

	Summary of this chapter

	Future and conclusion
	Future plan
	Bar mirror
	Dumbbell with curved mg-scale mirrors
	Application

	conclusion

	Non-equilibrium thermal noise
	Concept and theory
	Application
	Simple spring
	Suspension fiber
	KAGRA suspension

	Summary of this chapter

	KAGRA sensitivity and the upgrade plan
	Current design sensitivity
	Sensitivities on three configurations
	Relation between laser power and mirror temperature
	Parameters of KAGRA

	Upgrade plan: KAGRA+
	High frequency
	Low frequency
	Broadband
	KAGRA++

	Summary of this chapter

	Acknowledgement

