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Abstract

Milligram-scale optomechanical systems are unique systems that have the potential to realize

macroscopic yet quantum phenomena. To achieve a sensitivity that reaches the dominant re-

gion of quantum mechanics, we propose a system in which the optical radiation pressure traps

the mirror in the rotational degrees of freedom even in a suspended linear cavity, and a high

power laser beam can be coupled to it.

An optomechanical system consists of mechanical oscillators and optical fields coupled to

it. It is suitable for macroscopic quantum experiments because even a macroscopic oscilla-

tor’s displacements can be read out with a precision greater than the wavelength of light. As

mechanical oscillators, pendulums are often used above the milligram scale since they are

resistant to environmental vibrations.

However, when a linear cavity is built with a suspended mirror, the rotational motion of the

mirrors become unstable due to the optical radiation pressure inside the cavity, a phenomenon

known as Sidles-Sigg instability. To avoid the Sidles-Sigg instability, experiments were con-

ducted using triangular cavities or rigid suspensions that reduce the effect of radiation pressure.

However, quantum fluctuation was concealed by thermal noise in the complicated part of the

system. Linear cavities consisting of only two mirrors are advantageous for high sensitivity

reaching the quantum fluctuation.

In this research, we find that even in a linear cavity, the Sidles-Sigg instability can be over-

come if the masses of the two mirrors are unbalanced and the curvatures of the mirrors are

shorter than the cavity length. We succeed in constructing a linear cavity with the smallest sus-

pended mirror with curvature. Our optomechanical system becomes a highly sensitive force

sensor by using a tiny 8-mg mirror as a test mass. With this system, we quantitatively evaluate

the optical torsional spring effect due to the radiation pressure in the cavity, and validate our

configuration. Furthermore, we demonstrate a quantum noise reduction technique by inject-

ing classical intensity noise that imitates quantum noise. Improvements in the sensitivity are

observed, and they are consistent with theoretical predictions. In addition, as a prospect for

improving the sensitivity of our system towards the quantum regime, we discuss the idea of

modifying the simple pendulum to a torsional pendulum, and show its promise. As a conse-

quence, we establish a class of linear cavities, and present that these systems are competent for
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macroscopic quantum experiments.
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要旨

ミリグラムスケールの機械光学系は、巨視的でありながら量子的な現象を実現できる可
能性をもつ特異な系である。量子力学が支配的な領域に到達する感度をえるため我々は、
懸架された線形共振器であっても光輻射圧がねじれ方向に鏡をトラップし、ハイパワー
のレーザー光を結合させることが可能な系を提案した。
そもそも機械光学系は、機械振動子とそれに結合する電磁場からなる系である。巨視

的な振動子の変位であっても、光の波長以上の精度で読み出すことができるので、巨視
的な量子実験に適している。ミリグラムスケール以上の機械光学系では、環境的な振動
雑音に強い機械振動子として、振り子がよく使われる。しかしながら、懸架された鏡を
もちいて線形光共振器を構成すると、共振器内の光輻射圧により、鏡の回転運動が不安
定になる現象が、Sidles-Sigg不安定性という名前で知られている。これまで、Sidles-Sigg
不安定性を回避するために三角共振器をもちいた系や、懸架を強固にして輻射圧の影響
を小さくする系での実験がおこなわれてきたが、系をより複雑にしたことに起因する熱
雑音により、量子ゆらぎが覆い隠されていた。量子ゆらぎにせまるまでの感度のために
は、2つの鏡のみからなる線形共振器が有利である。そこで本研究では、線形共振器で
あっても、構成する 2つの鏡の質量が偏っていて、かつ鏡の曲率が共振器長よりも短い
ような構成では、Sidles-Sigg不安定を克服できることを見いだした。実際に我々は、考
案した構成により、世界最小の曲率つき懸架鏡をもちいて線形光共振器を構築すること
に成功した。この機械光学系は、8 mgの微小な鏡がテストマスとなることにより、高感
度の力センサーとなる。構築した機械光学系をもちいて、共振器内の輻射圧がねじれ方
向に対してばね的にふるまうことを定量的に評価し、構成の有効性を実証した。さらに
この系をもちいて、量子雑音を低減する手法を、量子雑音にもした古典的な強度雑音を
注入するという方法でデモンストレーションし、理論的な予測と矛盾しない感度の向上
を観測した。加えて、我々の系を量子領域の感度に向上させるための展望として、振り
子をねじれ振り子に変更する案を議論し、その有用性を示した。以上の研究により我々
は、今までミリグラムスケールでは困難であった線形共振器の構成を確立し、その系が
量子実験にふさわしいことを示した。

指導教員：安東正樹（准教授）
論文題目：巨視的量子実験のためのミリグラムスケール機械光学系
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1. Introduction

Quantum mechanics is an established theory in modern physics. Many phenomena that can-

not be explained in the frame of classical mechanics are described explicitly in the quantum

theory [1–4]. For some time after quantum mechanics was formulated, the microscopic world

was the main playing field of quantum mechanics [5]. Even now, the boundary between the

macroscopic world, where classical mechanics is dominant, and the microscopic world, where

quantum mechanics is crucial, is a critical issue in physics.

It is not entirely clear what makes classical systems classical. Some classical theories were

derived from quantum mechanics by the approximation at macroscopic systems with many

assumptions [6]. However, in particular, how to incorporate gravitational effects into quantum

mechanics has not yet been clarified. Theories including quantized gravity are exemplified by

string theory [7–14] or loop quantum gravity [15–23]. However, these theories are not com-

plete. It is unknown in string theory whether the extra dimensions can be chosen to satisfy

the standard model, and loop quantum gravity has not yet be able to reproduce general rela-

tivity [24] in the classical limit. Apart from quantum gravity, there are proposed theories to

explain decoherence in macroscopic systems to explain the absence of a macroscopic quantum

phenomena, such as gravitational decoherence [25–27] or continuous spontaneous localization

models [28,29]. These proposed theories modify quantum mechanics by introducing a mech-

anism of spontaneous decoherence in macroscopic systems, so that macroscopic systems are

projected to classical states. We note that although Bose-Einstein condensates [30] or superflu-

idity of liquid helium are a sort of macroscopic phenomena, massive objects, not many-body

systems, are also essential to elucidate the unification of gravitational interaction or the mod-

ified quantum mechanics. Thus, in the dissertation, we will use the word macroscopic in the

sense of mass scale.

These theoretical approaches to study macroscopic quantum mechanics leads to a demand

for the realization of a macroscopic quantum system to test proposed theories. However, ex-

perimental observation of macroscopic quantum phenomena, such as implication of superpo-

sition state, have been limited up to nanogram scale. The situation has been changing. Recent

progress in experimental techniques provides a suitable opportunity to realize a macroscopic

quantum system. In particular, optomechanical systems have been increasingly attracting at-
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1. Introduction

tention for precision measurements [31]. An optomechanical system is composed namely of

mechanical oscillators and optical fields coupling to the oscillators. Radiation pressure of light

acts for coupling an optical field to a mechanical oscillator. By utilizing the interference of op-

tical fields, optomechanical systems measure the displacement of the oscillator precisely.

Among optomechanical systems, milligram scale optomechanical systems are suitable for

macroscopic quantum experiments. The oscillator is more massive than the Planck mass for

macroscopic quantum experiments, and the precision can be limited by quantum fluctuations to

elucidate the nature of quantum mechanics. Methods to inspect the quantum nature of gravity

with optomechanical systems are being actively discussed [32–37].

Macroscopic quantum systems are also important from the aspect of experimental applica-

tions. The best example is gravitational wave detectors. Gravitational waves are waves of

warping spacetime predicted by Einstein [38, 39], and gravitational wave detectors measure

the strain of them. While gravitational waves are unique signals that give us information about

black holes [40–43], the equation of state of neutron stars, and the Big Bang [44], detecting

gravitational waves is difficult because of their small amplitudes. Even relatively large gravi-

tational waves that are emitted by coalescence of binary stars or explosions of supernova, the

amplitude of the strain is about the order of 10−21.

To detect such aweak gravitational wave, themodern and future gravitational wave detectors

become huge experimental instruments [45,46]. Nevertheless, their sensitivities are so precise

that quantum effects have to be taken into account. In other words, the sensitivity will be

limited by quantum noise in broadband frequencies. In particular, quantum radiation pressure

noise, which is one of quantum noises, limits the sensitivity in the range between 10 Hz and

100 Hz, which is important band for gravitational waves from compact stars. Consequently,

the gravitational wave detectors can be seen as a part of macroscopic quantum experiments.

To enhance the future sensitivity, quantum noise must be reduced. Therefore, platforms of

researching the characteristics of quantum noise in macroscopic optomechanical systems are

desired.

These twomotivations frommacroscopic quantum experiments lead the active development

of optomechanical systems, and pendulums are often used as the oscillators of milligram-scale,

or more massive optomechanical systems. A pendulum is robust to the environmental vibra-

tion, and favorable for experiments of precise measurements. However, a suspended mirror

in a linear cavity suffers from the instability due to the radiation pressure inside the cavity.

This instability is called Sidles-Sigg instability [47]. In the dissertation, a stable configuration

of a linear cavity that overcomes the Sidles-Sigg instability is presented and realized with a

milligram-scale mirror. We report the evaluation of the stability of our optomechanical system,

Furthermore, we demonstrate a quantum noise reduction technique as the proof of utility for

2



our setup. In addition, the practical feasibility of reaching quantum regime is discussed.

Outline of the dissertation

This dissertation is organized as follows. In Chapter 2, optomechanical systems are reviewed

focusing on the sensitivity and the uses as precise sensors. The previous works are also re-

viewed, and the issues of them are pointed out. In Chapter 3, we pay attention to quantum

noises in an optomechanical system. A method for the theoretical calculation of quantum

noises are introduced. Chapter 4 shows our experimental setup. This chapter includes the

concept and design of the linear cavity. Chapter 5 describes and discusses the stable configu-

ration of a suspended linear cavity in detail. Chapter 6 shows the results of the experiment for

demonstrating a quantum noise reduction technique. Chapter 7 discusses the current sensitivity

of our optomechanical system and the possible upgrade for observing quantum radiation pres-

sure fluctuation to reach quantum regime. Chapter 8 summarizes the results, future prospects,

and concludes the dissertation. The conceptual diagram of the structure of the dissertation is

shown in Fig. 1.1.

3



1. Introduction

Macroscopic quantum mechanics

Chapter 3

Chapter 1
Chapter 2

Chapter 4
Chapter 5

Chapter 6 Chapter 7

Theory
The origin of decoherence
Optomechanics Optomechanical system

Experiment

Establish the configuration 
of mirror trapping

Demonstration of
quantum noise cancellation

Classical regime Quantum regime

Observing 
quantum radiation pressure fluctuation

Suspended linear cavity

Figure 1.1.: Background and structure of the dissertation. The chapters written in green text

compose the review part. The chapters written in magenta text are the main part

representing the achievement of the dissertation.
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2. Optomechanical system

2.1. Concepts

An optomechanical system consists of mechanical oscillators and optical fields. They are

connected with the radiation pressure of the optical fields. The interaction via the radiation

pressure is enhanced with optical cavities. For this reason, cavities are often used in optome-

chanical systems, and in particular, the study for such systems is called cavity optomechanics.

The conceptual drawing of the model of an typical optical system is described in Fig. 2.1.

Optomechanical systems can be used for precise measurements. The displacement of the

oscillator is read out by utilizing the interference of the optical field. Therefore, even if

the mechanical oscillator is massive, its displacement is measured on a scale better than the

wavelength. Since it is a favorable precise displacement/force sensor, optomechanical sys-

tems are utilized as, for example, gravitational wave detectors [48–50] and dark matter detec-

tion [51–56].

The characteristic of optomechanical systems is related to quantum experiments. Since the

energy scale of the photon ~ω0 of a laser beam is much larger than the environmental energy

scale of kBT , the laser light propagates without decoherence. Therefore, the quantum nature of

themechanical oscillator can be efficiently extracted. In other words, the sensitivity of optome-

chanical systems has the potential to reach the quantum regime. To discuss the quantumness of

Figure 2.1.: Schematic drawing of an optomechanical system that consists of a linear cavity.

The right mirror is the mechanical oscillator, which is in the harmonic potential.

The laser beam enters from the left side. After interacting with the mechanical

oscillator, the beam returns towards left side to be measured.
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2. Optomechanical system

Figure 2.2.: Schematic picture of quantum noise. The quantum shot noise is a sensor noise

due to the photon number fluctuation itself at the photo detector (left panel). The

quantum radiation pressure noise is a force noise for the oscillator that the photon

number fluctuation makes via optical radiation pressure (right panel).

an optomechanical system, let us introduce noise sources in optomechanical systems including

quantum noise in the next section.

2.2. Noise sources

An optomechanical system measures the displacement of the mechanical oscillator. However,

oscillators are subject to the undesirable forces as well as the external force that we try to

measure. In addition, noises associated with the sensing is also indistinguishable from the

displacement of the oscillator. In this section, let us view these noises one by one.

2.2.1. Quantum noise

Quantum fluctuations in the optical field and the oscillator of an optomechanical system in-

troduce a principal noise into the system. Such noise is called quantum noise. There are two

types of quantum noise: quantum shot noise and quantum radiation pressure noise. Quantum

shot noise is a sensor noise that originates from the quantum fluctuation in the photon number

of the laser beam. Quantum radiation pressure noise is a force noise that the photon number

fluctuation produces via optical radiation pressure. The conceptual picture is shown in Fig. 2.2.

The quantum radiation pressure is also called quantum radiation pressure fluctuation, or quan-

tum back-action noise. The more detailed introduction and calculations of quantum noise are

described in Chapter 3.

2.2.2. Thermal noise

Thermal noise is a class of noise sources that arise from the thermal motion of the oscillator or

other environments. Typical thermal noises are those of the mirror substrate and coating and
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those caused by the residual gas. The power spectral density of thermal noise Sx(ω) is obtained

by the fluctuation-dissipation theorem as

Sx(ω) = −
4kBT
ω

Im[H(ω)]. (2.1)

where kB is the Boltzmann constant, T is the temperature of the thermal bath coupling to the

system, ω is the angular frequency of the motion, and H is the transfer function from the force

to the displacement x of the oscillator. For example, the transfer function of a simple pendulum
is described by

H(ω) =
1

m
[
ω2

0(1 + iφ(ω)) − ω2
] , (2.2)

where ω0 is the resonant angular frequency, and φ(ω) is the loss angle. Loss angle is a pa-

rameter to characterize the energy dissipation of the system. Equation (2.1) leads to the noise

spectrum,

Sx(ω) =
4kBT
mω

ω2
0φ(ω)(

ω2 − ω2
0
) 2
+ ω4

0φ
2(ω)

. (2.3)

There are two dissipation models; one is called viscous-damping model, and the other is called

structure-damping model. The viscous-damping model is a model where the oscillation en-

ergy is decayed with a force in proportion to its velocity. In the structure-damping model, the

internal structure cause the energy loss. The loss angles and decay rates in Fourier space are

expressed in each model as follows:

viscous-damping model : φ(ω) = ω

Qω0
, γ =

ω0
Q
, (2.4)

structure-damping model : φ = 1
Q
, γ(ω) =

ω2
0

Qω
. (2.5)

Let us consider examples in the following part of this section.

Suspension thermal noise

When we use a pendulum for the oscillator, the pendulum mode has its thermal noise. This

suspension thermal noise is a structure thermal noise of a pendulum. According to Eq. (2.3),

the noise spectrum Ssus is expressed as

Ssusx (ω) =
4kBTthω2

pend
φpend

mω5 , (2.6)

where ωpend is the resonant angular frequency and φpend is the loss angle of the pendulum, and

we assume that the frequency band of interest is much higher than the resonant frequency.
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2. Optomechanical system

Mirror substrate/coating thermal noise

To calculate the mirror substrate/coating thermal noise, it is convenient to introduce the Levin’s

reciprocal approach [57], instead of Eq. (2.1). With this approach, the power spectral density

is described by the following form:

Sx(ω) = −
8kB
ω2

∑
i

TiWdiss,i

F2
0

, (2.7)

where F0 is the amplitude of an imaginary sinusoidal test force whose distribution is identical

to that of the laser beam intensity. Ti is the temperature of each thermal bath, and Wdiss,i is

the energy loss per unit time to the corresponding thermal bath while the imaginary force is

applied. By using Levin’s approach, the thermal noise of the mirror substrate/coating, Ssubx ,

Scoatx , are obtained as [58, 59]

Ssubx (ω) =
4kBT
ω

φs
√
πw0

(
1 − ν2

s

)
Ys

, (2.8)

Scoatx (ω) =
4kBT
ω

dcφc
πw2

0

Y2
c (1 + νs)2 (1 − 2νs)2 + Y2

s (1 + νc)2 (1 − 2νc)
Y2
s Yc (1 − νc)

2 , (2.9)

where φ is the loss angle of the mirror substrate, w0 is the beam radius on the mirror, ν is the

Poisson ratio, Y is the Young modulus, and dc is the coating thickness. The subscription s
indicates the mirror substrate, while c indicates the mirror coating.

Residual gas noise

When an oscillator is in a less than perfect vacuum, the residual gas becomes a resistive force

proportional to the velocity of the oscillator. Therefore, the residual gas noise is modeled by the

viscous-damping model. It is known that the Q value of the residual gas is described by [60]

Q =
Cmω0

SP

√
kBT
mmol

, (2.10)

where S is the area of the surface, P is the pressure of the gas, mmol is the molecular mass of

the gas, and C is the factor depending on the shape of the oscillator, which is nearly unity for

cylinder-shaped mirrors.

2.2.3. Other noises

Laser frequency noise

Since the optomechanical system utilize the interferometry to measure the phase of the light

to sense the displacement of the oscillator, laser frequency fluctuation is a noise source indis-
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2.3. Uses for macroscopic quantum experiments

tinguishable from the oscillator’s displacement. For the laser angular frequency ω0, the phase

rotation φ through a distance of L variate as

2dφ = 2Lω0
c

(
dL
L
+
dω0
ω0

)
. (2.11)

Therefore, the displacement spectrum of the laser frequency noise Sfreqx is expressed by

√
Sfreqx ( f ) = L

√
Sfreqf ( f )

f0
, (2.12)

where Sfreqf ( f ) is the power spectral density of the laser frequency fluctuation, and f0 is the
laser frequency.

Seismic noise

The ground on the Earth continuously vibrate, and the oscillator’s seismic motion introduce a

displacement noise that is called seismic noise. The typical spectrum of the seismic motion is

√
Sseis( f ) ∼


10−5 m/

√
Hz ( f < 0.1 Hz)

10−7 ×
(

1 Hz
f

) 2
m/

√
Hz ( f > 0.1 Hz)

. (2.13)

To reduce the seismic noise, a vibration isolation system for the oscillator is necessary. For

example, a multiple suspension system (n-stage pendulum) can suppress the seismic noise by
the factor of f −2n above the resonant frequencies.

2.3. Uses for macroscopic quantum experiments

Optomechanical systems are suitable for macroscopic quantum experiments. By utilizing the

interference, optomechanical systems can sense the oscillator’s displacement on a scale better

than the wavelength of the optical field even if the oscillator is massive. The joint characteris-

tics lead to the quantumness and macroscopicity of the system simultaneously. In this section,

let us see some examples for uses of optomechanical systems for macroscopic quantum exper-

iments. The examples indicate the supremacy of milligram-scale optomechanical systems for

their purpose. They cannot be conducted with large scale systems, such as gravitational wave

detectors, due to the lack of flexibility. On the other hand, the small scale below the Planck

mass is not enough heavy to observe gravitational effects or mass dependency in the modified

quantum theories.
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Single photon

Polarized 
beam splitter

λ/4 plate

Oscillator

Figure 2.3.: Proposed experiment to measure the decoherence time of a superposition state of

a massive object by Marshall et al. [61].

2.3.1. Testing macroscopic quantum mechanics

Quantum mechanics is an established theory in modern physics. Many microscopic phenom-

ena are explained precisely according to quantum mechanics. However, although quantum

mechanics itself does not limit the scope by a mass scale, no quantum phenomenon indicating

the superposition state of a massive object has been observed. It is an open question whether

quantummechanics holds valid along all the mass scale, or quantummechanics breaks at some

mass scale and needs to be modified. Therefore, experimental tests are desired by realizing

macroscopic quantum systems.

Let us introduce proposed optomechanical experiments of a superposition state with a mas-

sive object. After developing macroscopic quantum optomechanical systems, the following

experiments will come true and will be able to test macroscopic quantum mechanics.

Marshall et al. [61] proposed an experiment to measure the decoherence time of the super-

position state of the massive mirror in an optomechanical system. The optomechanical system

is a Michelson interferometer, whose arms have linear cavities, as described in Fig. 2.3. The

target mirror that will be observed in a superposition state is placed at the end of a linear cavity.

The other end mirror is fixed. By injecting a single photon, the state would be

|ψ(0)〉 = |0〉 A |1〉B + |1〉 A |0〉B
√

2
, (2.14)

where the subscriptions A, B refer to each system of the arms. The state describes the super-

position of a state where the photon exists in the arm A and a state where the photon exists in

the arm B.
If the target mirror is cooled down to its ground state |0〉m, the state will evolve with time t
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Common mode

Polarized 
beam splitter

λ/4 plate

Differential mode

Figure 2.4.: Proposed experiment to realize a superposition state with massive mirrors by

Müller-Ebhardt et al. [62].

as

|ψ(t)〉 =
1
√

2

[
|0〉 A |1〉B |0〉m + eiζ2(ωmt−sinωmt) |1〉 A |0〉B

���ζ (
1 − e−iωmt

) 〉
m

]
, (2.15)

where we define ζ = (ω0/Lωm)
√
(~/2mωm), and ωm is the angular resonant frequency of the

target mirror, m is the mass of the mirror, L is the cavity length, andω0 is the angular frequency

of the single photon. The decoherence time is measured by the visibility of the interferometer.

While the entangled state holds, the visibility should oscillate with the mirror oscillation. After

the decoherence, the visibility will keep zero.

Müller-Ebhardt et al. [62] proposed an experiment to realize the entangled state with mas-

sive mirrors. The proposed configuration, based on that of gravitational wave detectors, is

shown in Fig. 2.4. When the sensitivity of the interferometer reach the standard quantum limit,

the common mode and the differential mode of the interferometer will be entangled. The dis-

placements of the common and differential modes are measured by photo detectors placed at

the each port, respectively. The entanglement can be evaluated by the logarithmic negativity

of the system. An finite logarithmic negativity implies the existence of the entangled state

between the massive end mirrors.

2.3.2. Platform for demonstrating advanced technologies in
gravitational wave detectors

Gravitational wave detectors are one of the representative optomechanical systems. The sensi-

tivity of the gravitational wave detectors are, and will be limited by quantum noises. Quantum

noises are fundamental noises and can not be reduced by classical manipulation. Although
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several advanced techniques to reduce quantum noises were proposed, a number of techniques

are waiting their experimental demonstrations.

Table-top scale experimental platform to demonstrate advanced techniques are crucial in

the gravitational wave detectors. The modern gravitational wave detectors are typically huge

experimental apparatus; they consists of kilo-meter scale interferometers. It takes much efforts

to incorporate and install new technologies into them. Thus, it is consequential to assure the

validity of the techniques before the actual installation.

Let us give an example of advanced technologies of quantum noise reduction. Typical grav-

itational wave detectors are based on a Michelson interferometer. To enhance its sensitivity,

a mirror that is called signal recycling mirror is installed at the output port of the Michelson

interferometer. The signal recycling mirror composes a cavity to enhance gravitational wave

signals. This cavity is called signal recycling cavity. In conventional configurations, the phase

delay can be ignored between the signal recyclingmirror and the beam splitter in theMichelson

interferometer. However, recently, it was proposed that the quantum noise could be reduced

by using a long recycling cavity by considering the effect of the phase delay. Although the

technique has not yet been validated experimentally, there is a proposals to incorporate the

effect into the proposed future gravitational wave detector [63]. Therefore, the experimental

demonstration with a table-top scale system is desired.

2.4. Previous works

We have seen the uses of optomechanical systems for macroscopic quantum experiments. In

this section, we will review previous works that experimented with optomechanical systems

that were aimed to be conducted in the quantum regime.

2.4.1. Observation of quantum radiation pressure fluctuation

One criteria of quantum regime for optomechanical systems are observing quantum radiation

pressure fluctuation. Quantum shot noise is observed even in the absence of optomechanical

interactions, and have been already observed or reduced with squeezed light at various mass

scales [64–66]. However, dominance of quantum radiation pressure fluctuation was realized

only below the nanogram scale.

In 2013, Purdy et al. reported observation of quantum radiation pressure fluctuation with

7 ng membrane. In 2018, Cripe et al. observed quantum radiation pressure fluctuation with a

50 ng cantilever. This was the most macroscopic system that succeeded in the direct observa-

tion. The line width of the observation was 500 kHz and the mechanical resonant frequency
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was 876 Hz. The resonant frequency increased to 10 kHz with an optical spring effect. The

observation is realized in broadband frequencies, though it is at themechanical resonant region.

In 2020, the gravitational wave detectors, Advanced LIGO and Advanced Virgo also re-

ported the effect of quantum radiation pressure fluctuation [67, 68]. Although quantum radia-

tion pressure noise is not dominant, they observed the increases in noise spectra due to quan-

tum radiation pressure noise. For quantum macroscopic experiments, direct observation of

quantum radiation pressure fluctuation is necessary, and this has been achieved in experiments

below the nanogram scale. It is expected to expand the mass range where direct observation

of quantum radiation pressure fluctuation is possible. In particular, the milligram scale is a

key scale because it is inferred that the displacement induced by the gravitational coupling can

be sensed in milligram scale optomechanical systems with realistic parameters [69]. In other

words, the milligram scale is the unique scale that has the potential to simultaneously observe

quantumness and gravitational effects; this feature is essential for fundamental physics as we

have seen in the Chapter 1.

2.4.2. Impediments to improvement of the sensitivity at milligram
scale

Let us review macroscopic optomechanical systems over microgram scale. The direct obser-

vation of quantum radiation pressure fluctuation has not yet been accomplished in this mass

range. However, several groups are actively working towards this goal.

Suspended pendulum

Suspended pendulums are often adopted as mechanical oscillators in optomechanical systems

over microgram scale [67, 69–77], while membranes and cantilevers are widely used in many

experiments of smaller mass scales [78–80]. An advantage to use suspended pendulums is

a feature that they can be well isolated from the environment. In other words, pendulums

are resistant to seismic noise and thermal noise. In addition, pendulums have a broad free-

mass region over the resonant frequency. For this reason, in general, pendulums have a wide

sensitive frequency range.

Sidles-Sigg instability

However, the issue of suspended pendulums as mechanical oscillators is their instability in the

rotational degree of freedom. The yaw rotational motion of suspended mirrors changes the

beam spot position of the laser inside a cavity. Due to the change in the position of the beam

spot, the radiation pressure in the cavity can behave as an anti-restoring torque and destabilize
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the cavity. In particular, either of two degrees of freedom in a rotational direction is unstable,

and it is so called Sidles-Sigg instability [47].

In the case that the mechanical restoring torque is dominant in the rotational degree of free-

dom, Sidles-Sigg instability does not matter because the radiation pressure torque would be too

weak to make a pendulum unstable. Thus, several experiments used multiple wires to suspend

a mirror to stiffen the pendulum in the rotational degree of freedom [75,76,81]. However, in-

crease of wires induces a stronger coupling to a thermal bath. As the result, the thermal noise

due to the suspension can get larger. In addition, suspension with multiple wires is technically

difficult to suspend a pendulum symmetrically. For example, Neben et al. [76] built a linear

cavity with 1 g suspended mirror to observe quantum radiation pressure fluctuation. The mir-

ror is suspended with two fibers to overcome Sidles-Sigg instability. However, the thermal

noise at the bonding of the fiber covered quantum radiation pressure fluctuation.

Another way to deal with Sidles-Sigg instability is introducing feedback control in the rota-

tionalmotion [82,83]. If an oscillator has actuators applying torque on it, the unstable rotational

motion can be suppressed by a feedback control. However, milligram or gram scale oscilla-

tors are often too small to attach actuators to [74]. In such cases, more complicated feedback

systems were required to actuate a tiny oscillator remotely [84, 85].

As a different approach, some experiments used triangular cavities to avoid Sidles-Sigg

instability [71–73]. When the number of mirrors consisting in the cavity is odd, the radia-

tion pressure behaves as a positive restoring torque, as shown in Fig. 2.5. Thus, the Sidles-

Sigg instability does not exist. However, additional mirrors are noise sources. Actually, Ko-

mori [73, 86] reported that the sensitivity of their system with triangular cavities was limited

by thermal noises of the additional mirror in the broad region of several hundred Hz. For the

best sensitivity, a cavity with only two mirrors —a linear cavity— is favorable. Therefore,

a stable configuration of linear cavities is desired. In other words, more sensitive milligram-

scale optomechanical systems can be realized by designing a stable trapping of a linear cavity

mirror.

2.5. Summary of this chapter
Optomechanical systems are suitable for precisemeasurements. In particular, it is expected that

milligram-scale optomechanical systems can be used for macroscopic quantum experiments.

Up to the nanogram scale, there are experiments that realized a quantum optomechanical sys-

tem. However, over the microgram scale, the instability due to the radiation pressure inside a

linear cavity impeded observation of quantum radiation pressure fluctuation.
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Radiation 
pressure 
torque

Radiation 
pressure 
torque

Figure 2.5.: Triangular cavity to avoid Sidles-Sigg instability. In the case of a linear cavity,

tilt of a flat cavity mirror causes changes in the cavity axis. As the result, the

tilting mirror is subject to radiation pressure torque in the same direction as the tilt

direction. Thus, the tilt becomes larger, and the system is unstable. On the other

hand, in a triangular cavity, the tilting angle is flipped by additional mirror. The

resulting radiation pressure torque acts as a positive restoring torque. Therefore,

the system is stabilized with the radiation pressure.
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3. Quantum noise in optomechanical
systems

In this chapter, we review the basic concepts of quantum noise in optomechanical systems. In

addition, the mathematical description and calculations of them are introduced.

3.1. Conceptual overview of quantum noise

There are two types of quantum noise: quantum shot noise and quantum radiation pressure

noise. This section provides an overview of them one by one.

3.1.1. Quantum shot noise

According to quantum electrodynamics, the photon number of an optical field is an observable,

and photon number can have the quantum fluctuation. Shot noise originate from the uncertainty

of the photon counting due to the quantum fluctuation on the photon number. In case that an

optical field is in a coherent state, the outcome of the measurement on the photon number

follow the Poisson distribution. That is, the probability of finding n photons is

Pn =
〈n〉n

n! e−〈n〉, (3.1)

where 〈n〉 is the expected value of the photon number. This is the Poisson distribution with
variance 〈n〉 . The Poissonity implies that the shot noise has a flat spectrum.

3.1.2. Quantum radiation pressure noise

Let us consider a harmonic oscillator that couples to an optical field. The oscillator is subjected

to radiation pressure from the optical field. The radiation pressure Frad is given by

Frad =
2P
c
, (3.2)
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Figure 3.1.: Standard quantum limit with quantum shot noise and quantum radiation pressure

noise. The sensitivity is limited by the SQL even when the laser power is changed.

where P is the power of the optical field. Therefore, when P fluctuates as quantum shot noise,

the radiation pressure also fluctuates. This force noise is called quantum radiation pressure

noise.

3.1.3. Standard Quantum Limit

Before moving onto the detailed calculation of quantum noise, we introduce a concept called

standard quantum limit (SQL). The standard quantum limit is a fundamental limit of the sensi-

tivity for optomechanical systems. It is defined as the sum of quantum shot noise and quantum

radiation pressure noise.

The signal to noise ratio of quantum shot noise is in proportion to 1/
√

P since it follows a

Poisson distribution. On the other hand, the signal to noise ratio of quantum radiation pressure

noise is proportional to
√

P. Therefore, there is a lower bound on the sum of quantum shot noise

and quantum radiation pressure noise independently to the laser power. This lower bound is

the standard quantum limit. The plot for the standard quantum limit is shown in Fig. 3.1.
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3.2. Quantized electromagnetic fields

In optomechanical systems, optical fields are coupled to mechanical oscillators. To describe

optomechanical systems, firstly we review the mathematical description of quantized electro-

magnetic fields.

3.2.1. Quantization of electromagnetic fields

The Maxwell’s equations in vacuum are:

∇ · E(r, t) = 0, (3.3)

∇ · B(r, t) = 0, (3.4)

∇ × E(r, t) = −
∂B

∂t
, (3.5)

∇ × B(r, t) =
1
c2
∂E

∂t
, (3.6)

whereE(r, t) is the electric field andB(r, t) is the magnetic field (magnetic flux density). The
electric and magnetic fields can be also represented using the scalar potential φ(r, t) and the
vector potential A(r, t) as

E(r, t) = −
∂A

∂t
− ∇φ, (3.7)

B(r, t) =∇ × A. (3.8)

When we use the Coulomb gauge, ∇ · A = 0, the vector potential follows the wave equation
as (

∇2 −
1
c2

∂2

∂t2

)
A(r, t) = 0. (3.9)

The solutions imply the existence of electromagnetic waves. The wave vector k of the solution

is orthogonal to its vector potential A(k), and we define the unit vectors in the directions of

polarizations, eµ(k) (µ = 1,2), so that they are orthogonal to the unit vector k̂ of the propa-

gating direction as k̂ = e1(k) × e2(k). Then, the vector potential is written with the angular

frequency of the electromagnetic wave as

A(r, t) =
∑
µ,k

(
Aµ

k
e−i(ωk t−k·r) +

(
Aµ

k

) ∗
ei(ωk t−k·r)

)
eµ(k). (3.10)
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Therefore, the electric field is described with ωk by

E(r, t) =
∑
µ,k

iωk

(
Aµ

k
e−i(ωk t−k·r) −

(
Aµ

k

) ∗
ei(ωk t−k·r)

)
eµ(k), (3.11)

while the magnetic field is

B(r, t) =
∑
µ,k

ik
(
Aµ

k
e−i(ωkt−k·r) −

(
Aµ

k

) ∗
ei(ωkt−k·r)

)
k̂ × eµ(k). (3.12)

Note that k = |k|. Let us calculate the energy of the electromagnetic wave in a cube of the

volume V and the side length l. The integrations of∫
E2 dr = V

∑
µ,ν,k

[
−ωkω−k

(
Aµ

k
Aν
−ke

−i(ωk+ω−k)t +
(
Aµ

k

) ∗ (
Aν
−k

) ∗
ei(ωk+ω−k)t

)
eµ(k) · eν(−k)

+2ω2
k

(
Aµ

k

) ∗
Aµ

k

]
(3.13)

and∫
B2 dr = V

∑
µ,ν,k

k2
[ (

Aµ
k

Aν
−ke

−i(ωk+ω−k )t +
(
Aµ

k

) ∗ (
Aν
−k

) ∗
ei(ωk+ω−k)t

)
eµ(k) · eν(−k)

+2
(
Aµ

k

) ∗
Aµ

k

]
(3.14)

indicate the energy H is

H =
∫ (

1
2ε0E2 +

1
2µ0

B2
)
=

∑
µ,k

2ε0ω(k)
2V

(
Aµ

k

) ∗
Aµ

k
. (3.15)

To derive the above expression, we should use the dispersion relation ω(k) = ck. By defining
the generalized coordinate Qµ

k
and the generalized momentum Pµ

k
as

Qµ
k
= 2

√
ε0V Re

(
Aµ

k

)
, (3.16)

Pµ
k
= 2ωk

√
ε0V Im

(
Aµ

k

)
, (3.17)

the energy is rewritten by

H =
1
2
∑
µ,k

[ (
Pµ

k

) 2
+ ω2

k

(
Qµ

k

) 2
]
, (3.18)
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which is identical to the hamiltonian of a harmonic oscillator. Thereby, let us impose the

following commutation relation: [
Q̂µ

k
, P̂ν

k′
]
= i~δk,k′δµν (3.19)

to describe the quantized hamiltonian of the electromagnetic field as

Ĥ =
1
2
∑
µ,k

[ (
P̂µ

k

) 2
+ ω2

k

(
Q̂µ

k

) 2
]
. (3.20)

As we often do with harmonic oscillators, we define the annihilation operator by

âµ
k
=

√
ωk

2~ Q̂µ
k
+ i

1
√

2~ωk

P̂µ
k
. (3.21)

Since the vector potential operator is written by

Âµ
k
=

√
~

2ε0ωkV
âµ

k
, (3.22)

the expressions of the quantized electric field and magnetic field are

Ê(r, t) =
∑
µ,k

i

√
~ωk

2ε0V

(
âµ

k
e−i(ωkt−k·r) −

(
âµ

k

) †
ei(ωk t−k·r)

)
eµ(k), (3.23)

B̂(r, t) =
∑
µ,k

i

√
µ0~ωk

2V

(
âµ

k
e−i(ωkt−k·r) −

(
âµ

k

) †
ei(ωkt−k·r)

)
k̂ × eµ(k). (3.24)

The commutation relations between the creation operator (âµ
k
)† and the annihilation operator

âµ
k
are [

âµ
k
,
(
âνk′

) †]
= δkk′δµν, (3.25)

while the commutation relations of the other combinations are zero.

3.2.2. Two photon formalism

In the previous section, we discuss the canonical quantization of the electromagnetic field. In

the case that we focus on the optomechanical systems, it is often useful to adopt two photon for-

malism [87–89]. In this section, we review the two photon formalism; two photon formalism

is derived by transformation of the annihilation operator.

Firstly, let us consider an electromagnetic wave propagating in the direction of z axis in
free space. To deal with free space propagating as l → ∞, the summation is replaced by
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3. Quantum noise in optomechanical systems

the integration over the continuous values of the frequency as
∑

k → 1/(2πc/l)
∫

dω. The
Eq. (3.23) is simplified as

Ê(t) =
∫ ∞

0

√
~ω

4πε0cA

(
âωe−iωt + â†ωe

iωt
)
dω, (3.26)

where A is the effective cross section area of the propagating beam, and the annihilation op-

erator corresponding to the angular frequency ω is defined by âω = i
√

2πc/lâk exp(iωz/c).
Correspondingly, the commutation relation for the continuous case is[

âω, â′†ω
]
= 2πδ (ω − ω′) , (3.27)

and the commutation relations of the other combinations are zero.

Considering an optomechanical system, when an external force of angular frequency Ω is

applied to the oscillator, sideband lights of angular frequency ω0 + Ω and ω0 − Ω generate

around the carrier light angular frequency ω0. Thus, the quantum noise that contribute to limit

the sensitivity is at the sideband frequencies. Therefore, it is convenient to use the creation and

annihilation operators at the sideband frequencies. In the case of Ω � ω0, and the quantized

electric field is rewritten by

Ê(t) =

√
~ω0

4πε0cA

∫ ∞

0

[
e−iω0t

(
â+e−iΩt + â−eiΩt

)
+ eiω0t

(
â†+e

iΩt + â†−e
−iΩt

) ]
dΩ, (3.28)

where the â+ = âω0+Ω is the annihilation operator of the upper sideband and â− = âω0−Ω is the

annihilation operator of the lower sideband. The commutation relations are calculated as[
â+, â

†

+′

]
= 2πδ (Ω −Ω′) ,

[
â−, â

†

−′

]
= 2πδ (Ω −Ω′) . (3.29)

The commutation relations of the other combinations are zero.

The quantized electric field can be decomposed into the quadratures as

Ê(t) =

√
4π~ω0
ε0cA

[â1(t) cos (ω0t) + â2(t) sin (ω0t)] . (3.30)

Therefore, the quantized amplitude quadrature â1 and the quantized phase quadrature â2 are

described by

â1(Ω) =
â+ + â†−
√

2
, (3.31)

â2(Ω) =
â+ − â†−
√

2i
, (3.32)
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3.2. Quantized electromagnetic fields

where

â j(t) =
∫ ∞

0

(
â j(Ω)e

−iΩt + â j(Ω)
†eiΩt

) dΩ
2π ( j = 1,2). (3.33)

These are the Fourier transformations of the quadratures since â j(−Ω) = â†j (Ω). The commu-
tation relations are [

â1(Ω), â
†

2 (Ω
′)

]
= −

[
â2(Ω), â

†

1 (Ω
′)

]
= i2πδ (Ω −Ω′) , (3.34)

while the commutation relations of the other combinations are zero.

3.2.3. Quantum states of the optical field

So far, we have seen the expressions of the electric field operators. To calculate the expectation

values and fluctuations of the electric field, it is necessary to specify not only the operators,

but also the quantum states. In this section, we will see two characteristic states: vacuum state

and coherent state. These two states is the typical quantum states for optical systems with laser

beams.

Vacuum state

The vacuum state |0〉 is defined as the state without any excitation at every frequency; âω |0〉 =
0.
Let us consider the power spectral density of the signal to noise ratio of the external force

signal and quantum noise for the vacuum state. For the pair of operators Ô1 and Ô2, the single

sided spectral density SÔ1Ô2
( f ) is defined by

1
2 〈0| (Ô1(Ω)Ô

†

2(Ω
′) + Ô†

2(Ω
′)Ô1(Ω))|0〉 =

1
22πδ(Ω −Ω′)SÔ1Ô2

( f ). (3.35)

The commutation relations of Eq. (3.29) and Eq. (3.34) show

1
2 〈0| (â j â

†

k ′ + â†k ′ â j)|0〉 =
1
22πδ (Ω −Ω′) δ j k . (3.36)

Therefore, when the operator of the signal to noise ratio is described as the form of xsnr(Ω) =
η1â1 + η2â2, the power spectral density can be obtained by

Sx( f ) = |η1 |
2 + |η2 |

2 . (3.37)
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3. Quantum noise in optomechanical systems

Coherent state

The coherent state |α〉 is defined by

|α〉 = D̂(α) |0〉 (3.38)

= exp
[∫ ∞

0

dω

2π

(
αωâ†ω − α∗

ωâω
) ]

|0〉 . (3.39)

The coherent state is the eigenstate of the eigenvalue α: âω |α〉 = α(ω) |α〉 . The operator

D̂(α) is called the displacement operator, and it is unitary: D̂†D̂ = Î. Thus, we can replace
the coherent state with the vacuum state by transforming the electric field according to

|α〉 → |0〉 , Ê → D̂†Ê D̂, (3.40)

without changing physical quantities.

The single mode laser beam is modeled by the coherent state of α = A0/
√

2× 2πδ(ω −ω0).

The electric field operator that incorporates the displacement operator is

Êc(t) =

√
4π~ω0
ε0cA

[(A0 + a1(t)) cosω0t + a2(t) sinω0t] , (3.41)

which implies that it is the sum of a classical amplitude and quantum quadratures. The classical

intensity of the electric field PA = |A0 |
2~ω0/2.

3.3. Optomechanical systems
In this section, we review mathematical treatment of optomechanical systems. Firstly, we

define a general definition for operators of optical fields. For an electromagnetic field Â, we
write the expectation value as A and the fluctuation as a with quadrature decomposition:

Â =

√
4π~ω0
ε0cA

(A + a) ·

(
cosω0t
sinω0t

)
. (3.42)

A and a(Ω) are vectors that consist of their amplitude quadrature and the phase quadrature:

A =

(
A1

A2

)
, (3.43)

a =

(
a1

a2

)
. (3.44)

A consists of classical numbers, while a can be a vector of operators.
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3.3. Optomechanical systems

Carrier Fluctuation

L

R(φ)A B e  R(φ)iαa b

Figure 3.2.: Free space propagation

3.3.1. Dynamics of the electromagnetic field

Free space propagation

Let us consider the case of an electric field propagating in free space over a distance L, as
shown in Fig 3.2. Since this is equivalent to time delay by τ = L/c,

B̂(t) = (A1 + a1(t − τ)) cosω0(t − τ) + (A2 + a2(t − τ)) sinω0(t − τ). (3.45)

By calculating this equation, the output field is expressed as

B = R(φ)A, (3.46)

b(t) = R(φ)a(t − τ), (3.47)

where φ = ω0τ (mod 2π) is the phase rotation by the propagation, and R(φ) is the rotational
matrix:

R(φ) =

(
cos φ − sin φ
sin φ cos φ

)
. (3.48)

The Fourier transform of the fluctuation of output electric field is

b(Ω) = eiαR(φ)a(Ω), (3.49)

where α = −Ωτ is the phase delay at the angular frequency Ω.

Transmission and reflection on a mirror

A mirror can be regarded as an optical element with two inputs and two outputs as shown in

Fig. 3.3. Let the amplitude reflectivity and the amplitude transmissivity be r and t. When
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3. Quantum noise in optomechanical systems
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Figure 3.3.: Transmission and reflection on a mirror.

optical loss at the mirror is zero, r2 + t2 = 1 according to the energy conservation. The output
fields are

Ĉ(t) = r Â(t) + t B̂(t), (3.50)

D̂(t) = t Â(t) − r B̂(t). (3.51)

Therefore, their quadratures and the fluctuations are

C = rA + tB, (3.52)

D = tA − rB, (3.53)

c(Ω) = ra(Ω) + tb(Ω), (3.54)

d(Ω) = ta(Ω) − rb(Ω). (3.55)

3.4. Modeling of a linear cavity

Cavities are a class of interferometer. Cavities allow light to circulate between mirrors that

consist in them. Linear cavities are a simple cavity with two mirrors facing each other, as

shown in Fig. 3.5. In this section, we review the mathematical description of the linear cavity

and calculate quantum noise in it.
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Carrier Fluctuation

A

B

a

b

Figure 3.4.: Reflection on a free mass mirror.

3.4.1. Free mass mirror

To calculate the response of a linear cavity, firstly we consider the reflected light field on a free

mass mirror, as described in Fig. 3.4. Here, we assume that the displacement of the mirror δx
is small. The reflected light field will be

B(t) ' (A1 + a1(t) − 2A2k0δx(t)) cosω0t + (A2 + a2(t) + 2A1k0δx(t)) sinω0t, (3.56)

where k0 is the wave number of the optical field. This leads to

B = A, (3.57)

b(t) = a(t) + 2k0

(
−A2

A1

)
δx(t). (3.58)

To obtain the Fourier transformation of Eq. (3.58), let us consider the equation of motion of the

mirror. The radiation pressure due to the momentum transfer of the photons at the reflection is

Frp(t) = 2~k0 ×
1
2

(
(A1 + a1(t))2 + (A2 + a2(t))2

)
. (3.59)

The constant part of the radiation pressure is balanced by the mechanical restoring force. Thus,

we need to consider only the fluctuation part of the radiation pressure: δFrp(t) ' 2~k0(A1a1(t)+
A2a2(t)). When the external force m d2xex(t)

dt2 is introducing the mirror displacement,

m
d2(δx(t))

dt2 = δFrp + m
d2xex(t)
dt2 . (3.60)

We consider small displacements of the mirror; therefore, the equation of motion is identical

to the one of classical theory, though the variables are replaced by the operators. The Fourier

transform of this equation of motion leads to

δx(Ω) = −
2~k0
mΩ2 (A1a1(Ω) + A2a2(Ω)) + xex(Ω). (3.61)
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Figure 3.5.: A linear cavity.

Therefore, the Eq. (3.58) in the frequency domain is obtained as

b(Ω) = P (k, ξA)a(Ω) +

√
2k

xSQL
nA⊥

xex(Ω), (3.62)

where we define

P (k, ξA) = R (ξA)

(
1 0
−k 1

)
R (−ξA) , (3.63)

and the unit vector that perpendicular to the A as

nA⊥
=

(
− sin ξA
cos ξA

)
, ξA = arctan (A2/A1) . (3.64)

Here, k is represented by

k =
8PAω0
mc2Ω2 , (3.65)

and called the optomechanical coupling constant. We also define the standard quantum limit

of the mirror mass of m as

xSQL =

√
2~

mΩ2 . (3.66)

3.4.2. Linear cavity

Finally, we introduce quantum noise in a linear cavity as described in Fig. 3.5. Let the am-

plitude reflectivities of the input mirror and the end mirror be rI and rE, respectively. The

amplitude transmissivities are tI =
√

1 − r2
I
and tE =

√
1 − r2

E
. The cavity length is L, and the

phase rotation due to propagating one way is φ = Lω0/c (mod 2π).
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3.4. Modeling of a linear cavity

For the classical electric fields, the relations between them are written as

B = −rIA + tID, C = tIA + rID, D = R(φ)F , E = R(φ)C, F = rEE, G = tEE.

(3.67)

These relations lead to

B =
[
−rII + t2

I rE [I − rIrER(2φ)]−1 R(2φ)
]

A, (3.68)

= −rIA0

(
1
0

)
+

t2
I
rEA0

1 + r2
I
r2
E
− 2rIrE cos 2φ

(
cos 2φ − rIrE

sin 2φ

)
, (3.69)

G = tItE [I − rIrER(2φ)]−1 R(φ)A, (3.70)

=
tItEA0

1 + r2
I
r2
E
− 2rIrE cos 2φ

(
(1 − rIrE) cos 2φ
(1 + rIrE) sin 2φ

)
. (3.71)

Since the light intensity is proportional to the square of the amplitude of the electric field, the

(classical) intensity of the reflected light PB, the (classical) intensity of the transmitted light

PG, and the (classical) intensity of the intracavity light PE are written by

PB =
r2
I
+ r2

E
− 2rIrE cos 2φ

1 + r2
I
r2
E
− 2rIrE cos 2φ

PA, (3.72)

PG =
t2
I
t2
E

1 + r2
I
r2
E
− 2rIrE cos 2φ

PA, (3.73)

PE =
t2
I

1 + r2
I
r2
E
− 2rIrE cos 2φ

PA. (3.74)

As inferred from the energy conservation, PB + PG = PA. When 2φ = 0 (mod 2π), the
intracavity (and the transmitted light) intensity is at its maximum, and the cavity is said to be

resonant. The interval at which the resonance appears is called the Free Spectral Range (FSR),

and the frequency interval of FSR fFSR is

fFSR =
c

2L
. (3.75)

The Full Width at Half Maximum (FWHM) of the resonant peak fFWHM is

fFWHM =
1 − rIrE
π
√

rIrE
fFSR, (3.76)

while we assume the reflectivities of the mirrors are high (' 1). Finesse is a characteristic
parameter of the cavity that is defined by the ratio of the FSR and the FWHM as

F =
fFSR

fFWHM

=
π
√

rIrE
1 − rIrE

'
2π

t2
I
+ t2

E

. (3.77)
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3. Quantum noise in optomechanical systems

Hereafter, we consider the case of the input mirror is fixed, and the end mirror behaves as a

free mass. The reflectivity of the end mirror is one to maximize intracavity power (rI = r, tI =
t, rE = 1). The input-output relation for the fluctuations of the electric fields are

b = −ra + td, c = ta + rd, d = eiαR(φ)f, (3.78)

e = eiαR(φ)c, f = P (k, ξE ) e +

√
2k

xSQL
nE⊥

xex(Ω), (3.79)

where α = −LΩ/c is the phase rotation for the one way path. When the cavity is on resonance

(φ = 0), the coupling constant is reduced to be k = 8PEω0/
(
mc2Ω2) ' 16F PAω0/

(
πmc2Ω2) .

By solving Eq. (3.78) and Eq. (3.79) for b,

b =

[
−r I +

t2e2iα(
1 − re2iα

) 2

(
1 − re2iα 0

−k 1 − re2iα

) ]
a +

teiα(
1 − re2iα

) 2

√
2k

xSQL

(
0

1 − re2iα

)
xex(Ω).

(3.80)

If the transmission of the mirror t2 and the phase delay α is small, then the fluctuation of the

output field is reduced to

b '
γ − iΩ
γ + iΩ

(
1 0

−
γι

Ω2 (
γ2+Ω2) 1

)
a +

γ − iΩ√
γ2 +Ω2

√
2γι

Ω2 (
γ2+Ω2)

xSQL

(
0
1

)
xex(Ω), (3.81)

where

γ =
t2c
4L

, (3.82)

ι =
8PEω0
mLc

. (3.83)

By defining

K =
γι

Ω2 (γ2 +Ω2)
, (3.84)

β = arctan(−Ω/γ), (3.85)

Eq. (3.81) is expressed by the simple form:

b = e2iβ

(
1 0
−K 1

)
a + eiβ

√
2K

xSQL

(
0
1

)
xex(Ω). (3.86)

The first term represent the fluctuation of the electric field, and the second term represent the

external force signal. The fluctuation of the electric field can be regarded as the noise. Then,

the operator of the signal to noise ratio is

xsnr(Ω) =
xSQL
√

2K
(−Ka1 + a2) e

iβ. (3.87)
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Thus, as we have seen in Eq. (3.37), the sensitivity for the external signal is described by the

single sided power spectral density Sx(Ω):

Sx(Ω) =
x2
SQL

2

(
K +

1
K

)
> x2

SQL. (3.88)

The first term of Eq. (3.88) comes from the fluctuation in the amplitude quadrature of the input

field, which is converted to the fluctuation in the phase quadrature through the response of the

mirror. Thus, it corresponds to quantum radiation pressure fluctuation. On the other hand, the

second term of Eq, (3.88) is the direct consequence of the fluctuation in the phase quadrature

of the input field. Therefore, this noise corresponds to shot noise. There is a trade-off between

these two quantum noises, with the standard quantum limit as the lower limit.

3.5. Summary of this chapter
In this chapter, we review calculations of quantum noise in optomechanical systems. For op-

tomechanical systems, it is convenient to use two photon formalism. The basic dynamics of the

optical field are free space propagation and reflection/transmission on a mirror. The dynamics

in a linear cavity can be calculated by combining the two basic dynamics. The calculation re-

sults show that quantum noise can be divided into quantum shot noise and quantum radiation

pressure noise based on the quadrature of its origin, and quantum noise limit the sensitivity by

the standard quantum limit.
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4. Experimental setup

Aswe have seen in Chapter 2, the milligram-scale optomechanical system is unique and crucial

for macroscopic quantum experiment. In this chapter, we describe the experimental setup for

realizing the milligram-scale optomechanical system. In Section 4.1, the design concept of our

experiment is introduced. In particular, the cavity geometry is carefully designed to overcome

the Sidles-Sigg instability. In Section 4.2, we focus on the main cavity in detail, while we

discuss the auxiliary optics in Section 4.3. In Section 4.4, the feedback control systems that

we use are introduced. The feedback control systems are used to keep the cavity resonance or

to reduce noises for precise measurements. In Section 4.5, the systems to avoid environmental

noises are introduced. In Section 4.6, let us summarize this chapter.

4.1. Design of the experiment

4.1.1. Goal and the paths

The goal of this research is to establish a class of precise optomechanical systems that are

suspended linear cavities of milligram scale. We look ahead to macroscopic quantum exper-

iments. Therefore, our experimental setup is designed to be sensitive for observing quantum

radiation pressure fluctuation; as shown in Chapter 2, limitation by quantum radiation pressure

fluctuation is one criterion of the quantum regime.

The first step for the goal is identifying a stable configuration of a suspended linear cavity. As

we have seen in Section 2.4.2, a suspended linear cavity suffers from the Sidles-Sigg instability.

To overcome the Sidles-Sigg instability, our optomechanical system has two characteristics.

One is that the cavity is in the negative-g regime, and the other is the unbalanced masses of

the cavity mirrors. The effectiveness and the experimental validation of our configuration is

discussed in more detail in Chapter 5.

To complement our goal, we validate that the sensitive milligram-scale optomechanical sys-

tems are worthwhile for elucidating the nature of quantum mechanics. As a concrete imple-

mentation, we demonstrate one quantum noise reduction technique with our system, which is

discussed in Chapter 6.
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4. Experimental setup

Figure 4.1.: Photographs of the 8-mgmirror. The high reflective coating and the anti-reflective

coating are coated for each side, respectively.

Observation of quantum radiation pressure is the final aim for our experiment. Therefore, we

propose and design a more suitable optomechanical oscillator for this purpose. The oscillator

is a torsional pendulum. By constructing two linear cavities on the two edges of the torsional

pendulum, the optomechanical system will be more robust against classical noises. We discuss

replacing the simple pendulum with the torsional pendulum in Chapter 7.

4.1.2. 8-mg mirror as the test mass

To accomplish our goal, an 8 mg concave mirror is selected as the test mass. The small mass

is advantageous to improve its force sensitivity, and the 8-mg mirror is the smallest suspended

mirror with a curvature to the best of our knowledge.

The one side has the concave curvature with the high reflective coating. The curvature plays

a crucial role for the stability of the rotational degrees of freedom of the cavity mirrors. The

photograph of the 8-mg mirror is shown in Fig. 4.1.

4.1.3. Design sensitivity

We design the linear cavity with the sensitivity that is limited by quantum radiation pressure

noise. The parameters for the design sensitivity to reach the quantum radiation pressure fluc-

tuation are listed in Table 4.1. The calculated design sensitivity is described in Fig. 4.2. To

estimate the mirror substrate and coating thermal noise, we refer to the material properties that

are also listed in Table 4.1.

The calculation indicates that the quantum radiation pressure stands out if the input laser

power is more than 10 mW. The other expected noises are estimated below the quantum radi-
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4.1. Design of the experiment

Table 4.1.: Parameters for the design sensitivity towards observation of the quantum radiation

pressure fluctuation.

Test mass mirror

mass 8 mg

diameter 3 mm

radius of curvature 100 mm

reflectivity 99.99%

Q value 105

beam radius 0.21 mm

Young’s modulus substrate 73 GPa

SiO2 73 GPa

TiO2:Ta2O5 140 GPa

Poisson ratio substrate 0.17

SiO2 0.17

TiO2:Ta2O5 0.28

loss angle substrate 1 × 10−5

SiO2 1 × 10−4

TiO2:Ta2O5 4 × 10−4

refractive index substrate 1.45

SiO2 1.45

TiO2:Ta2O5 2.07

Input mirror

mass 60 g

radius of curvature 100 mm

reflectivity 99.9%

Cavity

cavity length 110 mm

finesse 5000

intracavity power 14 W

Laser

wavelength 1064 nm

input power 10 mW

frequency noise 10 Hz/ f Hz/
√

Hz

temperature 300 K

air pressure 10−4 Pa
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Figure 4.2.: Design sensitivity of the linear cavity for observing quantum radiation pressure

fluctuation. The quantum radiation pressure fluctuation can be observed in the

range between 120 Hz and 750 Hz. Quantum radiation pressure noise is calcu-

lated as shown in Chapter 3. The suspension thermal noise is estimated by using

Eq. (2.6). The residual gas thermal noise is based on Eq. (2.6), while the laser fre-

quency noise is determined by the cavity length and the laser frequency stability

as shown in Eq. (2.12). The mirror substrate and coating thermal noises are eval-

uated using Eq. (2.8) and Eq. (2.9), respectively. The seismic noise is introduced

in Eq. (2.13).
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Figure 4.3.: Schematic drawings of the experimental setup.

ation pressure fluctuation in the frequency band between 120 Hz and 750 Hz.

Before moving onto the overview of the experimental setup, we have a note for the classical

radiation pressure noise, which is omitted from the plotting. We assume a feedback control for

the laser intensity stabilization. For the intensity stabilization, a part of the input laser beam

towards the main cavity is picked up, and the intensity is measured with a photo detector. The

measured intensity fluctuation is the error signal of the feedback control. The intensity stability

will be limited by the shot noise level of the picked up light. Thus, the higher the power of the

picked up light gets, the closer the classical radiation pressure noise is to the quantum radiation

pressure noise. When the half power of light is picked up, the classical radiation pressure noise

is above the quantum radiation pressure noise by the factor of
√

2. The design value of the input
power is 10 mW, and our laser source is 2 W power. Therefore, we assume that the intensity

stabilization can utilize enough high laser power, and when the classical radiation pressure

noise is equal to the quantum radiation pressure noise, we regard the sensitivity of the system

as reaching the quantum radiation pressure noise.

4.1.4. Overview of the setup

In this section, our whole experimental setup is outlined. Figure. 4.3 describes the schematic

drawings of our experimental setup. The setup consists of the following four parts: the main

cavity, the auxiliary optics, the feedback control systems, and the environmental noise isolation

systems.
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The main cavity is a suspended linear cavity. The 8 mg test mass mirror and the input

mirror of a half-inch mirror are suspended as double pendulums on the platform. The auxiliary

optics include the input optics and the output optics. The laser source is an Nd:YAG laser of

wavelength 1064 nm. The phase of the laser beam is modulated for the cavity length control

through the electro-optical modulator (EOM). The amplitude of the laser is also modulated for

the intensity stabilization through acousto-optical modulator (AOM). From the input optics,

two laser beams are injected towards the vacuum chamber where the main platform is built.

The transmitted lights from the cavities come out through the vacuum chamber and detected

by photo detectors.

We introduce three feedback controls. One is the main cavity length control to keep the

resonance or to sustain a certain locking point. The other one is the laser intensity stabilization.

A part of the laser beam is picked up for the intensity stabilization before entering the main

cavity. For the laser frequency stabilization, the reference cavity is on the platform next to the

main cavity. The laser frequency is feedback controlled to the frequency reference, which is

the resonant frequency of the reference cavity.

The platform is suspended as a double pendulum with coil springs in the vacuum chamber.

The spring suspension is introduced to reduce the seismic noise in both vertical and horizontal

directions. The vacuum chamber prevent the air turbulence and the residual gas noise.

By calibrating the photo detector signal of the reflected light from the main cavity, we can

estimate the displacement of the test mass mirror. The displacement is due to residual noises

for the external forces since we do not apply intended external forces in this experiment. After

the classical noises are suppressed enough, the quantum radiation pressure noise dominates.

4.2. Main cavity

The central optomechanical system in the experiment is the main cavity with the 8-mg mirror.

In this section, we focus on the main cavity. The main cavity is a suspended linear cavity and

composes of the suspended 8-mg mirror and the suspended input mirror. Let us describe one

by one in the following sections.

4.2.1. Test mass mirror

Substrate

The test mass mirror is the 8-mg mirror that is suspended with a fiber. The mirror is cylindrical

in shape, with a diameter of 3 mm and a thickness of 0.5 mm. The dimensions of the test mass

mirror are decided to prevent the larger clipping of the beam. One side of it is coated with a
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4.2. Main cavity

Table 4.2.: Material properties of the fibers used in the experiment.

Carbon fiber Tungsten fiber CuBe fiber

Tensile strength 5.9 GPa 3.8 GPa 1.4 GPa

Young’s modulus 294 GPa 345 GPa 130 GPa

Density 1.81 × 103 kg/m3 19.3 × 103 kg/m3 8.25 × 103 kg/m3

high reflective coating whose reflectivity is 99.99 (+0.005/−0.02)%. The other side is coated

with an anti-reflective coating whose reflectivity is less than 0.15%. The mirror is concave on

the side of the high reflective coating. The radius of curvature is 100 mm.

The test mass should be as light as possible for a precise force measurement. However, it is

not easy to achieve both the requirement of the small mass and with curvature, and 8 mg is the

smallest suspended mirror with curvature. The mirror is produced by Sigma-koki company

based on custom order.

Suspension system

The suspension fiber should be thin to reduce its suspension thermal noise. We can use a thin

fiber by choosing a high tensile strength fiber. Consequently, a carbon fiber is selected to

suspend the test mass mirror. The carbon fiber is attached to the mirror with ultraviolet curing

resin. Although a tungsten fiber is also a high tensile strength fiber, a metal fiber has a residual

stress that curves the fiber. Thus, carbon fiber is preferable for suspending a tiny mirror. The

properties of the fiber are listed in Table 4.2. The carbon fiber is also advantageous by its low

density. The suspension thermal noise of the violin mode can be reduced by making the violin

mode frequency high enough. Since the frequency of the violin mode is inversely proportional

to the square root of the density, we avoid the effect of suspension thermal noise of the violin

mode by using low-density fiber whose density is one-tenth that of a metal fiber.

The measured intrinsic Q value of the carbon fiber is ∼ 2.5 × 103. The Q value of the

pendulum is enhanced by the gravitational dilution effect. For the pendulum mode, a fiber has

energy loss only near the clamp point. Thus, the Q value is improved by a dilution factor than

the intrinsic Q value of the fiber. The dilution factor αdi is described as

αdi =
lf
φ2
f

√
128mg
πEf

, (4.1)

where lf is the fiber length, φf is the diameter, Ef is the Young’s modulus of the fiber, and m
is the mass of the pendulum. In our experiment, we have a benefit of αdi ∼ 60 as the dilution
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Figure 4.4.: Schematic drawings of the suspended test mass mirror.

factor. Therefore, the Q value in the pendulum mode is expected to be ∼ 1.5 × 105, which

satisfies the requirement value of the experimental design of 105.

The test mass mirror is suspended as a double pendulum for locking the cavity by suppress-

ing the residual motion of test mass mirror. The schematic drawings of the suspended test

mass is shown in Fig. 4.4. For the intermediate mass in the double pendulum, we introduce

magnetic damping to suppress the residual motion of the test mass mirror. The intermediate

mass is surrounded by a ring neodymium magnet. To avoid unwanted magnetic attraction,

the intermediate mass is made of highly pure aluminum of 99.999% (5N). The carbon fiber

is fixed to the intermediate mass with a pure aluminum lid and peak screws. The mass of the

intermediate mass is measured to be 129.5±0.1mg. For the optimal damping, the mass should
approach the mass of the test mass mirror. Therefore, the intermediate mass is designed to be

small, while it also needs to work as a clamp.

The intermediate mass is suspended from the clamp with a CuBe fiber. The CuBe fiber

is attached to the intermediate mass with ultraviolet curing resin. The CuBe fiber is selected

because CuBe fibers have small Young’s modulus and high intrinsic Q value. The properties

of the CuBe fiber is also listed in Table 4.2.

A photograph of the suspension system and the test mass mirror is shown in Fig. 4.5. At

the top of the suspension, a rotation stage is used with a picomotor for the remote control of
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4.2. Main cavity

Figure 4.5.: Photograph of the suspension and the test mass mirror.

the yaw angle of the test mass mirror. The test mass mirror is placed on the platform in the

vacuum chamber.

4.2.2. Controlled input mirror

The input mirror has coil-magnet actuators to control the cavity length. A half inch mirror is

stuck in a brass mirror holder to compose the input mirror of 60 g. With the mirror holder,

the input mirror is much heavier than the test mass mirror by three orders of magnitude. The

mirror is fixed to the holder with ultra-violet curing resin. The properties of the input mirror

is listed in Table 4.3.

The input mirror is also suspended as a double pendulum to isolate it from the seismic

vibration. In addition, by suspending the input mirror, we can have an enough actuator range

to lock the cavity. The schematic drawings of the suspension for the input mirror is shown

in Fig.4.6. The brass input mirror holder has a cylindrical shape, and two grooves are carved

into the side for hooking wires. Two loops of wire is clamped to the intermediate mass and

hook the input mirror holder. The intermediate mass has a rectangular shape and is made of

copper. Copper has a high electrical conductivity, and is suitable for magnetic damping. For

the magnet damping, four neodymium magnets are placed near the intermediate mass. Piano

wires of 0.1 mm diameter are used to suspend the input mirror and the intermediate mass. A
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Figure 4.6.: Schematic drawings of the suspension for the controlled input mirror.
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4.2. Main cavity

Figure 4.7.: Photographs of the controlled input mirror. The coil-magnet actuator is focused

on the right panel.

piano wire has an advantage in its strength, though it can not be get ultra thin. Thin aluminum

plates are screwed together to clamp the wires.

On the top of the suspension, there are two translation stages connected to the two suspension

wires. Bymoving the stage, the pitch and yaw rotations are controlled. Picomotors are attached

to the stage, and the rotational alignment of the input mirror can be adjusted remotely.

Two neodymium magnets are attached to the input mirror holder for the coil-magnet ac-

tuators. The coil-magnet actuators are used for the cavity length control and for the transfer

function measurement of the rotational degree of freedom. Photographs of the controlled input

mirror are shown in Fig. 4.7.

To calibrate the signal from the cavity to the displacement of the test massmirror, the actuator

efficiency need to be known in advance. Therefore, we measure the actuator efficiency of the

Table 4.3.: Properties of the input mirror.

Diameter 12.7 mm

Thickness 6.35 mm

Front surface curvature (100.0 ± 0.5) mm
Rear surface curvature ∞ mm

Front surface reflectivity (99.90 ± 0.02)%
Rear surface reflectivity < 0.25%
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4. Experimental setup

coil-magnet actuator by building a Michelson interferometer. The controlled input mirror is

placed as one end mirror of the Michelson interferometer. We feedback control the Michelson

interferometer at the middle fringe with the coil-magnet actuator. The transfer function of

a Michelson interferometer from the displacement of the end mirror to the output signal is

determined by the laser frequency. Thus, the actuator efficiency is estimated by the feedback

control gain. The measured actuator frequency is Hact = (3.0 ± 0.3) × 10−4 N/V.

4.2.3. Cavity properties

The cavity length is decided as 110 mm. The short cavity length is advantageous in terms of

frequency noise, though it must be longer than the curvatures of the cavity mirrors for the stable

configuration. The resulting g factor is −0.1. Thus the cavity is in the negative-g regime. The
test mass mirror of 8 mg is much lighter than the controlled input mirror of 60 g. Therefore,

the two conditions for the stable suspended linear cavity are satisfied, as explained in detail

in Chapter 5. The expected finesse value is 5700, which meets the parameter of the design

sensitivity. The measured cavity length is (110 ± 3) mm.

4.3. Auxiliary optics

4.3.1. Input optics

The input optics are assembled to condition the laser beams entering the cavities. The laser

source is an Nd:YAG laser of the wave length 1064 nm; its maximum output power is 2 W.

The laser beam passes through a Faraday isolator to dump the returning light. A part of the

beam is split for the optical lever to monitor the yaw rotation of the platform. The beam for

the optical lever is reflected at the mirror attached on the side of the platform. The returning

light is detected by a quadrant photo detector. The signal indicates the rotational motion. A

neodymium magnet is attached to the mirror on the side of the platform, and a coil is placed

near the magnet to compose a coil-magnet actuator. The yaw mode of the platform is feedback

controlled to keep its angle with the optical lever and the coil-magnet actuator. The unity gain

frequency of the feedback control is around 1.0 Hz not to disturb a signal within the frequency

range of interest.

The main beam is phase-modulated through an electro-optical modulator and amplitude-

modulated through an acousto-optical modulator. After the modulations, the beam is again

separated by a polarizing beam splitter; one goes to the main cavity, and the other goes to the

reference cavity. From the main cavity beam, a half of the beam is picked up and monitored for

the intensity stabilization. The optical path length and the positions of the lenses are tuned so
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Figure 4.8.: The monitor system for the transmitted light from the main cavity. It is designed

to be sensitive only to changes in the beam spot, not to beam tilt. A convex lens

of the focal length f is located in the middle of the quadrant photo detector and
the test mass mirror, where the beam spot is measured. The distances between the

lens and the quadrant photo detector and the test mass mirror are adjusted to be

2 f . With this configuration, tilt of the beam is cancelled by the lens.

that the mode of the laser beam match the cavity mode. Two steering mirrors with picomotors

are used for the path of the main cavity to align the beam to the cavity axis precisely.

4.3.2. Output optics

The output optics include two photo detectors and two CCD cameras; one is used for the

transmitted light from the main cavity, and the other monitors the transmitted light from the

reference cavity, which is described in the next section. The photo detectors measure the power

of the laser beam, and the CCD cameras are used to monitor the beam shape and to confirm

the resonance. For the main cavity, a quadrant photo detector is used to measure the beam spot

as well. The beam spot can be measured by using a convex lens and a quadrant photo detector

as shown in Fig. 4.8. Tilt of the laser beam is cancelled by the convex lens. Thus, we can

measure only the beam spot displacement, while it is insensitive to tilt.
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4. Experimental setup

4.4. Feedback controls

4.4.1. Laser frequency stabilization

In optomechanical systems, the fluctuation in the laser frequency is indistinguishable from

the displacement of the oscillator. The target observation bandwidth is between 120 Hz and

750Hz. To achieve the sensitivity, the laser frequency noise should be less than 10Hz/ f Hz/
√
Hz,

while the naive laser frequency stability is about 104 Hz/ f Hz/
√
Hz for a typical NPRO laser

source.

Therefore, we utilize the reference cavity to attain the stability in the laser frequency. The

reference cavity is a rigid cavity, and the laser frequency is fixed to the resonant frequency

of the reference cavity. The laser frequency is stabilized at the level of the stability of the

reference cavity. The spacer of the reference cavity is made of super invar. Super invar is a

nickel-iron alloy, and is known for its uniquely low coefficient of thermal expansion. On the

spacer, two high-reflective mirrors are attached with screws to comprise a high finesse cavity.

The parameters of the reference cavity is shown in Table 4.4.

To fix the laser frequency to the resonant frequency of the reference cavity, a feedback

control is introduced. The error signal is obtained by Pound-Drever-Hall technique. The error

signal is filtered to be the feedback signal, and the feedback signal is applied to the laser source

to actuate the frequency of the laser beam. Let us describe the Pound-Drever-Hall signal in

more detail. The phase of the laser frequency is modulated before entering the reference cavity

with electro-optical modulator. The modulation frequency is 15 MHz. With 15-MHz sine

wave, we demodulate the signal that is obtained by the photo detector sensing the reflected

light from the reference cavity. To respond to 15-MHz signal, we use InGaAs photodiodes

(Hamamatsu Photonics G10899). The filter circuit is consists of a low-pass filter and a high-

pass filter. the high-pass filter is necessary to compensate the phase delay, and the low-pass

Table 4.4.: Parameters of the reference cavity.

Finesse 5.2 × 104

Cavity length 44 mm

Free spectral range 3.4 Ghz

High reflective coating reflectivity 99.994%

Anti-reflective coating reflectivity <0.2%

Curvature 1000 mm

Finesse (design) 5.2 × 104

Finesse (measured) 6.1 × 104

46



4.5. Environmental-noise isolation

filter is necessary for a stable feedback control. The feedback signal is sent to the piezoelectric

actuator that is attached to the laser crystal in the laser head.

4.4.2. Laser intensity stabilization

Laser intensity stabilization is also implemented since laser intensity fluctuation gives the clas-

sical radiation pressure fluctuation. To obtain an error signal, a part of the laser source is picked

up from the input laser beam to the main cavity. As an actuator, the acousto-optical modulator

in the input optics is used to modulate the intensity of the passing beam.

4.5. Environmental-noise isolation

4.5.1. Vibration isolation

The sensitive optics including the main cavity and the reference cavity are placed on the plat-

form. The platform has to be well isolated from the seismic motion for the cavity locking and

for the sensitivity. For this purpose, the platform is suspended with springs as a double pendu-

lum. Coil springs are introduced to isolate the vertical seismic motion as well as the horizontal

motion. Since it is a double suspension, the seismic noise can be reduced by 1/ f 4.

The suspension of the platform is schematically shown in Fig. 4.9. The main platform is

suspended from the roof of the outer structure by a single wire. Although it is technically easier

to suspend the platform with three wires, three-wire suspension can introduce a large seismic

noise since the resonant frequencies of the pitch and bounce mode will get close. For the

suspension, we joint piano wires of diameter 0.2 mm and coil springs with aluminum clamps.

Consequently, the yaw mode of the platform is soft. Thus, we introduce an optical lever and

an additional coil-magnet actuator to suppress the yaw motion of the platform.

The whole building is on three fluorine rubber piles. The outer structure is constructed

with a floor, a roof and three poles. The roof suspends the intermediate mass of 1.8 kg and

the damping mass of 4.4 kg. The damping mass is made of magnetized stainless steel and

suspended with three piano wires and coil springs. Eight neodymium magnets are attached to

the damping mass for the magnetic damping of the intermediate mass. The intermediate mass

is made of copper and suspended with a piano wire and a coil spring. From the intermediate

mass, the platform is suspended, and the mass of the platform is 1.8 kg.
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Figure 4.9.: Schematic image of the platform suspension.
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4.5.2. Vacuum system

The platform where the main cavity and the reference cavity are built is suspended in the

vacuum chamber to avoid the air turbulence and the noise of the residual gas. The input laser

beam enters from the right-side view port window on the vacuum chamber. The view port

window is anti-reflective coated to minimize the unwanted scattering of the light. The platform

is located in the right side of the vacuum chamber. In the left side of the vacuum chamber, some

output optics are located. The vacuum pumps and the vacuum gauge are connected to the left

side of the chamber. They consist of the rotary pump of Edwards RV12 and the turbomolecular

pump of Osaka vacuum TG450F. The first evacuation is done with the rotary pump, and when

the pressure drops below 10 Pa, the turbo molecular pump is used to evacuate to 10−4 Pa.

The schematic picture of the vacuum chamber is shown in Fig. 4.10. The vacuum chamber

consists of two jointed vacuum tank. The input light come from the right side of the chamber.

The platform is installed in the right side chamber. In the left chamber, the vacuum pump is

attached.

4.6. Summary of this chapter
For macroscopic quantum experiments, we construct a suspended linear cavity with 8-mg

mirror. The light mass is advantageous in force measurements. With feedback controls and

environmental-noise isolation, the design sensitivity reach quantum radiation pressure noise.
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Figure 4.10.: Schematic picture of the vacuum chamber.

50



5. Angular trapping of a linear-cavity
mirror with an optical torsional
spring

5.1. Preface
Our ultimate goal is observing quantum radiation pressure fluctuation. Thus, a linear cavity

is employed for our milligram-scale optomechanical system to optimize its sensitivity. As

we have seen, however, a suspended linear cavity has the difficulty related to the Sidles-Sigg

instability. Therefore, the configuration of the cavity is carefully designed to overcome the

Sidles-Sigg instability. In this chapter, we discuss the method to realize a stable suspended lin-

ear cavity in detail. In addition, the experiment that validates the trapping configuration is also

provided in this chapter. The invented configuration with the experimental validation plays a

key role for milligram-scale optomechanical systems. This is a joint research by K. Komori,

H. Fujimoto, Y. Michimura, M. Ando, and myself. The works covered by the present chapter

are primary done by myself. Its preprint can be found in arXiv:2110.13507 [90].

5.2. Theoretical description of the trapping scheme
In this section, we analyze the rotational motion of suspended mirrors in a linear cavity while

taking the effect of the radiation pressure. The calculation is based on the procedure shown

in [91]. The previous works [91] assumed that the cavity mirrors had identical masses because

the stability was discussed in the context of gravitational wave detectors. By considering the

general case of cavity masses, we identify a stable trapping configuration for a suspended

linear cavity. The following calculation clarifies that the suspended mirrors are trapped with

the positive radiation pressure torque under the condition that the cavity is in the negative-g

regime and one mirror is much heavier than the other one. We name the trapping effect optical

torsional spring.

The schematic picture of a suspended linear cavity considered here is shown in Fig. 5.1.
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Figure 5.1.: Schematic picture of a suspended linear cavity. The rotational degrees of freedom

we focus on are defined along the vertical axis. The input mirror is much heavier

than the end mirror for our configuration.

Each mirror is suspended, and what we consider here is the rotational degree of freedom along

its vertical axis. As shown in Fig. 5.1, we define the angles of two mirrors as αi and the torques

exerted to them as Ti (i = 1, 2). The equation of motion of the rotational modes of the two
mirrors is given by

(Kopt +Kmech − Iω2)

(
α1

α2

)
=

(
T1

T2

)
, (5.1)

where

Kmech =

(
K1 0
0 K2

)
, I =

(
I1 0
0 I2

)
(5.2)

are the matrices of the mechanical restoring torques and the moment of inertia of each mirror.

Here, we consider the case that the rotational motion of the mirrors are slow enough to ignore

the phase delay of the light propagating inside the cavity. The optical torsional stiffness matrix

is represented as [47]

Kopt =
2P

c(R1 + R2 − L)

(
R1(L − R2) R1R2

R1R2 R2(L − R1)

)
, (5.3)

where P, R1, and L are the intracavity power, the radii of curvature, and the cavity length,

respectively. Equation. (5.1) can be rewritten as [91](
K1 − βg2 − I1ω

2 β

β K2 − βg1 − I2ω
2

) (
α1

α2

)
=

(
T1

T2

)
, (5.4)

by defining

β =
2PL

c(1 − g1g2)
, (5.5)
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Common mode

Differential mode

Figure 5.2.: Definition of the common mode and the differential mode of the cavity mirrors.

and gi = 1− L/Ri. gi depends on the geometry of the cavity, and it is generally called g factor.

Hereafter, we consider a case where the mirror 2 is much heavier than the mirror 1, and

the mechanical restoring torque of the mirror 1 is much smaller than that of the mirror 2.

This assumption is practical for actual experiments. This optomechanical system can be a

sensitive force sensor by using the lighter mirror as a test mass. At the same time, we can

control the cavity length to maintain the cavity resonance by attaching actuators on the larger

(heavier) mirror. Therefore, we consider the case that I1 � I2 and K1 � K2. In this case, the

diagonalization of Eq. (5.4) indicates the resonant frequency of the differential mode is

ωdiff '

√
K1 − βg2

I1
, (5.6)

where we define the differential mode as the diagonalized mode where the mirror 1 and 2

rotate in the same directions. We also define the common mode as the diagonalized mode of

the rotation where two mirrors rotate in the different directions as shown in Fig. 5.2.

When the lighter mirror is flat (g1 = 1), g2 should be positive to satisfy optical cavity

condition of 0 < g1g2 < 1. In this case, the resonant frequency rapidly goes to zero with
increase of the intracavity laser power, which causes an angular instability. On the other hand,

we can avoid the instability and even can stiffen the differential mode in the negative-g regime.

Eq. (5.4) also indicates the resonant frequency of the common mode decreases as

ωcom '

√
K2 + β(1 − g2)/g

I2
. (5.7)

Here, we consider the case that the two curvatures of the mirrors are identical (R1 = R2 = R,
g1 = g2 = g) for simplicity. An important fact here is that the mechanical resonant frequency
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Figure 5.3.: Dependence of the resonant frequencies of differential and common modes. The

negative resonant frequency implies that the mode is unstable. For comparison,

both the negative-g regime (g1 = g2 = −0.1) and the positive-g regime (g1 =

1, g2 = +0.1) cases are plotted; other parameters are described in the main text. In
the range between 0.75W and 34 kW of the intracavity power, only the negative-g

cavity is stable.

of the common mode can be high enough by using an enough heavy mirror for the mirror 2.

Therefore, the decrease of the common mode resonant frequency due to the radiation pressure

torque can be ignored with unbalanced-mass mirrors. In other words, the radiation pressure

torque will not make the common mode unstable when one mirror is much heavier than the

other. Optical spring effect in the direction of the cavity axis is well known; thus, we name the

trapping effect in the rotational degrees of freedom for optical torsional spring after it.

Figure 5.3. shows the dependence of the resonant frequency on the intracavity power. As

for this plot, we use similar parameters of our experimental setup as follows: mirror masses

of m1 = 10 mg and m2 = 10 g, mirror radii of r1 = 1.5 mm and r2 = 10 mm, (momentum of

intertia of I1 = 5.6×10−12 kg m2 and I2 = 2.5×10−7 kg m2,) mechanical resonant frequency of

ω1/(2π) = 0.5 Hz andω2/(2π) = 5 Hz, and the cavity length of L = 1.1R = 11 cm (g = −0.1).
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Figure 5.4.: Schematic drawing of the experimental setup for the demonstration of the optical

torsional spring. For this experiment, we use a quadrant photo detector at the

transmitted light from themain cavity. The beam spot on the test mass is monitored

with a lens and the quadrant photo detector for the transfer function measurement.

The reference cavity is not used here since the laser frequency noise does not affect

the intracavity power. Therefore, the reference cavity is omitted in the diagram to

emphasize this fact, though it is still there. The cavity length is feedback controlled

for the continuous resonance. The laser intensity fluctuation is also suppressed by

the feedback control with an acousto-optic modulator.

For comparison, we also plot the resonant frequencies of the differential and common modes

for the case that the milligram-scale mirror is flat and the g factor of the heavier mirror is

positive (g2 = +0.1). The cavity in the negative-g regime is tolerant over the intracavity

power of 10 kW, while the cavity with the flat mirror is unstable just over 0.75 W.

5.3. Experimental demonstration

We identify the stable configuration for suspended linear cavities. The configuration is a key

for high sensitivities in milligram-scale optomechanical systems, and it is adopted in our exper-

imental setup. Our experimental setup is the first realization and demonstration of the optical

torsional spring. For the validation, we conduct evaluations of the optical torsional spring.
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5. Angular trapping of a linear-cavity mirror with an optical torsional spring

5.3.1. Method

With the experimental setup, we demonstrate that our trapping configuration works properly.

The configuration utilizes the radiation pressure of the laser light inside a linear cavity. Thus,

the restoring torque due to the radiation pressure also increase as the intracavity power in-

creases. The validity of our trapping configuration is justified by observing this increase of the

restoring torque due to the optical torsional spring.

The experimental setup for this demonstration is shown in Fig. 5.4. During this demon-

stration, we do not use the laser frequency stabilization system since the frequency noise does

not affect the stability of the cavity. The instability due to the radiation pressure of the laser

light inside the cavity will be an issue when the radiation pressure torque is dominant. The

predominance of the radiation pressure is realized because we build a linear cavity with a tiny

mirror of 8 mg that is suspended with a thin carbon fiber. The small mass allows to use the ultra

thin fiber, and thus the mechanical restoring torque is much smaller than that of the radiation

pressure. The carbon fiber is 6 µm in diameter and 20 mm long, and the resulting rotational

resonant frequency is 0.6 Hz. The measured value is 0.64 ± 0.01 Hz. The cavity length is

measured to be 110± 3 mm, and the radii of curvature of the mirrors are 100.0± 0.5 mm. The
g factor of the cavity is -0.1. During this demonstration, the pressure is kept about 1 Pa to

suppress acoustic disturbances. It is relatively low vacuum for the stable locking of the cavity.

The pressure is tuned so that the residual gas introduces gas damping without disturbing the

cavity locking.

To show the radiation pressure works as a positive restoring torque, we evaluate the resonant

frequency that is described in Eq. (5.6). The resonant frequency is determined by the transfer

function of the rotational motion of the mirrors. Figure 5.5 show the schematic picture of the

transfer function measurement. To measure the transfer function, we apply a torque to the

input mirror by injecting differential sine-wave signals into the coil-magnet actuators on the

input mirror. Then, the test mass is also swung via the radiation pressure inside the cavity.

The rotation of the test mass results in the changes of the beam spot on the test mass because

the cavity axis changes. We observe the transmitted light from the cavity by a quadrant photo

detector with a convex lens to detect the change in the beam spot. The transfer function from

the injected signal to the quadrant photo detector signal of the horizontal direction includes

the transfer function of the suspended mirrors [85]. Therefore, the transfer function has the

characteristic form of the resonant peak. We fit the transfer function to estimate the resonant

frequency. We note that the cavity length is feedback controlled to keep the resonance of the

cavity during this transfer function measurement.
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Quandrant
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+

－

Figure 5.5.: Schematic picture of the transfer function measurement in the rotational degree of

freedom. Differential sine-wave signals are injected into the coil-magnet actua-

tors on the input mirror to excite the rotational motion of the mirrors. The transfer

function from the excitation signal to the quadrant photo detector’s signal is mea-

sured.

5.3.2. Results and discussion

The measured transfer functions from the excitation to the quadrant photo detector signal are

plotted in Fig. 5.6. We measure them with five different intracavity powers. The peaks and the

phase flips due to the resonance of the test mass are clearly observed in each measurement. We

fit the gain of the transfer functions to determine the resonant frequency. The fitted parameters

are resonant frequency, damping ratio of the resonance, and the overall gain factor. The fitted

curves are also plotted in Fig. 5.6.

The intracavity power in each measurement is estimated with the transmitted light power

by dividing the reflectivity of the test mass mirror. The uncertainty in the intracavity power

is dominated by the fluctuation in the power of the transmitted light. The fluctuation in the

transmitted light power is at the frequency of the excitation signal. Thus, it is inferred that the

fluctuation would be due to the misalignment when the mirror is swung.

We show the dependence of the resonant frequency on the intracavity power in Fig. 5.7.

The uncertainty of the resonant frequency comes from the frequency-bin width of the transfer

function measurement. We also show the predicted region from the theoretical calculation

using Eq. (5.6) with the parameters of the optics. The width of the region corresponds to the

uncertainty of the design reflectivities of the mirrors and the uncertainty of the cavity length.

The measured dependency is consistent with the theoretical prediction. Therefore, we con-

clude that we observe the optical torsional spring. The results prove the configuration traps the

suspended cavity mirrors, and they show the certification of the ability of accumulating intra-

cavity power as much as the design value of 14 W for observing quantum radiation pressure

fluctuation thanks to the optical torsional spring.

57



5. Angular trapping of a linear-cavity mirror with an optical torsional spring

1006 × 10 1 2 × 100

Frequency (Hz)

10 1

101

G
ai

n 0.35 W
0.65 W
1.3 W
2.9 W
5.1 W

1006 × 10 1 2 × 100

Frequency (Hz)

180
90
0

90
180

Ph
as

e 
(d

eg
)

Figure 5.6.: The measured transfer functions of the five measurements of different intracavity

powers. The points are the measured data, and the lines represent the fittings. The

peaks and the phase flips indicate the resonant points. By the fitting, we estimate

the resonant frequencies.
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Figure 5.7.: The resonant frequencies of the differential mode in the rotational degree of free-

dom. The shaded region represents the theoretically predicted values with the

width corresponding to the uncertainties in mirror reflectivities and the cavity

length.
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5. Angular trapping of a linear-cavity mirror with an optical torsional spring

5.4. Summary of this chapter
We identify a configuration to trap the rotational motions of the suspended mirrors in a lin-

ear cavity. By operating a linear cavity in the negative-g regime and using unbalanced-mass

mirrors, the two rotational modes of the cavity mirrors are stabilized with the radiation pres-

sure inside the cavity. Moreover, we demonstrate the first experimental validation of the trap-

ping with our experimental setup. We observe the rotational restoring torque on the mirror

increases as the intracavity power increases. The behavior is consistent with theoretical pre-

diction. Therefore, we confirm that the 8 mg test mass mirror gets the positive restoring torque

originated from the radiation pressure of the inside laser beam. We conclude with this demon-

stration that we have established the stable configuration of the suspended linear cavity, and the

experimental setup can accumulate enough laser power to observe quantum radiation pressure

fluctuation.
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6. Proof-of-principle demonstration of
quantum noise cancellation

6.1. Preface

We have established the stable configuration of a suspended linear cavity. This achievement

opens up new potentials for linear cavities as sensitive force sensor. As the proof of it, we

demonstrate a quantum noise reduction technique with our experimental setup. In addition to

proving the usefulness of the system as a force sensor, this demonstration also has the aspect

of research for further sensitivity improvement after quantum radiation pressure noise limits

the sensitivity.

In this chapter, we start by analyzing a method to enhance the sensitivity of a quantum

optomechanical system, followed by the experimental demonstration. This is a joint work by

K. Komori, S. Otabe, Y. Enomoto, Y. Michimura, M. Ando, and myself. It is published in

Phys. Rev. A Letter 104 L031501 [92]. The theoretical description is derived with heading

efforts by K. Komori. As for the experimental demonstration, all measurements shown here

are conducted by myself.

6.2. Principle of quantum noise cancellation

The quantum noise can be cancelled by measuring the reflected light from a detuned linear

cavity, as schematically described in Fig. 6.1. In this section, let us consider the principle

Figure 6.1.: Schematic description of quantum noise cancellation. The amplitude fluctuation

in the light that directly reflected on the front mirror can negate the amplitude

fluctuation in the transmitted light from the cavity.
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Figure 6.2.: Optical fields for the considered cavity.

of the quantum noise cancellation in a linear cavity. The end mirror behaves as an harmonic

oscillator. The transmissivity and reflectivity of the end mirror are tE and rE, respectively. The
input mirror is fixed, and its transmissivity and reflectivity are tI and rI. Because the system
we consider is a linear cavity, the optical losses in the system can be regarded as the nonzero

transmissivity of the end mirror.

To calculate the quantum noise, we use the two photon formalism [87–89] as presented in

Chapter 3. In the two photon formalism, we deal with an optical field as a pair of quadratures.

Thus, an optical field can be represented as a vector, a = (a1 a2)
t , where a1 is an amplitude

quadrature and a2 is a phase quadrature. Let us define each optical field as follows: a is the

optical field in the cavity, b(c) is the optical field going into (out from) the input mirror, and

d(e) is the optical field going into (out from) the end mirror. The definition of the fields are

shown in Fig. 6.2.

The cavity amplification matrix between the amplitude and phase of the light is represented

as [92]

G =
c

2L
1

(κ − iω)2 + ∆2

(
κ − iω −∆

∆ κ − iω

)
, (6.1)

where L is the cavity length, κ =
(
t2
I
+ t2

E

)
c/(4L) is the cavity decay rate, and ∆ is the cavity

detuning.

We assume the optomechanical system is macroscopic. In that case, the end mass is heavy

enough to have a low mechanical resonant frequency. The frequency region of interest is

above the resonant frequency. Thus, the end mirror motion is in the free-mass regime, and

the displacement response to a force is χm ' −1/
(
mω2) , where m is the effective mass of the

mirror.

In the case that the cavity is detuned, the phases of the optical fields are different. The

difference of the phase is expressed by a rotation matrix

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
. (6.2)
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6.2. Principle of quantum noise cancellation

The intracavity field is enhanced by the cavity amplification synchronizing with the cavity

displacement. The loop gain of the cavity is

A =

(
0 0

−κ0 0

)
G, (6.3)

where κ0 = −8χmPk0/c. The cavity response to the input field can be written as

H =
G

I − A
(6.4)

= −
cω2

2LM

(
κ − iω −∆

∆ − ι/ω2 κ − iω

)
, (6.5)

where I is an unit matrix, and

M = ω2[(ω + iκ)2 − ∆2] + ∆ι. (6.6)

ι in the above expression is defined as

ι =
4Pk0
mL

, (6.7)

which indicates the optomechanical coupling strength. P is the intracavity power and k0 is the

wave number of light; k0 = 2π/λ.
By calculating Re(M) = 0, the resonant frequency of the optical spring can be obtained as

ωopt =

√
∆ι

κ2 + ∆2 . (6.8)

The input-output relations of the reflected light and the transmitted light are(
c1

c2

)
= Rα

{[
t2
I H − rII

]
Rβ

(
b1

b2

)
+ tItEH

(
d1

d2

)
+ 2χmAk0tIH

(
0
δF

) }
, (6.9)

and (
e1

e2

)
=

[
t2
EH − rEI

] (
d1

d2

)
+ tItEHRβ

(
b1

b2

)
+ 2χmAk0tEH

(
0
δF

)
. (6.10)

The difference in the phase of the carriers are given by

α = arctan
(
−
∆

2κin − κ

)
, (6.11)

β = arctan
(
−
∆

κ

)
, (6.12)

γ = arctan
(

2κin∆
2κκin − κ2 − ∆2

)
, (6.13)
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6. Proof-of-principle demonstration of quantum noise cancellation

where α is the phase difference between the intracavity and the reflected light, β is the phase

difference between the input and the intracavity light, and γ = α + β is the phase difference

between the input and the reflected light. The input and output coupler κin, κout are defined as

κin = t2
I
κ/

(
t2
I
+ t2

E

)
, κout = κ − κin.

Here, let us consider amplitude measurements. To calculate the sensitivity of amplitude

measurements, we pay attention to the amplitude quadrature. The amplitude of the reflection

is given by

c1 = χref
(
δF + ξb1 b1 + ξb2 b2 + ξd1 d1 + ξd2 d2

)
, (6.14)

where

χref = 2χmAk0tI (H12 cosα − H11 sin α) , (6.15)

ξb1 =
[
t2
I (H11 cos γ + H12 cosα sin β − H21 sin α cos β) − rI cos γ

]
/χref, (6.16)

ξb2 =
[
t2
I (−H11 cos γ + H12 cosα cos β + H21 sin α sin β) + rI sin γ

]
/χref, (6.17)

ξd1 =
tE

2χmAk0

H11 cosα − H21 sin α
H12 cosα − H11 sin α, (6.18)

ξd2 =
tE

2χmAk0
. (6.19)

Hi j (i, j = 1, 2) is the component of the matrix H . Note that H11 = H22. The amplitude of

the transmission is calculated as

e1 = χtra
(
δF + ηb1 b1 + ηb2 b2 + ηd1 d1 + ηd2 d2

)
, (6.20)

where

χtra = 2χmAk0tEH12, (6.21)

ηb1 =
tI

2χmAk0

H11 cos β + H12 sin β
H12

, (6.22)

ηb2 =
tI

2χmAk0

−H11 sin β + H12 cos β
H12

, (6.23)

ηd1 =
t2
E

H11 − rE
χtra

, (6.24)

ηd2 =
tE

2χmAk0
. (6.25)

The power and cross spectrum of the vacuum field is written as

Saiaj = δi j =


1 (i = j)

0 (i , j)
. (6.26)
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6.2. Principle of quantum noise cancellation

Therefore, the power spectra of the force noise as for amplitude measurements are calculated

as

SrefF,b1
=

��ξb1

��2 = (
κ2 + ∆2) {

∆ι −
[
(κ − 2κin)2 + ∆2] ω2}2

16ικin (κ − κin)2 ∆2ω2
SSQLF , (6.27)

SrefF,b2
=

��ξb2

��2 = κinω
4

ι (κ2 + ∆2)
SSQLF , (6.28)

SrefF,d1
=

��ξd1

��2 = [
∆ι −

(
κ2 + ∆2 − 2κκout

)
ω2] 2

4ικout∆2ω2 SSQLF , (6.29)

SrefF,d2
=

��ξd2

��2 = κoutω
2

ι
SSQLF , (6.30)

and the power spectra of the force noise as for amplitude measurements are calculated as

StraF,b1
=

��ηb1

��2 = κin
(
κ2 + ∆2) ω2

ι∆2 SSQLF , (6.31)

StraF,b2
=

��ηb2

��2 = κinω
4

ι (κ2 + ∆2)
SSQLF , (6.32)

StraF,d1
=

��ηd1

��2 = [
∆ι −

(
κ2 + ∆2 − 2κκout

)
ω2] 2

4ικout∆2ω2 SSQLF , (6.33)

StraF,d2
=

��ηd2

��2 = κoutω
2

ι
SSQLF . (6.34)

The difference between the reflection and the transmission measurement originates from the

noise of the input amplitude fluctuation.

The SQL-normalized sensitivity of the amplitude measurements in the reflection and the

transmission are the summation of the contributions of b and d. That is,

Sreftot = ε1Srefb1
+ ε2Sb2 + Sd, (6.35)

Stratot = ε1Strab1
+ ε2Sb2 + Sd, (6.36)

where ε1 and ε2 are the relative shot noise levels for each quadrature, and we define

Srefb1
= SrefF,b1

/SSQLF , Strab1
= StraF,b1

/SSQLF , (6.37)

Sb2 = SrefF,b2
/SSQLF = StraF,b2

/SSQLF , (6.38)

Sd = SrefF,d1
/SSQLF + SrefF,d2

/SSQLF = StraF,d1
/SSQLF + StraF,d2

/SSQLF . (6.39)

The calculated spectra according to Eqs. (6.35)-(6.39) are displayed in Fig. 6.3. For this plot,
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Figure 6.3.: Amplitude spectra of the amplitude and the phase fluctuations. The contribution

by the input amplitude fluctuation to the reflection is plotted as a red line. The

contribution by the input phase fluctuation and by the vacuum fluctuation from

the output port to the reflection is shown in blue and green lines, respectively.

The total sensitivity of the amplitude measurement of the reflection is plotted as a

black solid line. The input amplitude and the total amplitude of the transmission

are shown by red and black dotted lines, respectively.
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the vacuum fluctuation is assumed (ε1 = ε2 = 1), and we use parameters of λ = 1064 nm, L =
100mm,m = 10mg, κ/(2π) = 0.25MHz, κin/κ = 0.8,∆ = κ/

√
3, and P = 1W.The sensitivity

of the reflection is improved beyond unity in a particular frequency band. The improvement

in the sensitivity is caused by the cancellation of the amplitude fluctuation between the direct

reflection and the cavity leakage. The dip frequency of the sensitivity is

ωdip =

√
∆ι

(κ − 2κin)2 + ∆2
. (6.40)

Thus, the dip frequency is always higher than the resonant frequency of the optical spring. It

is a unique feature of this quantum noise cancellation.

6.3. Proof-of-principle experiment

We have proposed the quantum noise cancellation by measuring the reflected light from a

cavity. Furthermore, here we demonstrate it for the first time with our experimental setup.

6.3.1. Method

We can demonstrate the coherent cancellation analyzed in the previous section, while quantum

radiation pressure fluctuation does not dominate the other classical noises in our system. As an

imitation of the quantum noise, we injected an white noise to the input laser intensity through

the acousto-optic modulator as shown in Fig. 6.4. The white noise is enough large so that the

classical radiation pressure fluctuation drive the milligram-scale test mass dominantly. This

fact is confirmed by coherence measurements between the error signal and the intensity noise.

The intensity noise is evaluated by picking off a part of the laser beam just before the cavity.

The injected white noise is of the order of
√
ε1 ∼ O(103); the coherence is almost unity in the

measurement frequency region.

As we have seen in the previous section, by detuning the cavity, the optical spring effect

emerges, and the dip-shaped noise cancellation is supposed to be observed. Therefore, the

main cavity is feedback controlled at a blue-detuned point for this demonstration. To get the

error signal for the feedback control, we measure the reflected light amplitude with a photo

detector. The error signal is the subtraction between the signal from the photo detector and the

point we want to detune at. The error signal is filtered to get the feedback signal. The feedback

signal is sent to the coil-magnet actuators on the input mirror. The coil-magnet actuators apply

a force in the direction of the cavity axis to control the cavity length at the target detuning

point. In addition to the cavity length control, we stabilize the laser frequency to highlight
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Figure 6.4.: Experimental setup for the demonstration of quantum noise cancellation.

the classical radiation pressure fluctuation. The laser frequency stabilization system described

in Section 4.4.1 is operational for all the measurements. During the measurements. the air

pressure is kept about 100 Pa to suppress acoustic noises. On the other hand, the air pressure

is relatively high to introduce the residual gas damping to lock the main cavity at a detuned

point smoothly.

6.3.2. Result

We performed measurements with four different detuning points. For each measurement, we

estimate the detuning by monitoring the transmitted light. The proportion of the transmitted

light power to that of on resonance indicates the detuning. As the transmitted light power of

the resonance, we adopt the maximum output during the cavity scan. The uncertainties of the

detuning come from the residual fluctuations of the transmitted light power.

While the measurements, the input laser power is kept constant as Pin ' 4.7mW.The finesse

of the cavity is measured just before the measurement, which is F = (3.0 ± 0.3) × 103. The

resulting intracavity power is P ∼ 5 W.

The measured amplitude spectra and corresponding the open-loop transfer functions are

shown in Fig. 6.5. The dip-shaped enhancement of the sensitivity is clearly observed. For

each detuning point, we also measure the coherence between the intensity noise and the error

signal. Let us show the measured coherence with δ ∼ 0.90 in Fig. 6.6 as an example. For

each detuning, dips are observed in accordance with the dips in the amplitude spectra. It indi-
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δ ~ 2.0
δ ~ 1.4

δ ~ 0.90
δ ~ 0.46

Figure 6.5.: Demonstration of the dip-shaped spectra. At the upper panel, the amplitude spectra

are shown with the modeled fitting. They are normalized by the standard quan-

tum limit. The open-loop transfer functions are shown in the middle and bottom

panels. The measured values are plotted by blue lines and points. The modeled

curves are plotted by orange lines. The four measurements are conducted with

different detuning points. The estimated normalized detunings δ = ∆/κ for each

measurement are annotated besides the plotted lines.
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Figure 6.6.: Coherence between the injected intensity noise and the error signal.

cates that the injected intensity noise is dominating the noises as intended, and that around dip

frequencies, the coherence decreases because the intensity noise is cancelled.

6.3.3. Discussion

To confirm that the observed dips in the spectra are due to the noise cancellation depicted

in Section 6.2, we evaluated the frequency ratio between the dip frequency and the optical

spring. The non-unity value of the frequency ratio is a feature of the noise cancellation with the

reflection measurement. Moreover, the frequency ratio is a good indicator for characterization

of the system because it is free from uncertainties of the intracavity power.

The frequency ratios are plotted against the normalized detunings in Fig. 6.7. To evaluate

the uncertainties in the frequency ratios, let us discuss the uncertainty of the dip frequency.
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Figure 6.7.: Ratios between the optical spring frequencies and the dip frequencies. For each

of measurement, the frequency ratios are calculated. They are plotted with blue

points, whose colors correspond to the same colored spectra in Fig. 6.5. The red

line shows the modeled curve fitted to the measured data.
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Fluctuation in the dip frequency of the sensitivity

Here we discuss the uncertainness of the dip frequency in the measured spectra. The sensitivity

with the injection of the dominating white intensity noise is described as√
Srefb1

(
ωdip,m

)
∝

���ω2
dip,m

− ω2
���

ω2
dip,m

, (6.41)

when the detuning point is fixed ideally. ωdip,m is the measured dip frequency. In practice,

the detuning point fluctuates. As the result, the sensitivity dip gets thicker. We assume that

the fluctuation of the dip frequency follows an Gaussian distribution. Let us define the central

frequency to be ωdip,m and the standard deviation to be δω. The modeled curve of the dip is

described as √[
Srefb1

(
ωdip,m + δω

)
+ Srefb1

(
ωdip,m − δω

) ] /
2, (6.42)

which is the averaged spectrum of the two distributed spectra due to Gaussianity. We estimate

the dip frequency with the uncertainty by fitting with the above model. The fitting parameters

are ωdip,m, δω, and the overall factor. The dominant contribution to the uncertainty of the

frequency ratio comes from the uncertainty in the dip frequency.

To construct the practical fitting model for the frequency ratio, we need to discuss the effect

the mode mismatch between the cavity TEM00 mode and the input beam.

Effect of the mode mismatch

In this section, we discuss the effect of the mode mismatch. In actual experiment, the axis

of the input laser beam is not perfectly identical to the axis of the cavity. In our experiment,

the mode matching ratio is η = 92%. The mismatched light cannot enter into the cavity and

directly reflected on the input mirror. Thus, the mismatched light contributes as the sensing

noise whose spectrum has a dip at the resonant frequency of the optical spring. Hereafter, let

us consider the dip frequency of the sensitivity in case the effect of mode mismatch is included.

We describe the power of the TEM00 mode for the cavity as P00 = ηPin. The mismatched light

power is Pmm = (1− η)Pin. The amplitude fluctuation of the reflection for the TEM00 mode is

χrefξb1 b′1 =

√
κ2 + ∆2

(κ − 2κin)2 + ∆2

∆ι −
[
(κ − 2κin)2 + ∆2] ω2

M
b′1, (6.43)

where b′1 is the classical amplitude noise. The absolute value of it is in proportion to
√

P00.

The reflected field of the TEM00 mode is described by the input field |E00 |
(
∝
√

P00
)
as��Eref,00

�� = √
(κ − 2κin)2 + ∆2

κ2 + ∆2 |E00 | . (6.44)
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The fluctuation in the power of the reflected TEM00 mode is approximately calculated as

δPref,00 ∝
��Eref,00‖ χrefξb1

�� b′1 (6.45)

∝
∆ι −

[
(κ − 2κin)2 + ∆2] ω2

∆ι − (κ2 + ∆2)ω2 ηPin. (6.46)

Whereas, the fluctuation in the power of the mismatched light is not affected by the cavity

since the reflected light does not enter into the cavity;

δPmm ∝ (1 − η)Pin. (6.47)

Therefore, the total fluctuation in the reflection light power is δPref = δPref, 00+ δPmm, and the

dip frequency in the spectrum of δPref is calculated as

ωdip,m =

√
∆ι

κ2 + ∆2 − 4κin (κ − κin) η
. (6.48)

Mode mismatches give a smaller dip frequency than the perfect mode matching.

The fitted curve based on the above model is also plotted in Fig. 6.7. The fitting parameters

are mode matching ratio η and κin/κ. We confirm that the measured frequencies of the dips

and the optical springs are consistent to our theoretical model. By the fitting, η = 92% and

κin/κ = 0.81 are estimated.

6.4. Summary of this chapter
An optomechanical cavity is suitable for precise force measurements. Its sensitivity is funda-

mentally limited by the quantum noises. In this chapter, firstly, we theoretically show that the

force sensitivity of the test mass mirror that is trapped by the optical spring can be improved as

the dip by measuring the amplitude of the light reflected from the over coupled detuned cavity.

We use our experimental setup to demonstrate this quantum noise reduction technique. The

dip-shaped improvement in the sensitivity is observed with the injected laser intensity modula-

tion though the sensitivity is not limited by quantum noises. It is concluded that the amplitude

measurement of the reflection from an optomechanical cavity is a simple way to improve its

sensitivity even beyond the quantum limit.
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7. Prospects for observing quantum
radiation pressure fluctuation: the
torsional pendulum

In Chapter 5, we have validated the stable configuration of a suspended linear cavity. In Chap-

ter 6, we have demonstrated a quantum noise reduction technique with classical intensity noise.

For macroscopic quantum experiments, the sensitivity of the system should reach the quantum

radiation pressure noise. For example, the quantum noise reduction technique will be directly

proved with quantum noise when the sensitivity is limited by the quantum noise. However,

quantum radiation pressure fluctuation have not yet been observed over nanogram-scale op-

tomechanical systems. In this chapter, for observing quantum radiation pressure fluctuation,

we propose upgrading the simple pendulum to a torsional pendulum in our experimental setup.

7.1. Sensitivity with the simple pendulum

We evaluate the current sensitivity of our optomechanical system. The estimation reveals the

limitation of the setup. In this section, let us discuss the evaluation of the setup to find ways

to improve the optomechanical system.

7.1.1. Current sensitivity with the simple pendulum

The displacement spectrum of the simple pendulum is shown in Fig. 7.1. There is no noise

peak that was observed in the previous work of milligram-scale optomechanics done by [86].

Komori (2019) [86] analyzed that since they used a triangular cavity to avoid the Sidles-Sigg

instability, the thermal noise originating from the fixed mirror in the triangular cavity became

its peaks. Therefore, it is inferred that the sensitivity is improved thanks to using a linear cavity

in the frequency range of 300 Hz to 3 kHz.

The calibration of the measured signal to the displacement of the test mass mirror is shown

in Section 7.1.3. In Fig. 7.1, the estimation of quantum radiation pressure noise and possible
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Figure 7.1.: Displacement spectrum of the simple pendulum. In addition, the estimated quan-

tum radiation pressure noise is described. The estimated noises are also plotted.

noise sources that limit the current sensitivity are also plotted. For quantum radiation pressure

fluctuation, we discuss the estimation in the next section. The evaluations of noise sources are

described in Section 7.1.4.

7.1.2. Estimation of the quantum radiation pressure fluctuation

In this section, the detailed method to estimate the quantum radiation pressure fluctuation is

introduced. The theoretical description of the force spectrum of quantum radiation pressure

fluctuation can be rewritten with the cavity parameters by

Sf, qrp =
32~ω0F

2Pin

π2c2
κin
κ

1
(1 + δ2)2

, (7.1)
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where ω0 is the laser angular frequency, F is the finesse, Pin is the input power, κ is the

total cavity decay rate of photons, κin is the decay rate of photons from the input mirror, and

δ = ∆/κ is the normalized detuning. In general, laser power measurements tend to have a large

systematic error of about 5 %. This is because of the large errors in the responsibility of the

photo detector and the estimation of κin/κ. Furthermore, the input power is effectively reduced

when the mode matching is not perfect. Mode matching ratio on the cavity resonance also has

the systematic error because the alignment is slightly changed due to the constant radiation

pressure when the cavity accumulates the laser power.

To avoid these systematic errors, we use a method to estimate quantum radiation pressure

fluctuation by focusing on the optical spring frequency. The optical spring constant is given

by

Kopt =
16ω0F

2Pin

π2c2
κin
κ

δ

(1 + δ2)2
. (7.2)

Thus, by using the optical spring frequency ωopt/2π = Kopt/m, the force spectrum of quantum

radiation pressure fluctuation is simplified as

Sf, qrp =
2~
δ

mω2
opt, (7.3)

where m is the mass of the oscillator. The optical spring frequency can be estimated with

small systematic errors by measuring the open-loop transfer function of the cavity length con-

trol. Therefore, we use Eq. (7.3) to estimate the quantum radiation pressure fluctuation in our

experiment.

7.1.3. Calibration

The optomechanical system is feedback controlled to keep the resonance of the cavity. The

error signal is the signal we observe, and it includes information of the displacement of the

test mass mirror. In this section. we describe the calibration method from the signal to the test

mass mirror’s displacement.

The block diagram is useful to represent feedback controlled systems. In a block diagram,

each transfer function is represented as a block, and interactions between them are represented

by arrows. The basics of block diagram is introduced in Appendix A.

As for the cavity length, there are two feedback loops. One is the feedback loop of the optical

spring, and the other is the active-feedback loop that we introduce to control the cavity length.

We define the transfer functions as follows: Hpend is for the test mass mirror, Hopt is for the op-

tical spring, Hcav is for the cavity, HPD is for the photo detector, Hfilter is for the filter, Hact is for

the actuator attached on the controlled input mirror, and Hcon is for the controlled input mirror.
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HExternal
force cav

Hopt

Hpend HPD

HactHcon Hfilter

++ −

−

Figure 7.2.: Block diagram of the optomechanical system with the feedback controlling. 　　
　　　 For the cavity length, two loops should be considered. The optical spring

works as a feedback control as well as the active feedback control.

Our optomechanical system is represented by the block diagram shown in Fig. 7.2. The two

open-loop transfer functions are defined as G1 = HpendHopt and G2 = HcavHPDHfilterHactHcon,

respectively.

We calibrate the error signal in the unit of voltage to the displacement of the test mass

mirror. By the calculation based on the block diagram, the displacement of the cavity mirror

xdis is expressed by

xdis =
����1 + G0

G0
HfilterHactHcon

����Verror, (7.4)

where we define G0 = G2/(1 + G1). The transfer function of the filter is measured indepen-

dently, and the actuator efficiency is measured in advance with the Michelson interferometer

as mentioned in Section 4.2.2. The transfer function (susceptibility) of the controlled input

mirror is determined by the mass. To measure the open-loop transfer functions, we inject sine

waves of various frequencies into the cavity length control loop after the filter. By taking the

ratio of the signals before and after the injected point, the open-loop transfer function G0 can

be measured. Therefore, the calibration of Eq. (7.4) is completed.

We note that the optical spring frequency is also determined by the open-loop transfer func-

tion measurement. The resonance observed in the open-loop transfer function corresponds to

the optical spring frequency since it is in proportion to

G0 ∝
1

ω2
opt − ω

2 , (7.5)

where the cavity mirrors are in the free-mass regime.
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7.1.4. Noise analysis

As we have seen in Fig. 7.1, quantum radiation pressure fluctuation is covered with other

classical noises. We evaluate possible noises in the followings.

Thermal noises of the test mass mirror

From the frequency of the peak, we conjecture that the thermal noise of the pitch mode and

bounce mode in the test mass mirror contributes. The material properties indicate that the

bounce mode and the pitch mode should be at 300 Hz and 30 Hz, respectively. In particular,

the thermal noise of the pitch mode is dominant in the low frequency region.

Residual gas thermal noise

The residual gas thermal noise is calculated with the measured pressure of 9.8 × 10−5 Pa. As

Fig. 7.1 shows, the residual gas thermal noise is slightly above the quantum radiation pressure

noise. The pressure satisfies the requirement for the design sensitivity. By increasing the input

laser power, the quantum radiation pressure can be enhanced to stand out.

Laser frequency noise

The measured frequency noise is above the design value by a factor of 10 in 100 Hz band. This

is because the open-loop gain of the feedback control is not enough at the high frequency range.

An open-loop gain of 100 is expected for the design sensitivity. However, the oscillation of

the feedback control loop limits the gain.

Seismic noise

We assume the vibration isolation by the factor of 1/ f 4 since the system is on the double

suspension. The seismic noise in the experimental space is measured with a geophone, and

estimate the contribution to the test mass mirror. The result infers that the seismic noise is not

limit the current sensitivity.

Not identified noise

In 100 Hz range, there is a noise that has a dependency of 1/ f 2. Because of the dependency,

it has the possibility of thermal noise in viscous-damping model. If the pitch thermal noise

follows the viscous-damping model, the observed noise level can be explained. As a candidate,

the thermal noise in the pitch mode that originates from the adhesive at the wire-to-mirror
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connection can follow the viscous-damping model. However, it is not able to identify the

noise source so far.

7.2. Upgrading with the torsional pendulum

The noise analytics gives us a possible solution for the better sensitivity, which is a torsional

pendulum. In this section, we discuss the possibility of upgrading our optomechanical system

with a torsional pendulum.

7.2.1. Idea of using a torsional pendulum

The pioneering work of an optomechanical torsional pendulum was done by Komori et al. in

2019 [73]. They used a thin fused silica plate as the test mass, and the silica plate was suspended

as a torsional pendulum. By constructing triangular cavities on both edges of the pendulum,

they realized an optomechanical torsional pendulum. We perceive that the combination of the

idea and our linear cavity can build a more sensitive system. In the following section, firstly,

we introduce the advantages of a torsional pendulum as an optomechanical oscillator.

7.2.2. Advantages of an optomechanical torsional pendulum

The key advantages of a torsional pendulum as an optomechanical oscillator is its low noises.

The thermal noise is low because of its low resonant frequency, and some classical common

noises are suppressed due to the common mode rejection.

Low thermal noise

The thermal noise of the pendulum is in proportion to
√
ωmφ, where ωm is the resonant fre-

quency of the pendulum and φ (1/Q) is the loss angle. In general, although a torsional pen-

dulum has larger loss angle than a simple pendulum, the resonant frequency of the torsional

pendulum can be lower than that of the simple pendulum. The resonant frequency of a typical

simple pendulum is a few Hz, and its Q value is on the order of 105 at best. On the other hand,

although theQ value of an torsional pendulum is on the order of 103, the resonant frequency can

be below 0.1 Hz. Therefore, the resulting thermal noise can be lower in the torsional pendulum

than the simple pendulum because the resonant frequency has the second order dependency.

The low thermal noise is a characteristic advantage of a torsional pendulum.
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3 mm

200 mm

Figure 7.3.: Schematic drawing of the torsional pendulum. The both edges have the 8-mg

mirrors to construct the linear cavities. The two mirrors are connected to each

other by a glass pipe, forming the torsional pendulum.

Common mode rejection

For an optomechanical torsional pendulum, the angle is read out bymeasuring the displacement

of both the arm. Since the differential signal of the two cavities is measured to sense the

rotational motion of the torsional pendulum, noises that contribute equally to both cavities

are cancelled. This common mode rejection is an advantage of an optomechanical torsional

pendulum. For example, the frequency noise and the pitch thermal noise will be commonmode

noises by using a common laser source for the cavities.

7.2.3. Design sensitivity with the torsional pendulum

The torsional pendulum is designed to be compatible with the linear cavity composed of the

simple pendulum as shown in Fig. 7.3. For a torsional pendulum, we measure the rotational

motion of it. The linear cavities on the edges of the torsional pendulum sense the rotation of the

pendulum by subtracting the signals of the cavities. The design sensitivity with the torsional

pendulum is shown in Fig. 7.4. The parameters for the design are listed in Table 7.1. Quantum

radiation pressure fluctuation can be observed wider range of the frequencies with better signal

to noise ratio than the simple pendulum. We have notes for the following two types of noise.
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Figure 7.4.: Design sensitivity with the torsional pendulum.

Noises that contribute to both cavities independently

When a noise contributes to both cavities independently, the resulting sensitivity will be im-

proved by the factor of 1/
√

2 due to the subtraction of the signals from the two cavities. The

noises are, for example, the mirror substrate thermal noise, mirror coating thermal noise.

Noises that is suppressed by the common mode rejection

Noises that contribute to both cavities identically are cancelled by the subtraction. In reality, it

is not exactly identical, thus the noises are reduced by a certain factor. The reducing factor due

to the common mode rejection is called common mode rejection ratio. The typical value of

the common mode rejection ratio is 10 to 100. Here, we assume the common mode rejection

ratio γCMRR is 10. Therefore, we can relax our requirement of the frequency noise by the

factor of 10. As the result, our current reference cavity can be for the upgrading. The pitch

mode thermal noise will be the common mode noise. Furthermore, the suspension point of the

torsional pendulum is lower than the simple pendulum. Thus, we assume that the pitch thermal

noise can be reduced by the factor of 10.
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Figure 7.5.: Pictures of the torsional pendulum.

7.3. Towards experimental realization

We have seen the promise of the optomechanical torsional pendulum with linear cavities. The

decisive difference from the current setup is the torsional pendulum itself. Therefore, the de-

velopment of the torsional pendulum is of paramount.

7.3.1. Development of the torsional pendulum

As the final part of the dissertation, we introduce the development of the torsional pendulum.

To make the torsional pendulum as designed, we use two 8-mg mirrors that is identical to the

simple pendulum. For the glass pipe to connect the two mirrors, a 20 mm long glass pipe made

by Nakahara Opto-Electronics Laboratories Inc. is selected. The outer diameter is 0.7 mm,

and the inner diameter is 0.6 mm. The thickness is chosen to be the thinnest to reduce the mass

of the torsional pendulum, while allowing it to be handled without breaking.

The epoxy resin is used for connecting the 8-mg mirrors and the glass pipe. The epoxy

resin is grouped in chemical reaction harden type. In making the optomechanical pendulum,

we have to be careful with the frosting with the resin due the volatilization of solvents. The

epoxy is an adhesive that cures without frosting because the hardening process is chemical

reactions without volatilization. The epoxy resin is advantageous also because of its small

volume change and its strength. The pictures of the torsional pendulum that is successfully

made with the 8-mg mirrors and the glass pipe are shown in Fig. 7.5.
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7.4. Summary of this chapter
We evaluate the current sensitivity with our setup and examine the noise sources. The re-

sults infer that the issues will be able to be solved by upgrading the pendulum to the torsional

pendulum. We redesign our system with the newly designed torsional pendulum and show

the sensitivity. Furthermore, we develop the torsional pendulum. The development is a cru-

cial step towards observing quantum radiation pressure with a milligram-scale optomechanical

system.
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Table 7.1.: Parameters for the design sensitivity towards observation of the quantum radiation

pressure fluctuation with the torsional pendulum.

Test mass mirror

mass 8 mg

diameter 3 mm

radius of curvature 100 mm

reflectivity 99.99%

Rotational Q value 2 × 103

Pendulum Q value 105

beam radius 0.21 mm

Young’s modulus substrate 73 GPa

SiO2 73 GPa

TiO2:Ta2O5 140 GPa

Poisson ratio substrate 0.17

SiO2 0.17

TiO2:Ta2O5 0.28

loss angle substrate 1 × 10−5

SiO2 1 × 10−4

TiO2:Ta2O5 4 × 10−4

refractive index substrate 1.45

SiO2 1.45

TiO2:Ta2O5 2.07

Torsional bar length 20 mm

Input mirror

mass 60 g

radius of curvature 100 mm

reflectivity 99.9%

Cavity

cavity length 110 mm

finesse 5000

intracavity power 14 W

Common mode rejection ratio 10

Laser

wavelength 1064 nm

input power 10 mW

frequency noise 100 Hz/ f Hz/
√

Hz

temperature 300 K

air pressure 10−4 Pa
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8.1. Summary

Milligram-scale optomechanical systems offer an unique way to elucidate macroscopic quan-

tum phenomena, which have been never observed. It is not clear that quantum mechanics is

valid for all the mass scale and how to incorporate the gravitational effect. While theoretical

approaches have been made for a long time, recent progress in experimental techniques gives

a fare opportunity of realizing macroscopic quantum systems to test them. Milligram-scale

optomechanical systems are the representative candidates for the realization of macroscopic

quantum systems. The mass of the oscillator is much heavier than the system where quantum

phenomena have been observed. At the same time, milligram-scale optomechanical systems

have a potential to reach quantum regime. Here, we adopt quantum radiation pressure fluctu-

ation as a criteria of reaching the quantum regime.

On the other hand, milligram-scale optomechanical systems are suitable for the platform to

test advanced technologies in gravitational wave detectors. The sensitivity of the modern and

future gravitational wave detectors are limited by quantum noise. Quantum noise is a funda-

mental noise, and it can not be reduced by classical manipulations. Therefore, the advanced

techniques to reduce quantum noise is central issue. While various theoretical proposals were

made, a number of them have yet to be demonstrated experimentally. Modern gravitational

wave detectors are in the large scale projects, and validating of the advanced techniques be-

fore the actual installation is important. Thus, milligram-scale optomechanical systems can be

used as preferable research platform.

For mechanical oscillators, pendulums are often used in milligram-scale optomechanical

systems. Pendulums are robust against environmental noises. The sensitivity is further en-

hanced by coupling a strong optical field to the pendulum. To do this, optical cavities are

usually used with a suspended mirror as the pendulum. However, the strong radiation pres-

sure inside a cavity can destabilize the rotational degrees of freedom for cavity mirrors. In

particular, either of rotational degrees of freedom is unstable in linear cavities. This instability,

called Sidles-Sigg instability, limits the maximum power that the cavity can accumulate. Con-

sequently, it limits the sensitivity of the optomechanical system. Although, more complicated
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systems such as triangular cavities can avoid Sidles-Sigg instability, they are disadvantageous

in that they have to be coupled more to the environmental disturbance. Thus, a stable sus-

pended linear cavity has been desired.

In the dissertation, we identify the stable configuration of a suspended linear cavity. When

a linear cavity is built with unbalanced-mass mirrors and in the negative-g regime, the rota-

tional degrees of freedom will not be unstable. This is because the common mode, which is

destabilized by radiation pressure in the negative-g regime is mechanically stiff due to the un-

balanced masses. Furthermore, the differential mode is even stabilized with the increase in the

intracavity power. This effect is named optical torsional spring. We find that with this system,

the limitation by Sidles-Sigg instability can be removed, and the sensitivity will be optimum.

We realize a suspended linear cavity with 8 mg test mass mirror with the configuration. The

sensitivity is designed to reach quantum radiation pressure fluctuation for macroscopic quan-

tum experiments by utilizing the light mass of the mirror. The mass of 8 mg is the smallest

for a suspended mirror with curvature. As the validation of our trapping scheme, the rota-

tional stiffness of the cavity mirrors is evaluated with variable intracavity powers. The results

indicate that the optical torsional spring works as the theoretical prediction without inconsis-

tency. Therefore, we conclude that the proposed configuration for a suspended linear cavity is

established.

With the optomechanical system, we demonstrate a quantum noise reduction technique. It

shows the usefulness of milligram-scale optomechanical systems. We inject classical intensity

noise, which imitates quantum noise. The coherent cancellation in the noise is clearly observed,

and we characterize the behavior of the dip-shaped reduction to confirm the theoretical model.

This is the first demonstration of the technique.

We analyze the noise sources for the current setup to search for upgrading of the system.

Replacing the simple pendulum with a torsional pendulum is our upgrade plan, and the advan-

tages and the expected sensitivity are discussed. The advantages for torsional pendulums are

its low thermal noise and the commonmode rejection. To realize the upgrade, the development

of the torsional pendulum is crucial. We report the success of making the pendulum as the last

part of the dissertation.

Through the experiments with the suspended linear cavity, we validate the identified con-

figuration and present the benefit of milligram-scale optomechanical systems.

8.2. Future prospects

The final goal of this research is observing quantum radiation pressure fluctuation for macro-

scopic quantum experiments. Towards the goal, we show the feasibility of the upgrade with
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the torsional pendulum. Consequently, the realization of the optomechanical system with the

developed torsional pendulum is the future prospect.

The suspension system for the test mass need not to be changed. On the other hand, the

suspension system for the controlled input mirror should be revised to inject two input laser

beams for both arms. Accordingly, the input optics have to be modified.

The simultaneous locking of the cavities is expected to be technically difficult. However, the

previous work [73] succeeded in the simultaneous locking with an optomechanical torsional

pendulum of the milligram scale.

Although the technical difficulties remain, the stability of the key role is elucidated in the

dissertation. Therefore, it is inferred that the path of the realization is well set.

8.3. Conclusion
This work establishes a class of milligram-scale optomechanical systems, which is a suspended

linear cavity. The cavity mirrors are trapped with the optical torsional spring effect. Therefore,

the sensitivity can be optimized in a linear cavity, which is suitable to precise measurements.

Thus, this work has expanded the use of linear cavities. At the same time, it has paved the

way for realization of macroscopic quantum experiments, and, ultimately, the elucidation of

the fundamental problems in physics.
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In this work, we make use of feedback controls. In this chapter, we review the basics of

classical feedback-control theory.

A.1. Linear system

A.1.1. Definition

Let us consider a system with an input xi(t) and an output yi(t) as follows:

xi(t) → yi(t). (A.1)

When this input-output relation is linear, i.e., for any constants a and b,

ax1(t) + bx2(t) → ay1(t) + by2(t), (A.2)

then the system is a linear system. For example, a system consisting of operators as constant

multiplication, differentiation, and integration on the input is a linear system.

A.1.2. Transfer function

In a linear system with an input xi(t) and an output yi(t), by considering the Laplace transform:

X(s) =
∫ t

0
x(t)e−st dt, (A.3)

the input-output relationship of this system can be expressed with the following form:

Y (s) = H(s)X(s). (A.4)

H(s) is called the transfer function of this linear system.

A.1.3. Block diagram

Linear systems are often represented using a diagram called block diagram. In a block diagram,

the transfer function is drawn as a block, and the inputs and outputs are represented by lines

with arrows, as shown in Fig. A.1.

91



A. Classical feedback-control theory

HX(s) Y(s)

Figure A.1.: Block diagram of a linear system.

Hx x0 verr

FA

vfb

++
−

Figure A.2.: Block diagram representing the feedback control system.

A.2. Feedback control
Let us consider feedback control by a linear system. Specifically, we consider the system

shown in Fig. A.2, which consists of sensor S, filter F, and actuator A. Although the specific
form of each transfer function is not assumed here, in general, the physical quantity x to be

controlled is detected by the sensor, and the signal passes through the filter that characterizes

the control. The filtered signal is fed back by the actuator. By this feedback control, the original

variation x0 is suppressed to the residual variation x. The signal verr = Hx is called the error
signal. The signal vfb = FHx returned to the actuator is called the feedback signal.
The block diagram is used to calculate the residual variation x. It shows

x = x0 − AFHx, (A.5)

and, therefore, x is expressed by

x =
1

1 + G
x0, (A.6)

where the open-loop transfer function of the feedback loop is defined byG = AFH. Bymaking

the open-loop gain |G | sufficiently large, the residual variation can be suppressed.

One of the criteria to judge whether a feedback control is stable or not is the Nyquist stability

criterion. According to the Nyquist criterion, a feedback control is stable when the phase
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Hx x0

sin

s1

FA
s2

+

++
−

Figure A.3.: Measurement of the open-loop transfer function.

margin is greater than zero [93]. The phase margin is defined by the phase difference of arg G
from −180 degrees at the frequency where the gain of the open loop transfer function becomes
unity, i.e., |G| = 1. The frequency of the unity gain is often called the unity gain frequency

(UGF).

A.3. Measuring the open-loop transfer function
One way to measure the open-loop transfer function is to inject a reference signal into the

feedback loop and measure the ratio of the signals before and after the injected point. Let us

consider a feedback loop consisting of a sensor S, a filter F, and an actuator A as shown in

Fig. A.3. A reference signal sin is injected between the filter and the actuator. Actually, the
identical open-loop transfer function can be obtained wherever the reference signal is injected

in the loop.

During the injection, the signal in the loop x will be

x = x0 − A (FHx + sin) . (A.7)

Therefore, the signals before and after the injected point are described by

s1 =
FHx0 − Gsin

1 + G
, (A.8)

s2 =
FHx0 + sin

1 + G
. (A.9)
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If the injected signal is large enough as sin � FHx0, the ratio of them will be

s1
s2
=

FHx0 − Gsin
FHx0 + sin

' −G. (A.10)

It shows that the open-loop transfer function G is measured by taking the ratio of the signals

before and after the injected point.
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