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The following is a partial list of the symbols used in this paper.

c = the speed of light in vacuum

i =
√−1

L = the length of a linear optical cavity

l = the length between the beam splitter and the mirror

ν, Ω = the frequency and the angular frequency of the light, respectively

(typically on the order of 1014 Hz)

f , ω = the frequency and the angular frequency of the audio sidebands,

respectively (also used for the RF sidebands)

φ, Φ, θ, Θ, ψ, Ψ = the phase

Tilde is used to represent either the Fourier transform or the power-spectral-density

(PSD) of a time-domain function.
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1. Introduction

Gravitational waves are the wave solutions of Einstein’s equations under the weak

gravitational field. In the long term study of a binary pulsar system which Hulse

and Taylor have discovered in 1975 [1], the orbital decay of the binary system has been

observed, which has been proved to be in excellent agreement with the general relativis-

tic prediction for the energy losses originating due to the radiation of the gravitational

wave [2–5]. The energy carried by gravitational waves is so small that they become

detectable only if generated by the large acceleration of the compact objects with the

huge masses which can only be observed in astronomical phenomena; the coalescence

of various types of binary systems, the asymmetric bursts from supernovae, the pulsars

with high eccentricity, and so on. If the waveform of the gravitational waves from such

objects are measured, we can not only verify the validity of general relativity but also

extract information about the source which is complementary to the knowledge from

the optical and radio measurements (see Ref. 6 and references therein). Therefore,

though the gravitational wave has not been detected directly so far, it is important to

develop the gravitational wave detectors which can be used as the new device for the

astronomy.

In the pursuit of the detection of gravitational waves, several kinds of detectors

have been studied and developed. Among them, the idea to use a Michelson laser

interferometer as the gravitational wave detector originated in 1970’s [7, 8]. The wide-

band nature of the Michelson interferometer makes it suitable for the extraction of the

waveform. The laser technology of today allows us to realize extremely sensitive strain

meters by using laser interferometry. In fact, it is believed that the “real” detectors are

within the reach of the modern optical and mechanical technologies at present. Several

interferometers for gravitational-wave detection are now under construction around the

1



1. Introduction

Group Site Scale Type

LIGO (USA) Washington, Louisiana 4 km Power-recycled Fabry-Perot

VIRGO (Italy, France) Pisa 3 km Power-recycled Fabry-Perot

GEO (Germany, UK) Hanover 600m Dual-recycled Michelson

TAMA (Japan) Tokyo 300m Power-recycled Fabry-Perot

Table 1.1: Brief summary of the interferometric gravitational wave detectors which

are now being built. The interferometer “types” are described in Chap. 4.

Sources Wave form Amplitude Frequency (Hz)

NS-NS coalescence (200Mpc) Chirp 10−22 ∼ 10−21 10∼1000

BH-BH coalescence (200Mpc) Chirp 10−21 10∼1000

SN explosion (15Mpc) Burst 10−21 <1000

SN explosion (Our Galaxy) Burst 10−19 <1000

Pulsar (1 kpc) Continuous 10−25 1∼500

BH-MACHO coalescence (20Mpc) Chirp 10−21 10∼100

Table 1.2: The possible high-frequency sources of the gravitational waves [6, 15].

world, which are summarized in Table 1.1 briefly [9 – 14]. Because there is a limitation

on the scale of the ground-based system, these detectors will have optimal sensitivity

at relatively high frequency like 100Hz. In fact all of these detectors will aim at the

sources in the frequency range from 10 to 1000Hz, approximately.

Table 1.2 shows the possible “high-frequency” gravitational wave sources and their

expected wave amplitude [6, 15]. The amplitude of the gravitational wave is repre-

sented by the dimension-less parameter h, which is a strain of the metric of space-time.

Because of the extremely small amplitude as shown in Table 1.2, the interferometric

detector has to be free from any noise sources; thermally– and seismically–excited vi-

bration of the mirrors of the interferometer, noise of the readout and control electronics,

noise of the laser source such as amplitude– and phase–fluctuation etc.

Michelson-based interferometers have a great property of being insensitive to the

common-mode noise to their two orthogonal optical paths (often called “arms”), es-

2



pecially to the phase noise (or frequency noise) of the laser source1. However, any

asymmetry in the real interferometer will make it sensitive to common-mode noise,

therefore it is really important to stabilize the frequency of the laser. The sensitiv-

ity of the interferometer to common-mode noise is expressed by the parameter called

Common-Mode-Rejection Ratio (CMRR). CMRR is a function of asymmetry of the

interferometer. Any asymmetry in the system, introduced intentionally or not, will

make CMRR worse; on-axis, non-geometrical asymmetry such as difference of the re-

flectance of the mirrors in the two arms, geometrical asymmetry such as misalignment

of the mirrors, and the asymmetry of the control system, for example. Because the

requirement for the frequency stabilization of the laser, which depends upon the aimed

strain sensitivity and CMRR, is crucial, it is necessary to study the relation between

the CMRR and many asymmetries in the interferometer, and to investigate the real-

istic value of CMRR that is feasible using the current technology, theoretically and

experimentally.

For this purpose, a 3m Fabry-Perot-Michelson (FPM) interferometer was built in

the campus of The University of Tokyo. The optical components of the interferometer

are suspended independently as in the real interferometric detectors. All of the major

noise sources have been identified, and the displacement noise level of the interferome-

ter reached 2×10−17 m/
√

Hz at 1 kHz and 1×10−17 m/
√

Hz at the noise floor between

2 kHz and 10 kHz. The floor noise was identified as the shot noise of the light. This

was the first demonstration of the all-suspended FPM interferometer [16]. The basic

parameters such as the reflectance of the mirrors, finesse of the cavities and so on were

measured to estimate the non-geometrical asymmetry. The CMRR of the interferom-

eter was demonstrated to be 1/300 at its best, and the consistency of this value with

the measured asymmetry of the interferometer was verified. Also the relation between

CMRR and the misalignment of the mirrors was demonstrated.

In this paper, some basics about the gravitational wave and the interferometry are

calculated in Chap. 2-6. Because it is necessary to analyze the off-axis asymmetry, the

mode-picture is presented in Chap. 5. Using the calculations in the preceding chap-

ters, CMRR of the FPM interferometer is studied in detail in Chap. 7. In Chap. 8,

1See Chap. 2 and 3.
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1. Introduction

the development of the 3-m FPM is described. The control scheme, noise analysis,

frequency-stabilization and CMRR analysis, and the demonstrated displacement sen-

sitivity of the interferometer will be discussed. Also some discussions on the full-scale

interferometers will be presented in this paper.

4



2. Gravitational Radiation

In this chapter, the Greek subscripts and superscripts (α, β, µ, etc.) represent the

space-time coordinates, i.e. 0 · · · 3, while the Latin (i, j, etc.) represent the space-

coordinates only. Time coordinate x0 is defined by x0 = c t, where c is the speed of

light.

2.1 Linearized Theory

When the gravitational field is weak1, the geometry is represented by the sum of the

metric of the background Minkowski space-time and the small perturbation hµν ;

gµν = ηµν + hµν (2.1)

ηαβ ≡




−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




(2.2)

|hµν | ¿ 1. (2.3)

The Riemann tensor, the Ricci tensor, and the Riemann curvature of the space-time

can be expanded to the first order of hµν as

Rαβµν =
1

2
(hαν,βµ + hβµ,αν − hαµ,βν − hβν,αµ) (2.4)

Rµν = Rα
µαν (2.5)

R = Rα
α. (2.6)

The trace reverse tensor of hµν , which is represented by h̄µν , is defined as

h̄µν ≡ hµν − 1

2
ηµνh (2.7)

1See textbooks and reviews such as references [17– 21] for a fuller discussion.
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2. Gravitational Radiation

h ≡ hµ
µ (2.8)

or,

hαβ ≡ h̄αβ − 1

2
ηαβh̄ (2.9)

h̄ ≡ h̄µ
µ. (2.10)

The Einstein tensor is written as

Gαβ ≡ Rαβ − 1

2
gαβR

= −1

2

(
h̄αβ,µ

,µ + ηαβh̄µν
,µν − h̄αµ,β

,µ − h̄βµ,α
,µ

)
. (2.11)

To simplify the above equation, we require the Lorentz gauge condition

h̄µν
,ν = 0. (2.12)

In this gauge, the expression for the Einstein tensor is simplified considerably as

Gαβ = −1

2
h̄αβ,µ

,µ

= −1

2
2h̄αβ (2.13)

where the symbol 2 represents the D’Alembertian operator

2 = − ∂2

c2∂t2
+4 . (2.14)

Thus the Einstein equations of the fields take the simple form in the Lorentz gauge:

2h̄µν = −16πG

c4
Tµν (2.15)

where G is the gravitational constant.

2.2 Gravitational Wave

In vacuum, the weak field Einstein equations reduce to the wave equations,

2h̄µν = 0. (2.16)

6



2.2. Gravitational Wave

Any solutions to these equations are expressed as the linear combinations of the plane-

wave solutions;

h̄αβ = Aαβ exp(ikµx
µ), (2.17)

where the wave number and the amplitude must satisfy the equations

kαkα = 0 (2.18)

Aαβkβ = 0. (2.19)

Equation 2.19 is derived from the Lorentz gauge condition.

We can use another gauge freedom to impose the conditions,

Aα
α = 0 (2.20)

AαβUβ = 0, (2.21)

where Uβ is an arbitrary time-like unit vector. The above conditions are called the

transverse-traceless (TT) gauge conditions. In the TT gauge, the trace reverse tensor

h̄µν is equal to the perturbation of metric tensor hµν because the trace is equal to zero

(h̄µ
µ = hµ

µ = 0);

h̄αβ = hαβ. (2.22)

We choose Uβ as the time-basis of the background Minkowski space-time. When the

space part of the wave number vector ki is parallel to the z axis (the wave is propagating

parallel to the z axis), the perturbation tensor is represented by

hαβ = Aαβ exp iω(t− z) (2.23)

Aαβ =




0 0 0 0

0 A+ A× 0

0 A× −A+ 0

0 0 0 0




, (2.24)

where ω is the angular frequency of the gravitational wave. There are two degrees of

freedom, A+ and A×. When A× is equal to zero, the wave is called plus-polarized,

while the wave with A+ = 0 is called cross-polarized in this coordinate system.

Two gravitational waves, which are represented by hµν and h′µν and are propagating

together, have orthogonal polarization to each other if the metric perturbation satisfies

7



2. Gravitational Radiation

the following equation:

h∗µνh
′µν = 0 (2.25)

where h∗ indicates the complex conjugate of h. If the ratio of A+ and A× is real,

hµν(t, z) is orthogonalized in a new coordinate system (t, x′, y′, z) by a simple space-part

rotation with the z axis as the center of rotation. Such kind of waves are called linearly

polarized. Plus- and cross-polarized waves are examples of the linearly polarized waves

which are orthogonal to each other. On the other hand, if A+ and A× satisfy the

equation

A+ = ±iA×, (2.26)

the wave is called circularly polarized. It is easy to show that circularly polarized waves

with opposite signs (A+ = iA× and A+ = −iA×) are orthogonal to each other. It is

impossible to orthogonalize hµν(t, z) by a simple space rotation. In general, however, it

is still possible to find a new coordinate system [t, x′(t, z), y′(t, z), z] in which hµν(t, z)

is orthogonalized at specific values t and z, by a simple space rotation with the z axis

as the center of rotation. A set of new axes x′(t, z) and y′(t, z) for all values of t and z

form two surfaces which we call “polarization surfaces” in this paper. In the linearly

polarized wave, the polarization surfaces are the two planes which are orthogonal to

each other, and we call these the “polarization planes”. The polarization planes for the

plus- and cross-polarization form an angle of π/4. In the circularly polarized wave, the

surfaces are two helicoidal surfaces that are propagating along the z axis with the wave.

The period of the helicoid is equal to that of the gravitational wave. The polarization

surface of the two orthogonal circularly polarized waves have the same period, but the

rotation directions of the helicoids are opposite (Fig. 2.1).

A more general expression for the wave which is propagating along the z axis is

hαβ(t, z) =




0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0




. (2.27)

Fourier-transform of the wave represented by h̃s (s = +,×) is defined as

hs(t− z) =
∫

h̃s(ω)eiω(t−z)dω (s = +,×) (2.28)

8



2.2. Gravitational Wave

x


y


z


Figure 2.1: Three-dimensional plot of the “polarization surface” for the linear po-

larization (left two) and the circular polarization (right two) of the gravitational

wave. For the linearly polarized wave, the surfaces are the two orthogonal planes

in which the propagation vector lies. For the circularly polarized wave, the surfaces

are the two helicoidal surfaces which propagates together with the wave.
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2. Gravitational Radiation

where ω is the angular frequency of the wave.

2.3 Free Particle in the Field of the Gravitational

Wave

A “free particle” is a particle free from any forces except for the gravity. Its world-line

is determined by the equation of the geodesic,

d

dτ
Uα + Γα

µνU
µUν = 0, (2.29)

where τ and Uα represent the proper time and the four-vector of the particle, and

Γα
µν represents the Christoffel symbols. We will neglect the gravitational field which

is generated by the particle itself, therefore the particle can be used as a probe of the

gravitational field. In this sense, the particle is often referred to as the “test” mass.

Suppose that a test mass is in the field of the gravitational wave that is represented

by Eqs. 2.27 and 2.28. For simplicity we assume that there is only a “plus” polarization

of the gravitational wave field and h× = 0. Since all of the time-time and time-space

components of the metric perturbation h0β in this field are equal to zero, all of Γ‘µ00

vanish:

Γµ
00 =

1

2
ηµβ(hβ0,0 + h0β,0 − h00,β) = 0. (2.30)

Thus it is apparent that the time-basis vector

{Uα} = (1, 0, 0, 0) (2.31)

satisfies Eq. 2.29. Therefore we can say that a test mass which is initially at rest in the

TT coordinate system will be at rest even in the gravitational waves. However, this

does not mean that the gravitational wave has no effect on the free particles, because

the coordinate itself has no physical meaning. The physical effect of the gravitational

wave on the free particles is calculated below.

Suppose that there are two test masses, one at the origin and the other at

r0(cos φ, sin φ, 0) ≡ r0(nx, ny, nz) (2.32)

10



2.3. Free Particle in the Field of the Gravitational Wave

in the TT coordinate, where ni is the constant unit three-vector in the xy plane and

r0 is the distance between the two particles when the space-time is flat. A photon is

emitted from the test mass at the origin at the coordinate time t0. When the photon

reaches the other test mass at the coordinate time t1, it is reflected and returns back

to the origin at the coordinate time t2. The round-trip time of the photon is defined

by the difference of the coordinate time, ∆t = t2 − t0. Since the test mass is at rest at

the origin in this coordinate system, ∆t is interpreted as the proper time between the

emission and the capture of the photon.

When there is no gravitational radiation, it is apparent that ∆t is equal to 2r0/c.

We define any deviation of ∆t from 2r0/c as δt:

δt ≡ ∆t− 2r0/c = O(h). (2.33)

where O(h) indicates the first or higher order term(s) of h. Also, the coordinate time

t0 and t1 are represented by

t0 = t2 − 2r0/c + O(h) (2.34)

t1 = t2 − r0/c + O(h). (2.35)

The world line of the photon is parametrized by the coordinate time t. The trajectory

of the photon is described as

xi(t) = nir(t), (2.36)

where r = (xix
i)1/2 is the radial coordinate in TT coordinate system2. Under the field

of the gravitational wave, r(t) is given by

r(t) =





c (t− t0) + O(h) (t < t1)

c (t2 − t) + O(h) (t > t1)
, (2.37)

where O(h) expresses the first or higher terms of h. The line element along the world

line of the photon is calculated as

ds2 = −c2dt2 + (1 + h+(t, 0) cos 2φ) dr2 = 0, (2.38)

2A deviation (if any) of the first order of the gravitational wave field h from Eq. 2.36 produces a

second order perturbation in the line element. Therefore such a deviation can be neglected within the

first order approximation.
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2. Gravitational Radiation

therefore

|dr| '
(
1− 1

2
h+(t, 0) cos 2φ

)
c dt. (2.39)

Integrating the above equation along the world line of the photon, we obtain the

expression

2r0 =
[∫ t1

t0
+

∫ t2

t1

] [
1− 1

2
cos 2φh+(t, 0)

]
c dt

= c ∆t− 1

2
cos 2φ

∫ t2

t0
h+(t, 0)c dt (2.40)

thus the expression for δt is written as

δt =
1

2
cos 2φ

∫ t2

t0
h+(t, 0)dt. (2.41)

By using Eqs. 2.34 and 2.41, δt is written as

δt =
1

2
cos 2φ

∫ t2

t2−2r0/c+O(h)
h+(t, 0)dt. (2.42)

The first order term of h which is represented by O(h) in the above equation produce

the second order perturbations in δt, thus can be neglected within the first order

approximation:

δt =
1

2
cos 2φ

∫ t2

t2−2r0/c
h+(t, 0)dt

= cos 2φ
∫ ∞

−∞
h̃+(ω)eiω(t2−r0/c) sin(ωr0/c)

ω
dω . (2.43)

One can see that the round-trip time of the photon has a small modulation which

is proportional to the amplitude of the gravitational wave. This can be interpreted in

two ways: The speed of light (or the absolute refractive index of vacuum) is constant

and the distance between the masses changes, or the distance is constant and the speed

of light changes3. For the plus-polarized wave with the frequency fixed, the amplitude

of the modulation is maximized with the opposite signs on the xz and the yz planes;

φ =





nπ

(2n + 1)π/2
(2.44)

3In this paper, we will take the interpretation in which the speed of light is constant. However,

the choice of the interpretation will not affect the observation of the phenomena.
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2.3. Free Particle in the Field of the Gravitational Wave

where n is an integer. Therefore, we can say that the cross section of the polarization

surface and the wave front (the plane in which the phase of the wave is constant)

indicates “the direction of maximum modulation”. For the cross polarization, the angle

φ is replaced by φ + π/4 (Fig. 2.2). In general, for any linearly polarized gravitational

wave that is represented by

hµν(t, z) = h(t− z)




0 0 0 0

0 cos 2φ0 sin 2φ0 0

0 sin 2φ0 − cos 2φ0 0

0 0 0 0




, (2.45)

φ can be replaced by φ− φ0 that represents the angle between one of the polarization

planes and the vector that connects the two test masses. The fact that the amplitude

of the strain in space has a cos 2(φ− φ0) dependence reflects the quadrupole nature of

the gravitational wave.

To summarize, in the TT coordinate system, free particles which are initially at rest

will be at rest, even in the gravitational radiation field. However, the round-trip time

of the photon between two free particles is modulated with the amplitude proportional

to that of the gravitational wave. If we assume that the speed of light is constant, the

modulation is interpreted as the change in the distance. The amplitude of the variation

of the distance is proportional to the mean proper distance r0. The frequency and the

polarization of the wave also affect the amplitude of the variation.

2.3.1 Gravitational Wave Detection by the Round-Trip Time

Measurement

It has been shown that the round-trip time of the photon between two free particles is

modulated with the amplitude proportional to that of the gravitational wave. There-

fore, the free particles can be used as a gravitational wave detector. The simplest form

of such a detector is shown in Fig. 2.3. There are two free masses in the field of the

gravitational wave. Photons are emitted from the observer on the test mass at the

origin, and reflected by the other mass. The observer records the round-trip time of

the photon repeatedly. When there are no gravitational waves, the observer will always

13



2. Gravitational Radiation

�

Figure 2.2: When the gravitational wave passes the two free particles, the proper

distance between them varies. These plots show how the distance between two

masses is modulated by the linearly polarized gravitational wave that propagates

perpendicular to the plane of the figure. In the upper plots, the wave has a plus-

polarization, thus the distance has a cos 2φ dependence. In the lower plots, the wave

has a cross-polarization, thus the distance has a cos 2(φ + π/4) dependence.

Figure 2.3: The concept of the two free masses and an observer as a gravitational

wave detector. Photons are emitted from the observer and reflected by the other

mass. The observer measures the round-trip time by using a clock. The measure-

ments are made repeatedly.
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2.3. Free Particle in the Field of the Gravitational Wave

Figure 2.4: The idea of the differential measurement. Photons are emitted from the

apex in two different directions. When there is no gravitational wave passing, the

photons in the two paths return to the observer at the same time, thus no pseudo-

signal will be generated by a deviation of the clock from the coordinate time.

obtain the same constant (2r0/c) as the results of the measurements. Therefore the

observer interprets any change in the round-trip time as the effect of the gravitational

wave.

Suppose that the clock is not “accurate”, i.e., the clock has a deviation from the

coordinate time. The round-trip time measured by the observer will have a variation

due to the deviation of the clock’s time, even if no gravitational wave is passing. The

observer cannot distinguish the deviation of the clock’s time from the fluctuation of the

distance caused by the gravitational wave, therefore the stability of the clock directly

determines the accuracy of the measurement.

Differential Detection

The requirement for the stability of the clock can be relaxed, if the observer measures

the distance between the masses in two directions simultaneously. Figure 2.4 shows

the idea. Three free masses are aligned in an isosceles L-shape. On the “apex” of this

L-shape, the observer sends photons to the other two test masses, then the photons

are reflected back to the observer. The observer measures the difference of the round-

trip time in two orthogonal directions. Any appropriately polarized gravitational wave

causes a difference in round trip time in the two directions, which appears as the signal

15



2. Gravitational Radiation

in the measurement. If the wave propagates perpendicular to the plane on which the

detector lies4, and if the two sides of the detector lie on the polarization surfaces, then

the changes in the round-trip time have the same amplitude with opposite signs due to

the quadrupole nature of the gravitational wave. Therefore the amplitude of the signal

is two times larger than that of the two-masses detector. If there is no gravitational

wave passing through the detector, the photons from the two directions always reach

the observer at the same time. Therefore the observer will obtain no signal even if the

clock has a deviation, or an “error”, from the coordinate time; thus the signal-to-noise

ratio of the detector is considerably better, compared with the detector which measures

the round-trip time directly. Michelson interferometers are the optical realization of

such a kind of differential detectors.

Let us calculate the angular response of the differential detector to the gravitational

waves. At first, for convenience, we choose the coordinate system (x, y, z) in which the

masses of the detector are fixed at (0, 0, 0), (r0, 0, 0), and (0, r0, 0). The orientation of

the linearly polarized gravitational wave is expressed in the spherical coordinates (θ, φ).

The polarization angle φ0 is defined as the angle between one of the polarization planes

and the plane that the z axis and the wave vector forms (Fig. 2.5).

Another coordinate system (x′, y′, z′) is obtained by the three rotations on the

original coordinate system; φ around the z axis, θ around the y axis, and φ0 around

the new z axis. In this coordinate system, it is apparent that the metric perturbation

of the gravitational wave is orthogonalized and expressed by Eq. 2.27 with h× = 0. The

observer is still at the origin, but the other two masses are located at

r0
−→n1 = r0




cos θ cos φ cos φ0 − sin φ sin φ0

− cos θ cos φ sin φ0 − sin φ cos φ0

sin θ cos φ




(2.46)

r0
−→n2 = r0




cos θ sin φ cos φ0 + cos φ sin φ0

− cos θ sin φ sin φ0 + cos φ cos φ0

sin θ sin φ




(2.47)

4We call this plane the detector’s plane.
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2.3. Free Particle in the Field of the Gravitational Wave

Figure 2.5: The definitions of the propagation direction and the polarization angle

of the gravitational wave. In this figure, the detector is fixed.

in this (x′, y′, z′) coordinate system. The delay for each path is calculated as

δt1(t) = r0

[
cos 2φ0(cos2 θ cos2 φ− sin2 φ)− cos θ sin 2φ sin 2φ0

]
h+ (2.48)

δt2(t) = r0

[
cos 2φ0(cos2 θ sin2 φ− cos2 φ) + cos θ sin 2φ sin 2φ0

]
h+ (2.49)

in the low-frequency limit. The signal observed is the difference of the variation of the

round-trip time:

δt1 − δt2 = −
[
cos 2φ0 cos 2φ(1 + cos2 θ) + 2 sin 2φ0 sin 2φ cos θ

]
h+ (2.50)

The detector is insensitive to the wave from the following direction, no matter how the

polarization of the wave is chosen:

(θ, φ) = [π/2, (2n + 1)π/4] (2.51)

where n is an arbitrary integer. With the propagation direction (θ, φ) fixed, the signal

takes its maximum

|δt1 − δt2|max =
{
[cos 2φ(1 + cos2 θ)]2 + (2 sin 2φ cos θ)2

}1/2
h+ (2.52)

when φ0 satisfies the equation

tan 2φ0 =
2 sin 2φ cos θ

cos 2φ(1 + cos2 θ)
. (2.53)
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2. Gravitational Radiation

Figure 2.6: A spherical plot of the angular response of the differential detector

when the frequency of the wave is very small (ωr0 << 1). The polarization of the

gravitational wave is chosen to maximize the response.

Also, the amplitude of the signal is equal to zero when the polarization angle is offset

by π/4 from the above condition, it i.e. for:

tan 2φ0 = −cos 2φ(1 + cos2 θ)

2 sin 2φ cos θ
. (2.54)

Figure 2.6 shows the absolute value of the amplitude of the signal normalized by the

amplitude of the wave.
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3. Michelson Interferometer

The Michelson interferometer is the simplest differential gravitational wave detector.

All of the interferometric gravitational wave detectors are based on the Michelson

interferometer, which has been pioneered by Weiss [7] and Forward [8]. As discussed

in the previous chapter, a differential detector is insensitive to the inaccuracy of the

clock. This is interpreted as the rejection of the common mode noise, especially the

frequency noise, in Michelson interferometers.

3.1 Basic Assumptions

Before discussing the interferometers, we must clarify some assumptions and definitions

of some quantities that will appear throughout this paper.

3.1.1 Electromagnetic Wave

A general expression for the electric and magnetic field of the light in vacuum is written

as:

−→
E (t,−→r ) =

∫ −→̃
E (Ω) exp iΩ [t−−→n (Ω) · −→r /c] dΩ (3.1)

−→
B (t,−→r ) =

∫ −→̃
B (Ω) exp iΩ [t−−→n (Ω) · −→r /c] dΩ (3.2)

−→̃
B (Ω) =

1

c
−→n (Ω)×−→̃E (Ω) (3.3)

where Ω is the angular frequency of light,
−→
E ,

−→
B ,

−→̃
E , and

−→̃
B represent the electric

and magnetic field and their Fourier transform, and −→n (Ω) is a unit three-vector which

describes the propagation direction. From Eq. 3.3, one can see that either of the electric

and the magnetic field describes the electromagnetic wave completely, because one of
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3. Michelson Interferometer

the fields is calculated from the other. Therefore we will use only the electric field to

express the electromagnetic wave. Also, we will neglect the polarization properties of

the wave unless it is necessary, therefore the field is represented by the amplitude.

In this paper, the complex amplitude will always be used for the expressions of the

electromagnetic fields. For example, consider a monochromatic field which is written

as

Ereal(t) = E0 cos(Ωt + φ) (3.4)

where E0 and φ are the real numbers. In the complex amplitude representation, this

is written as

Ecmplx(t) = E0 exp i(Ωt + φ). (3.5)

For the conversion from the complex to the real amplitude, simply take the real part

of the complex amplitude:

Ereal(t) = Re [Ecmplx(t)] . (3.6)

Poynting’s vector is defined by

−→
S (t) ≡ 1

µ0

−→
E real(t)×−→B real(t) (3.7)

where µ0 is the magnetic permeability of vacuum. The absolute value of the Poynting’s

vector represents the flow of the electromagnetic energy per unit time per unit area

perpendicular to the propagation direction. A simple calculation shows that the abso-

lute value of the Poynting’s vector is proportional to the square of the real amplitude

of the electric field as

∣∣∣−→S (t)
∣∣∣ =

√
ε0

µ0

E2
real(t)

=
1

2

√
ε0

µ0

E2
0 [1 + cos 2(Ω t + φ)] (3.8)

where ε0 is the dielectric constant of vacuum. The second harmonic term in the above

equation, which is rapidly oscillating, has nothing to do with the net flow of energy.

Therefore the power density (or the intensity) of the field is defined to represent the

net energy-flow as

I(t) =
1

T

∫ t+T

t

√
ε0

µ0

E2
real(t)dt (3.9)
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Figure 3.1: The amplitude of a field is represented by a vector in a complex plane.

For a sinusoidal wave with a fixed power, the vector rotates at the same angular

frequency as the field.

where T is a constant which is much larger than the inverse of the angular frequency

of the field. In the complex amplitude expression, the integration procedure is not

necessary because the absolute value of the complex amplitude does not contain the

second harmonics term;

I(t) =
1

2

√
ε0

µ0

|Ecmplx(t)|2 . (3.10)

In this paper, the factor (ε0/µo)
1/2/2 for the intensity will always be omitted for con-

venience.

The power of a laser beam is defined as

P (t) =
∫

ds I(t) (3.11)

where ds denotes the surface integration over an arbitrary plane perpendicular to the

beam.

In the complex amplitude expression, the amplitude of the field is represented by a

vector in a complex plane (Figure 3.1). One of the axes denotes the real part, and the

other axis denotes the imaginary part, of the amplitude. The length and the polar angle

of the vector represents the absolute value and the phase of the amplitude, respectively.

Usually the vector is rotating rapidly with the same frequency as the field.
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3. Michelson Interferometer

3.1.2 Interference of the Fields

Two fields which are represented by E1(t) and E2(t) interfere with each other if the

amplitude of the sum of the fields is not equal to the sum of the amplitude of the

respective fields:

|E1(t) + E2(t)|2 6= |E1(t)|2 + |E2(t)|2, (3.12)

or in other words if

E1(t)E
∗
2(t) + E∗

1(t)E2(t) 6= 0. (3.13)

If the fields are represented by the vectors
−→
E 1(t) and

−→
E 2(t) in the complex plane, the

above conditions are interpreted as

−→
E 1(t) · −→E 2(t) 6= 0 (3.14)

where the ‘dot’ (·) denotes the inner product of the vectors. Thus, we can say that

the fields do not interfere if the vectors are always orthogonal in the complex plot. For

example, the two fields which are represented by

E1(t) = E0e
iΩt (3.15)

E2(t) = iE0e
iΩt (3.16)

do not interfere with each other.

The usual complex plot is inconvenient for seeing the relative phase between the

fields, because the vectors are rotating rapidly. Therefore, to eliminate the rapid rota-

tion of the vectors, we will fix the angle of one of the fields in the plot. In other words,

we will choose a coordinate system of the complex plane that is rotating with one of

the vectors (Fig. 3.2).

3.1.3 Mirror

Figure 3.3 shows a mirror which is illuminated by a beam of light whose field is ex-

pressed as Ei. The incident light is partially transmitted (Et) and partially reflected

(Er). The reflection coefficient r1 and the transmission coefficient t1 of one side of the
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Figure 3.2: In the complex plot, all of the vectors are rotating rapidly with the

optical frequencies of the fields (left). In a relative phase plot (right), the polar

angle of one of the vectors is fixed. The phase, or the rotation angle, of the vectors

are measured by using the fixed vector as the reference.

mirror (see the left side of Fig. 3.3) are defined as the ratios of the complex amplitude

of the reflected and transmitted field to the incident field,

r1 ≡ Er

Ei

(3.17)

t1 ≡ Et

Ei

. (3.18)

The reflectance R1 and the transmittance T1 are defined as the ratios of the intensity,

R1 ≡ |r1|2 =
∣∣∣Er

Ei

∣∣∣
2

(3.19)

T1 ≡ |t1|2 =
∣∣∣Et

Ei

∣∣∣
2

. (3.20)

For the other side of the mirror (see the right side of Fig. 3.3), another set of numbers

r′1, t′1, R′
1, and T ′

1 are defined in the same way.

The reflectance and the transmittance are positive numbers. Also, in this paper,

reflection and transmission coefficients are chosen to be real1. They are represented by

two positive numbers, r and t:

r1 = −r′1 = r,

t1 = t′1 = t. (3.21)

1Whether these coefficients are real or complex is a matter of definition: it depends on the definition

of a reference plane where the phases of the fields are measured (for a fuller discussion, see Ref. 22).
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Figure 3.3: A mirror is illuminated by an incident wave of light which is partially

transmitted and partially reflected. As the two figures show, each side of the mirror

has its own pair of reflection and transmission coefficients in general.

For the reflection coefficient and the transmission coefficient of a simple mirror, we

use the definition which is represented by the relations shown above. Note that the

reflection coefficients of the two sides of a mirror then have opposite signs.

3.2 Michelson Interferometer

A Michelson interferometer comprises a beam splitter and two mirrors (Fig. 3.4). We

define that the reflection coefficients of the mirrors represented by r1 and r2 have the

same sign. The reflection coefficient of the beam splitter is positive on one side which

faces Mirror 1 in the figure, and negative on the other side. We place the beam splitter,

Mirror 1, and Mirror 2 on (0, 0), (l1, 0), and (0, l2), respectively. The incident light,

measured at the beam splitter, is expressed as

Ei(t) = E0 exp(iΩt). (3.22)

The delays of the phase of the field in the two paths are expressed as θ1 and θ2. We

define the transmission of the interferometer as the field which is once reflected and

once transmitted by the beam splitter. The reflection of the interferometer is defined

as the field which is propagating toward the light source from the beam splitter. The

fields of transmission and reflection are related to the difference of phase of light in two

paths as

Et = E0tbrb exp(iΩt)
[
r1 exp(−iθ1)− r2 exp(−iθ2)

]
(3.23)
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E in
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l 2
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Beam Splitter
r 2

r 1

Figure 3.4: A simple Michelson interferometer comprising a beam splitter and two

mirrors. The divided beams are recombined on the beam splitter.

Er = E0 exp(iΩt)
[
Tbr1 exp(−iθ1) + Rbr2 exp(−iθ2)

]
, (3.24)

where tb, rb, Tb, and Rb represent the transmission coefficient, the reflection coefficient,

the transmittance, and the reflectance of the beam splitter. The intensity of the above

fields are easily calculated as

It ≡ |Et|2

= I0TbRb [R1 + R2 − 2r1r2 cos ∆θ] (3.25)

Ir ≡ |Er|2

= I0

[
T 2

bR1 + R2
bR2 + 2TbRbr1r2 cos ∆θ

]
, (3.26)

where I0 is the intensity of the input beam and ∆θ = θ1− θ2 is the difference of phase

of the fields E1 and E2.

When the interferometer is symmetric, i.e. l1 is equal to l2 and r1 is equal to r2, most

of the power of the input light is reflected; there is no transmission at all. Basically

the transmission appears when there is any asymmetry. In this sense, the transmission

and the reflection are sometimes called the anti-symmetric output and the symmetric

output, respectively.
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3. Michelson Interferometer

The contrast of a Michelson interferometer is given by

C ≡ Imax − Imin

Imax + Imin

(3.27)

=
(r1 + r2)

2 − (r1 − r2)
2

(r1 + r2)2 + (r1 − r2)2
(3.28)

where Imax and Imin are the maximum and minimum intensity of the anti-symmetric

output. The contrast is equal to unity when the optics of the interferometer is sym-

metric.

One can see that Michelson interferometers are insensitive to any common phase

fluctuation in the two arms, because such a kind of phase fluctuation does not affect

∆θ. On the other hand, Michelson interferometers are sensitive to any differential

phase fluctuation. As we have already seen, the gravitational wave modulates the

proper distance between the free particles. If the mirrors and the beam splitter are

the test masses, the gravitational wave which have a proper polarization will modulate

the round-trip phase in the two arms with the same amplitude and the opposite signs,

therefore the gravitational wave can be thought as a source of the differential phase

modulator. In other words, Michelson interferometers are sensitive to the gravitational

waves and thus can be used as a gravitational wave detectors. This idea was originally

developed by Weiss [7] and first experimentally explored by Forward [8]. Later in this

section we will calculate the frequency response of a simple Michelson interferometer,

then more complex interferometer.

3.3 Frequency Response of a Michelson Interferom-

eter

In this section the frequency response of a Michelson interferometer to the gravitational

waves and to the motion of the mirrors are studied. In this and the following sections,

the propagation direction and the polarization of the gravitational waves are chosen to

maximize the response for convenience2.

2One has be careful when one calculates the response to the wave from an arbitrary direction, be-

cause not only the sensitivity but the frequency dependence are affected by the propagation direction.
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3.3.1 Frequency Response to the Gravitational Waves

We choose the coordinate system in which the metric has the form

ds2 = −c2dt2 + [1 + h(t)]dx2 + [1− h(t)]dy2 + dz2, (3.29)

where h(t) is the dimensionless amplitude of the wave. The field of the input light

is given by Eq. 3.22 at the position of the beam splitter. The field of light which is

reflected by Mirror 1 is written in the form

E1 = tbE0 exp
[
iΩ(t−∆t1)

]
(3.30)

where Ω is the optical frequency of light. We can use the same expression as Eq. 4.10

to obtain ∆t1. The delay of the phase Ω∆t1 is represented by two parts, the static

delay θo1 and the phase shift caused by the gravitational wave δθGR
1 :

θ1 ≡ Ω∆t1

= Ω

(
2l1
c

+
1

2

∫ t

t−2l1/c
h(t′)dt′

)

≡ θo1 + δθGR
1 . (3.31)

In other words, the phase of the field of light is modulated by the gravitational waves.

In the same way, the field of light reflected by Mirror 2 is given by

E2 = rbE0 exp
[
iΩ(t−∆t2)

]
. (3.32)

However, the sign of the effect of the gravitational wave is opposite:

θ2 ≡ Ω∆t2

= Ω

(
2l2
c
− 1

2

∫ t

t−2l2/c
h(t′)dt′

)

≡ θo2 + δθGR
2 . (3.33)

The difference of the phase of the two fields E1 and E2 is expressed as

∆θ ≡ θ1 − θ2

= θo1 − θo2 + δθGR
1 − δθGR

2

≡ ∆θo + δθGR
MI

≡ ∆θo +
∫

h̃(ω)HGR
MI (ω, Ω)eiωtdω, (3.34)
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where ∆θo is the static term and δθGR
MI is the fluctuation produced by the gravitational

radiation. By observing the difference of the phase between two beams, the gravita-

tional wave signal is extracted3. In the above expression, the frequency response of a

Michelson interferometer to the gravitational radiation HGR
MI is defined as

HGR
MI (ω, Ω) ≡ Ω

ω

(
e−i

ωl1
c sin

ωl1
c

+ e−i
ωl2

c sin
ωl2
c

)

= 2
Ω

ω
e−i ωl̄

c

(
sin

ωl̄

c
cos2 ωl−

2c
− i cos

ωl̄

c
sin2 ωl−

2c

)

= 2
Ω

ω
e−i ωl̄

c sin
ωl̄

c
+ O(

ωl−
2c

)2, (3.35)

where

l̄ =
l1 + l2

2
(3.36)

l− = l1 − l2 (3.37)

are the average and the difference of the distance between the beam splitter and the

mirrors. When the frequency of the light is thought to be a constant, we will sometimes

write HGR
MI (ω, Ω) as HGR

MI (ω). Figure 3.5 shows the plot of the frequency response of

a Michelson interferometer to the gravitational radiation. The absolute value of the

frequency response is equal to zero at the angular frequency of ω = nπc/l̄ where n is a

positive integer. When the frequency is much lower than the zero-response frequency

(i.e., ωl̄/c ¿ 1), Eq. 3.35 is approximated as

HGR
MI (ω, Ω) = 2Ω

l̄

c

1

1 + i l̄
c
ω

. (3.38)

Therefore the baseline l̄ is related with the typical bandwidth ωMI of the frequency

response of the interferometer by

ωMI ∼ c/l̄ . (3.39)

On the other hand, at a given angular frequency ω, |HGR
MI | takes its maximum value

2Ω/ω at l = (2n + 1)cπ/2ω. Therefore the optimum baseline loptimum for the tar-

get gravitational radiation with the frequency f should be determined to satisfy the

3The techniques for the phase detection are discussed later in Sec. 6.2.
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Figure 3.5: Frequency response of a simple Michelson interferometer with the base-

line of 150 km (solid line). Dashed line shows the upper envelope of the Michelson

interferometer’s response functions.

equation,

loptimum = c/4f . (3.40)

For example, in order to detect the sinusoidal gravitational radiation with a frequency

of 500Hz, the optimum baseline is l = 150 km.

3.3.2 Frequency Response of a Simple Michelson Interferom-

eter to the Motion of the Mirrors

Let us assume that the beam-splitter is fixed at the origin, while the two mirrors are

moving along the optical axis. The distance between the beam-splitter and the mirrors

are expressed as li + δli (i = 1, 2). The field of light which is reflected by Mirror 1 or 2

in Fig. 3.4 is represented in the same way as Eq. 3.30. However, here the origin of the

fluctuation of the delay is the motion of the mirrors, not the gravitational waves:

∆ti =
2

c

[
li + δli(t− 1

2
∆ti)

]
(i = 1, 2). (3.41)

To the first order of ∆li/c, the expression for the delay ∆ti is written as

∆ti ' 2

c

[
li + δli

(
t− li

c

)]
(i = 1, 2). (3.42)
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3. Michelson Interferometer

Thus the delay of the phase Ωti (i = 1, 2) is represented by

θi ≡ Ω∆ti

= Ω

[
2li
c

+
2

c
δli

(
t− li

c

)]

≡ θoi + δθli. (3.43)

We define the difference and the sum of the motion of the mirrors as

δl+ = δl1 + δl2 (3.44)

δl− = δl1 − δl2. (3.45)

The difference of the phase of the fields E1 and E2 is expressed as

∆θ = θ1 − θ2

≡ θo1 − θo2 + δθl1 − δθl2

≡ ∆θo + δθl
MI, (3.46)

where

δθl
MI ≡ δθl−

MI + δθl+
MI

≡
∫

δ̃l−(ω)H l−
MI(ω)eiωtdω +

∫
δ̃l+(ω)H l+

MI(ω)eiωtdω. (3.47)

In the above equation, the frequency response of a simple Michelson interferometer to

the difference and the sum of the motion of the mirrors are represented by

H l−
MI(ω) ≡ 2Ω

c
exp(

−iωl̄

c
) cos

ωl−
2c

(3.48)

H l+
MI(ω) ≡ −i

2Ω

c
exp(

−iωl̄

c
) sin

ωl−
2c

. (3.49)

When the optical paths of the interferometer are equal to each other (l1 = l2), the

fluctuation of the phase difference δθl
MI is insensitive to the common motion δl+.

On the condition ωli/c ¿ 1 (i = 1, 2) and |l−| ¿ l̄, one can expand Eqs. 3.35 and

3.48 to the first order of ωl̄/c as

H l−
MI(ω) ' 2Ω

c

(
1− i

ωl̄

c

)
+ O(

ωl−
2c

)2

HGR
MI (ω) ' 2Ωl̄

c

(
1− i

ωl̄

c

)
+ O(

ωl−
2c

)2 ' l̄H l−
MI(ω). (3.50)
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In this chapter, the Fabry-Perot cavities as the parts of the interferometer are

studied.

4.1 Fabry-Perot Cavity as a Device to Fold the Op-

tical Path

As described in the preceding chapter, the optimum baseline of a Michelson interfe-

rometer is the order of 100km for the gravitational radiations from the astronomical

sources. However, it is unrealistic to build such a large detector on the ground. There-

fore, to obtain the optimum optical path length in the interferometer which can be

built on the ground, the optical paths of the interferometer are folded by using delay-

lines (DL) or Fabry-Perot (FP) cavities (Fig. 4.1). We will call the interferometer

which has folded optical path in each of its arms as the delay-line-Michelson (DLM)

or Fabry-Perot-Michelson (FPM) interferometer, depending on the device used to fold

the paths.

A delay-line comprises two mirrors, and one of them has a small hole to inject the

laser beam in it. The injected light is multiply bounced on the different point of the

mirrors, then ejected through the hole (in the figure, the light is reflected three times in

the delay-line, therefore the optical path length is 4L where L is the distance between

the mirrors). A delay-line functions as a simple folded optical path, thus the frequency

response of a DLM interferometer to the gravitational wave is just the same as the

simple Michelson interferometer.

A Fabry-Perot cavity is a pair of the mirrors, but there is no hole on the mirrors. A

fraction of the input light is transmitted by the front mirror, reflected many times inside
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4. Fabry-Perot Cavities

Figure 4.1: Conceptual view of the Michelson interferometers whose optical paths

are folded. A delay-line type interferometer (left) has an optical delay-line in each

of its arms. A Fabry-Perot-Michelson interferometer (right) has optical resonators

(Fabry-Perot cavities) instead of the delay-lines.

the cavity (on the same point of the mirrors), and then transmitted again by the front

mirror. When the direct reflection from the front mirror and the transmission from

the inside interfere destructively, the effective optical path-length is much larger than

the length of the cavity. Because an FP cavity is an interferometric device itself, the

frequency response of a FPM interferometer is different from that of a simple Michelson

interferometer.

Among the several medium-to-large scale detectors which are now being developed,

the interferometers of the LIGO project, the VIRGO project, and the TAMA project

will employ the FPM configuration. Though both DLM and FPM interferometer have

their own advantages and disadvantages, to discuss their difference is beyond the scope

of this paper. Rather, we will try only to discuss the optical properties of the FPM

interferometers in the following discussion.

4.2 Frequency Response of a Fabry-Perot Cavity

In this section, the response of a Fabry-Perot cavity to the incident field of light and

the gravitational radiation is briefly described.
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4.2. Frequency Response of a Fabry-Perot Cavity

4.2.1 Response to Light

The simplest case is considered here. Two mirrors are placed parallel to each other at

a distance of L (Fig. 4.2). A plane wave of light which is traveling in the z direction

is illuminating the mirrors. Let us call the mirror which is illuminated directly by the

input beam the “front mirror”, and the other mirror the “end mirror” 1. The field of

light is expressed as

Ei(t, z) = E0 exp
[
i(Ωt−Kz)

]
(4.1)

where Ω is the angular frequency of the light and K = Ω/c is the wave number. This

input field which has the single frequency is sometimes called the “carrier”. The prop-

agating direction of the wave is perpendicular to the mirrors. The reflection coefficient

and the transmission coefficient of the mirrors are represented by (rf , tf) and (re, te).

The signs of the reflection coefficient of both of the mirrors are chosen to be plus inside

the cavity. We define the capitalized symbols Ri = r2
i , Ti = t2i (i = f, e), Rfe = rfre,

and Tfe = tfte. The fields of the reflected and transmitted light outside the cavity are

given by

Er = E0

[
−rf + reTfe

−iΦo

∞∑

n=0

(
rfree

−iΦo

)n
]

exp
[
i(Ωt + Kz)

]

= E0

[
−rf + reTf

exp(−iΦo)

1−Rfe exp(−iΦo)

]
exp

[
i(Ωt + Kz)

]
(4.2)

Et = E0tfte
∞∑

n=0

(
rfree

−iΦo

)n
exp

[
i(Ωt−Kz)

]

= E0
Tfe

1−Rfe exp(−iΦo)
exp

[
i(Ωt−Kz)

]
(4.3)

where Φo = 2ΩL/c is a round-trip phase of light inside the cavity. Note that the

Mirror 1 in Fig. 4.2 is placed at z = 0 in these expressions. If the field of reflection

and that of transmission are measured at z = 0 and z = L, respectively, the reflection

coefficient and the transmission coefficient of the cavity are defined from Eqs. 4.1, 4.2,

and 4.3 as

rc(Φo) = −rf + reTf
exp(−iΦo)

1−Rfe exp(−iΦo)
(4.4)

1The terms “front mirror” and “end mirror” will often be used throughout this paper, although

they are not well-recognized technical terms.
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Mirror 1 Mirror 2

Figure 4.2: A simple Fabry-Perot cavity. Two mirrors are placed parallel to each

other at a distance of L. We will call Mirror 1, which is illuminated directly by the

input light, the “front mirror”, and Mirror 2 the “end mirror”.

tc(Φo) =
Tfe

1−Rfe exp(−iΦo)
exp(−i

Φo

2
). (4.5)

These coefficients represent the frequency response of a Fabry-Perot cavity to light.

Sometimes we will write rc(Φo) and tc(Φo) as rc(Ω) and tc(Ω), or rc(L) and tc(L),

when either L or Ω is considered as a constant.

A plot of the amplitude and the phase shift of the reflected and the transmitted

light from the FP cavity versus round-trip phase is shown in Fig. 4.3. There are a

resonance peak of the absolute value when the round-trip phase is 2nπ, where n is an

integer. The phase curve is very steep around the peak. Thus, around the resonance,

only the phase of the field changes to the first order approximation. The finesse of

the cavity F is defined by the ratio of the spacing of the two near-by peaks and the

full-width of half-maximum (FWHM) of the intensity of transmission,

F ≡ 2π

FWHM

=
π
√

Rfe

1−Rfe

. (4.6)

The reflection and the transmission coefficient of the cavity are simplified when

Φo ¿ 1 and F À 1;

rc(Φo) ∼ −rf + Tf
F
π

1

1 + iF
π
Φo

= −rf + Tf
F
π

1

1 + i ω
ωc

(4.7)
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Figure 4.3: The response of a Fabry-Perot cavity to the round-trip phase φ0. The

reflectance of the mirrors are chosen to be 82.64% for the front mirror and 98% for

the end, thus the finesse is about 30.
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Quantity Symbol Definition

Finesse F π
√

Rfe

1−Rfe

Free Spectral Range (FSR) νFSR
c

2L0

Cut-Off Frequency fc
c

4FL0
= νFSR

2F
Cut-Off Angular Frequency ωc 2πfc

Storage Time τs
2FL0

cπ
= ω−1

c

Table 4.1: Table of some quantities related to FP cavities.

tc(Φo) ∼ Tfe
F
π

1

1 + iF
π
Φo

= Tfe
F
π

1

1 + i ω
ωc

. (4.8)

Table 4.1 shows the definition of ωc (the inverse of the storage time τs) in the above

equation, together with the definitions of other quantities about FP cavities. We will

not try to discuss the physical implications of such quantities, because there are many

good textbooks such as Ref. 22.

4.2.2 Response to Gravitational Waves

An incident gravitational wave is propagating in the z direction. We choose the coor-

dinate system in which the metric is given by Eq. 3.29. One mirror of a Fabry-Perot

cavity is placed at x = 0 and the other is placed at x = L. The optical axis of the cavity

and that of the illuminating laser beam lie exactly on the x axis. We assume that the

mirrors are free masses, therefore they will not move in this coordinate system even

though there is an incident gravitational wave. However, the incident gravitational

wave affects the proper-length of the cavity, thus affects the round trip phase of light.

The reflected field at the input mirror is represented by

Er = E0e
iΩt

[
−rf + reTf

∞∑

n=1

(rfre)
n−1 exp(−iΩ ∆tn)

]
, (4.9)

where ∆tn is a delay for the wave front which arrived at x = 0 after n-round trip inside

the cavity. By using the same approximations as used in Eqs. 2.39–2.43, we can obtain
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4.2. Frequency Response of a Fabry-Perot Cavity

the expression for ∆tn:

∆tn =
2Ln

c
+

1

2

∫ t

t−2Ln/c
h(t′)dt′ . (4.10)

After some calculation using Eqs. 4.4, 4.9, and 4.10, we obtain the field of the reflected

light written as

Er = E0e
iΩtrc(Ω)

[
1− i

∫
h̃(ω)HGR

FP (ω, Ω)eiωtdω
]

≡ E0e
iΩtrc(Ω)

[
1− iδΨGR

FP (t, Ω)
]
. (4.11)

The complex function HGR
FP (ω, Ω) represents the frequency response of a FP cavity to

the gravitational radiation, which is defined as follows;

HGR
FP (ω, Ω) ≡ Ω

2iω

rc(Ω)− rc(ω + Ω)

rc(Ω)
. (4.12)

This is apparently the function of the angular frequency ω and the round-trip phase

of the carrier inside the cavity Φo, therefore we will sometimes write HGR
FP (ω, Ω) and

δΨGR
FP (t, Ω) as HGR

FP (ω, Φo) and δΨGR
FP (t, Φo) when it is convenient. We can see that

there are the carrier (the first term in Eq. 4.11) and the additional field (the integral

term). The additional field is sometimes called the ‘sidebands’ which is produced by

the gravitational radiation.

When the frequency of light is tuned to the resonance of the cavity (i. e. ΩL/c = nπ),

it is easy to show that the term δΨGR
FP (t, Ω) in Eq. 4.11 is a real number. Therefore

δΨGR
FP (t, Ω) is interpreted as a phase shift of the carrier which is produced by the

gravitational wave. In this case, the expression for Eq. 4.12 is simplified. we will write

δΨGR
FP (t, Ω) as δΨGR

FP (t) in this paper, in order to denote that this is in this special case;

δΨGR
FP (t) ≡ δΨGR

FP (t, Ω)
∣∣∣
ΩL/c=nπ

=
∫

h̃(ω)HGR
FP (ω)eiωtdω (4.13)

where

HGR
FP (ω) ≡ HGR

FP (ω, Ω)
∣∣∣
ΩL/c=nπ

∼ Ω

2ωc

1

rc(0)

FTf

π

1

1 + i ω
ωc

. (4.14)

The last approximation comes from Eq. 4.7. Figure 4.4 shows the response function

HFP(ω).
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Figure 4.4: The absolute value of the response function HGR
FP of a FP cavity to the

gravitational radiation versus frequency. In this plot, the finesse and the length are

chosen to be 50 and 3 km, respectively.

4.2.3 Response to the Motion of the Mirrors

The phase of the reflected light from the FP cavity can be disturbed by the motion

of the mirrors along the optical axis (also the frequency of the light is changed by the

Doppler-shift caused by the motion of the mirror, but we will ignore this effect). Let us

assume that the front mirror is fixed at the origin while the end mirror is moving along

the optical axis with a small amplitude δL(t). The length of the cavity is represented

by

L(t) = L0 + δL(t), (4.15)

where L0 is the mean length of the cavity. After a n-round trip inside the cavity, a

part of the input field gets out of the cavity at the time t with a time delay of Tn which

is given by

Tn =
2

c
nL0 +

2

c

n∑

l=1

δL
[
t− 1

c
(2n− 1)L0

]

=
2

c
nL0 +

2

c

∫
δ̃L(ω)ei(ωt−kL0) 1− e−2iknL0

1− e−2ikL0
dω (4.16)

to the first order of the fluctuation, where δ̃L(ω) is the Fourier transform of δL(t) and

k is defined by k = ω/c. When the input field is defined by Eq. 4.1, the expression for
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the reflected field is obtained by using Eq. 4.16 after some calculation as

Er(t) = E0e
iΩt

[
−rf + reTf

∞∑

n=1

(rfre)
n−1e−iΩTn

]

= E0e
iΩtrc(φ0)

[
1− i

∫
δ̃L(ω)eiωt Ω

ic sin ωL0

c

rc(φ0)− rc(φ0 + φ)

rc(φ0)
dω

]

= E0e
iΩtrc(φ0)

[
1− i

∫
δ̃L(ω)HL

FP(ω, Ω)eiωtdω
]
, (4.17)

where φ0 = 2Kl0 is the mean round-trip phase inside the cavity. In the above equation,

the complex function HL
FP(ω, Ω), which represents the frequency response of a FP cavity

to the length-fluctuation, is defined as

HL
FP(ω, Ω) ≡ Ω

ic sin ωL0

c

rc(φ0)− rc(φ + φ0)

rc(φ0)

=
Ω

ic sin ωL0

c

rc(Ω)− rc(ω + Ω)

rc(Ω)
. (4.18)

The delay of the phase δΨL
FP which is caused by the motion of the mirror is defined in

the same way as Eq. 4.13 by

δΨL
FP(t) =

∫
δ̃L(ω) HL

FP(ω, Ω)
∣∣∣
(ΩL0/c)=nπ

eiωtdω. (4.19)

By comparing Eqs. 4.12 and 4.18, it is apparent that the gravitational radiation

of the amplitude h has the same effect as the length fluctuation of the amplitude h
2
L0

(this value is equal to the change of the proper distance between the mirrors), when the

frequency of the motion is small compared to the free spectral range. In other words,

HGR
FP (ω, Ω) ' L0

2
HL

FP(ω, Ω) (4.20)

when

ωL0/c << 1. (4.21)

When the cavity is tuned to the resonance, the frequency response is approximated as

HL
FP(ω) ≡ HL

FP(ω, 0)

∼ 2Ω

crc(0)

F2Tf

π2

1

1 + i ω
ωc

. (4.22)
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4.2.4 Response to the Fluctuation of the Phase of Light

In the discussion presented above, it is assumed that the phase of light has no fluc-

tuation. However, in a more realistic situation, the phase of light φ(t) has a small

fluctuation term δφ(t),

φ(t) = Ωt + δφ(t)

= Ωt +
∫

δ̃φ(ω)eiωtdω, (4.23)

where δ̃φ(ω) is a Fourier transform of δφ(t). Assuming that |δφ(t)| << 1, the incident

field is expanded in terms of δφ to the first order as

Ei(t) = E0 exp
[
i (Ωt + δφ(t))

]

' E0e
iΩt

[
1 + iδφ(t)

]

= E0e
iΩt

[
1 + i

∫
δ̃φ(ω)eiωtdω

]
. (4.24)

Let us assume that the length of the cavity is not fluctuating, L = L0. Now the

reflected field is related with the reflection coefficient of the cavity as

Er(t) = E0e
iΩt

[
rc(Ω) + i

∫
rc(Ω + ω)δ̃φ(ω)eiωtdω

]

= E0e
iΩtrc(Ω)

[
1 + iδφ(t)− i

∫ rc(Ω)− rc(ω + Ω)

rc(Ω)
δ̃φ(ω)eiωtdω

]
. (4.25)

We introduce the frequency fluctuation δ̃ν(ω) which is defined by

δ̃ν(ω) ≡ iω
δ̃φ(ω)

2π
. (4.26)

Using this frequency fluctuation, the reflected field is expressed as

Er(t) = E0e
iΩtrc(Ω)

[
1 + iδφ(t)− i

∫
Hφ

FP(ω, Ω)δ̃ν(ω)eiωtdω
]
, (4.27)

where Hφ
FP, which represents the frequency response of a FP cavity to the frequency

fluctuation, is defined as

Hφ
FP(ω, Ω) =

2π

iω

rc(Ω)− rc(ω + Ω)

rc(Ω)
. (4.28)
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By comparing Eqs. 4.12, 4.18, and 4.28, one can see that the frequency response of a

FP cavity to the gravitational radiation, the motion of the mirror, and the frequency

fluctuation is related to each other;

Hφ
FP(ω, Ω) =

2

νo

H
(GR)
FP (ω, Ω) (4.29)

' L0

νo

HL
FP(ω, Ω), (4.30)

where νo ≡ Ω/2π.

When the center frequency of light is tuned to the cavity, the third term in Eq. 4.27

is interpreted as an additional phase shift which is caused by the FP cavity. This phase

shift is defined by

δΨφ
FP(t) ≡

∫
Hφ

FP(ω, 0)δ̃ν(ω)eiωtdω, (4.31)

just in the same way as Eq. 4.13. Equation 4.28 is then simplified as

Hφ
FP(ω, 0) =

2

ωc

FTf

rc(0)

1

1 + i ω
ωc

. (4.32)

4.2.5 Pound-Drever-Hall Technique

We have seen that the gravitational radiation, the motion of the mirror, and the phase

fluctuation of the light produce the shift in the phase of the reflected light from a FP

cavity. Such phase-shifts can be sensed by the Pound-Drever-Hall (P-D-H) technique

[28]. Though there are many papers in which the P-D-H technique is discussed, it

is still useful to present some ideas and calculations here. The basic concept of the

technique is to use the radio-frequency sidebands as the reference of the phase which

are not affected by the FP cavity.

Suppose that the field is phase-modulated so it is written in the form

Ei = E0 exp [i(Ωt + m sin ωmt)] , (4.33)

where m is the modulation index and ωm is the angular frequency of the modulation.

Such a field is generated by using an Electro-Optical-Modulator (EOM). Assuming

that the modulation index is much smaller than 1, the field is expanded to the first
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order of the modulation index as

Ei = E0 exp (iΩt) (1 + im sin ωmt)

= E0 exp (iΩt)
[
1 +

m

2
(eiωmt − e−iωmt)

]
. (4.34)

(There is a mathematical formula [31]

exp(im sin ωmt) =
+∞∑

n=−∞
Jn(m)einωmt, (4.35)

where Jn is the set of Bessel functions. Therefore we can expand the input field to

the n-th order of m, though this is not essential to the calculation presented below.)

Now the field comprises a carrier and two sidebands. The frequency of the sidebands

is equally shifted from the carrier, in the opposite sign.

Next, suppose that the input field has a phase fluctuation which is represented by

Eq. 4.24. We modulate the phase of this field, therefore the field is written as

Ei = E0e
iΩt

[
1 + i

∫
δ̃φ(ω)eiωtdω

] [
1 +

m

2
(eiωmt − e−iωmt)

]
. (4.36)

This input field is reflected from a FP cavity which is resonant with the carrier. The

cavity is interacting with the gravitational radiation and the mirror of this cavity is

moving with a small amplitude. The frequency of the phase-modulation is assumed to

be in the radio-frequency range, therefore the modulation sidebands are off the reso-

nance and approximately all of them are reflected. Combining the above assumption

with Eqs. 4.11,4.13, 4.17,4.19, 4.27, and 4.31, we obtain the following expression of the

reflected field to the first order of the perturbation;

Er = E0e
iΩt

{
rc(0)

[
1 + i

(
δφ(t)− δΨGR

FP (t)− δΨL
FP(t)− δΨφ

FP(t)
)]

− [1 + iδφ(t)]
m

2
(eiωmt − e−iωmt)

}
. (4.37)

The intensity of the field is measured by a photo-detector and only the terms that are

proportional to exp(±iωmt) are lock-in detected by mixing the intensity signal with

the local oscillator which is used for the phase modulation (Fig. 4.5). Thus, the output

of the mixer is proportional to the phase shift caused by the gravitational radiation,

motion of the mirror, and the phase fluctuation;

vmix = R
eηI0

h̄Ω
mrc(0)

[
δΨGR

FP (t) + δΨL
FP(t) + δΨφ

FP(t)
]
, (4.38)
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4.2. Frequency Response of a Fabry-Perot Cavity

Figure 4.5: A FP cavity is illuminated by phase-modulated light. The intensity of

the light is sensed by a photo-detector. The signal of the photo-detector is mixed

with a local oscillator signal which is used for the phase modulation. Because only

the carrier (“c” in the figure) is resonant with the cavity, any change of the cavity

length will cause a rotation of the carrier in the phase diagram while sidebands

(“SB” in the figure) are not affected. The inner product of the carrier vector and

the sideband vector is proportional to the motion of the cavity.
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4. Fabry-Perot Cavities

where R, e, η, I0, and h̄ are the effective resistance of the photo-detector plus the

mixer, the elementary electronic charge, the quantum efficiency of the photo-detector,

the power of the light, and Planck’s constant divided by 2π, respectively.
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5. Modal Analysis

So far, the laser beams and the field inside the interferometer were treated as the

plane wave. However, if we want to make a quantitative discussion about the coupling

between the beam and the cavity, we have to take account of the fact that the wavefront

of the beam is curved. Here we will study how the misalignment of the mirrors couple

to the deformation of the mode of the input light.

5.1 Hermite-Gaussian Field

The field of the laser beams and the eigenmodes of the optical resonators are well

approximated by a set of the Hermite-Gaussian fields [22, 32], which are represented

by

Elm+(x, y, z, t) = Ulm+(x, y, z) exp(iΩt) (5.1)

Ulm+(x, y, z) ≡ Ul+(x, z)Um+(y, z) exp i
[
−Kz + (l + m + 1)η(z)

]
(5.2)

Ul+(x, z) ≡
(

2

πw2(z)

)1/4(
1

l!2l

)1/2

Hl

(√
2x

w(z)

)
exp

[
− x2

w2(z)
− i

Kx2

2R(z)

]
, (5.3)

where K represents the wavenumber of the field. In the above equations, the beam

radius w(z), the radius of curvature of the wavefront R(z), the Gouy phase η(z), and

the Hermite-polynomial Hl are defined as follows:

w(z) ≡ w0

√
1 + (z/z0)

2 (5.4)

R(z) ≡
(
z2 + z2

0

)
/z (5.5)

η(z) ≡ arctan
z

z0

(5.6)

z0 ≡ Kw2
0

2
(5.7)
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5. Modal Analysis

Hl(x) = (−1)l ex2 dl

dxl
e−x2

. (5.8)

The point at which the beam radius takes its minimum is called the waist of the beam,

and the minimum value w0 is called the waist radius. From Eqs. 5.4 and 5.7, one can

see that the far-field divergence angle α0 is written as

α0 =
(

Kw0

2

)−1

. (5.9)

A set of the Hermite-Gaussian fields of a single frequency is completely characterized

by the propagation axis (the z axis in Eq. 5.2), the position of the waist (z = 0 in

Eq. 5.2), and the waist radius w0. Each field in the set is numbered by the two positive

integer l and m. The sum of these integers l + m is sometimes called the order of the

field. Two fields of the same order have the same Gouy phase shift (l + m + 1)η(z).

Inverting the sign of the K-vector (and other related parameters such as z0), the

expression for the Hermite-Gaussian mode which is inversely propagating along the z

axis is written as

Elm−(x, y, z, t) = Ulm−(x, y, z) exp(iΩt) (5.10)

Ulm− = U∗
lm+ (5.11)

Ul− = U∗
l+. (5.12)

A set of the Hermite-Gaussian modes is ortho-normal, i.e.,
∫ +∞

−∞

∫ +∞

−∞
Ulm±(x, y, z)U∗

pq±(x, y, z)dxdy = δlpδmq. (5.13)

Also, a set of {Ul±} is ortho-normal;
∫ +∞

−∞
Ul±(x, z)U∗

m±(x, z)dx = δlm. (5.14)

5.2 Eigenmodes of a Fabry-Perot Cavity

A Fabry-Perot cavity has a set of Hermite-Gaussian fields {Ulm} as its eigenmodes1.

The propagation axis of the eigenmodes is the one which is perpendicular to both of
1In a Fabry-Perot cavity, the field is reflected many times by the two mirrors. Only the fields with

the wavefronts that are not deformed by the reflection can remain stable in the cavity, thus we call a

set of the stable fields in the cavity the eigenmodes of the cavity.
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Figure 5.1: An axis of the eigenmodes of a Fabry-Perot cavity which comprises a

flat mirror and a spherical mirror. The axis is perpendicular to both of the mirrors

and intersects the center of curvature of the spherical mirror.

the two mirrors. When the cavity comprises a flat mirror and a spherical mirror, the

axis intersects the center of curvature of the spherical mirror. The waist of the cavity

is located at the flat mirror (Fig.5.1). The waist radius of the cavity is determined by

w2
0 =

λ

π

√
d(R− d), (5.15)

where d is the distance between the two mirrors and R is the radius of curvature of the

concave mirror. Due to the Gouy phase shift, the modes of the different order have the

different resonant frequencies. The resonant condition for the (l + m)th order mode is

written as

νo = νFSR

{
n + (l + m + 1)

1

π
[η(z1)− η(z2)]

}

≡ nνFSR + (l + m + 1)νG (5.16)

where n, z1 and z2 are a positive integer and the positions of the mirrors, respectively.

Especially, the Gouy phase contribution νG is expressed as

νG =
νFSR

π
arccos

√
1− d

R
(5.17)

when the mirrors of the cavity are flat and concave (radius of curvature R), or

νG =
νFSR

π
arccos

(
1− d

R

)
(5.18)

when the cavity comprises the mirrors with the same radius of curvature R.

47



5. Modal Analysis

5.3 The Vector Representation of the Paraxial Field

Any paraxial field which is written as E(x, y, z) exp(iΩt) can be expanded by a set of

Hermite-Gaussian modes (Refs. 22). If the field is paraxial around the z axis in the

positive direction, it is expanded as

E(x, y, z) =
∑

lm

< lm|E > Ulm+(x, y, z) (5.19)

< lm|E > ≡
∫ +∞

−∞

∫ +∞

−∞
U∗

lm+(x, y, z)E(x, y, z) dx dy. (5.20)

It is natural to look at the coefficients {< lm|E >} as the components of the vector

that represent the field:

[E] =




< 00|E >

< 01|E >

< 10|E >

< 20|E >

< 11|E >
...




(5.21)

Any operation that affects the modes of the field (beam transformation by a lens, for

example) is represented by a matrix.

5.4 Matrix Representation of the Transmission and

Reflection Coefficient

An optical component is characterized by its transmission and reflection coefficient,

which are defined as the ratio of the amplitude of the transmitted and reflected field

to the input. However, not only the amplitude, but also the beam characteristics are

changed by the optical components. The concept of the beam characteristics and the

transmission and reflection coefficient can be combined by using the modal expansion.

The input, the reflection, and the transmission field are expanded in terms of the

modes defined on a reference axis (the z axis in this case2)(Fig. 5.2). The fields are

2We can choose an arbitrary coordinate system, so far as the beams can be considered as paraxial.
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Figure 5.2: A beam is illuminating the optical component (left). The fields can

be expanded on a reference axis (right), thus the reflection and the transmission

coefficient are matrices in this case.

written as the vectors,

[Ein] = [< lm + |Ein >] (5.22)

[Er] = [< lm− |Er >] (5.23)

[Et] = [< lm + |Et >] . (5.24)

The fields are related to each other by the linear transformations:

< ij − |Er > =
∑

kl

r[ij,kl] < kl + |Ein > (5.25)

< ij + |Et > =
∑

kl

t[ij,kl] < kl + |Ein > . (5.26)

The coefficients r[ij,kl] and t[ij,kl] are interpreted as the components of the matrices

which have {lm} and {pq} as their row- and column-indices. Thus the coefficients

of the optical components are represented as matrices [33]. These transmission and

reflection matrices depend on the alignment and the matching.

5.5 Misalignment and Mismatching

As we have seen, a set of Hermite-Gaussian modes is characterized by a certain set

of parameters, namely the propagation axis, the position of the waist, and the waist

diameter. The difference of these parameters between the two modes is classified in

two categories: the misalignment and the mismatching.
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Figure 5.3: Four parameters which characterize the misalignment. Two are defined

as the distance of the waists and the angle between the axes which are projected on

the xz plane. The other two are defined similarly in the yz plane.

Alignment is related to the off-axis difference between the two Gaussian fields.

When the propagation axis of one of the fields has a parallel displacement (perpen-

dicular to the propagation direction) or an angular tilt to the axis of the other, the

two fields are misaligned. There are four parameters that represent the misalignment.

Suppose that the fields are paraxial along the z axis. Consider the projection of the

two axes on the xz plane (Fig. 5.3). The first parameter is the distance between the

waists of the projected axes, and the second is their angle. The other two parameters

are defined similarly in the yz plane.

Mode-matching is related to the on-axis difference between the two Gaussian fields.

When the two fields have different waist radii or different waist positions along the

axis, they are mismatched3. The difference of the waist radius δw, and the difference

3Even if they are aligned completely.
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5.5. Misalignment and Mismatching

�
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Figure 5.4: Two parameters which characterize the mismatching. One is the differ-

ence of the waist radius δw, and the other is the difference of the position of the

waist along the axis.

of the waist position along the axis δz, are the parameters which describe the matching

(Fig. 5.4). In a more general expression than Eqs. 5.2 and 5.3, it is possible that the

projections of the mode profile on the xz and the yz planes have different waist positions

and beam radii. Therefore the number of parameters that describe the matching are

four.

In this paper, only the misalignment will be taken into account.
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5. Modal Analysis

5.6 Modal Expansion of the Misaligned Beam

Any paraxial field is expanded by a set of Hermite-Gaussian modes. Therefore an

Hermite-Gaussian field can be expanded by another set of modes with different param-

eters [35–38]. Especially, a misaligned Gaussian beam is expanded by a set which is

completely mode-matched to the misaligned field. We will discuss how the misaligned

beam couples to the higher-order modes by means of the modal-expansion. We follow

the calculation by Anderson [36] and Vinet [33], but in our case the second-order ex-

pansion is required. This will give the basis to evaluate the coupling between the laser

beam and the cavity, or the two beams which are recombined in the Michelson type

interferometer. Only the results are shown in this section to avoid overburdening the

text with derivations of complicated equations. The detailed calculations are shown in

Appendix A.

5.6.1 Lateral Displacement

Consider the two coordinate systems, (x, y, z) and (x′, y′, z′), which are related to each

other by a small parallel displacement ax:

(x′, y′, z′) = (x− ax, y, z). (5.27)

A set of Hermite-Gaussian fields in (x, y, z) coordinate system are defined by Eqs. 5.2

and 5.3. Let us consider an Hermite-Gaussian beam on the z′ axis, which is represented

by {U ′
lm+} (Fig. 5.5). The prime symbol will always be used to specify the coordinate

system in this paper:

U ′
lm+ ≡ Ulm+(x′, y′, z′). (5.28)

If the displacement ax is much smaller than the waist radius w0, we can expand the

beam U ′
lm by the set {Ulm} to the second order of the displacement as

Ulm+(x′, y′, z′) = Ulm+(x− ax, y, z)

' Ulm+(x, y, z)− d

dx
Ulm+(x, y, z)ax +

1

2

d2

dx2
Ulm+(x, y, z)a2

x

≡ ∑
pq

< pq + |lm+′ > Upq+ (5.29)
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Figure 5.5: Parallel displacement of the beam.

where the expansion coefficient < pq + |lm+′ > is defined by

< pq + |lm+′ > ≡
∫ ∫

U∗
pq+(x, y, z)Ulm+(x′, y′, z′)dxdy

'
∫ ∫ [

Ulm+ +
d

dx
Ulm+ax +

1

2

d2

dx2
Ulm+a2

x

]
U∗

pq+dxdy (5.30)

On the assumption that 1 >> ax/w0 and the input beam is the fundamental Gauss-

ian beam in an arbitrary coordinate system, we can neglect the power translation to

the modes higher than first off-axis mode (see Appendix A). After carrying out the

above expansion, we obtain the expression for the laterally misaligned modes as

Px(ax) ∗ U00+(x, y, z) '
[
1− 1

2

(
ax

w0

)2
]
U00+ +

ax

w0

U10+ (5.31)

Px(ax) ∗ U10+(x, y, z) '
[
1− 3

2

(
ax

w0

)2
]
U10+ − ax

w0

U00+ (5.32)

From the above expressions, we can see that (ax/w0)
2 is the order of the optical power

that is transferred from one mode to others by the parallel transport.

5.6.2 Angular Tilt

Suppose that there is an angular tilt αx between the beam and the z axis (Fig. 5.6).

In this case, the two coordinate systems are related to each other as




x′

z′


 =




cos αx − sin αx

sin αx cos αx







x

z


 (5.33)

y′ = y. (5.34)
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Figure 5.6: Angular tilt of the beam.

In the same way as the parallel displacement, we can neglect the modes higher than

the first off-axis mode on condition that the inequality 1 >> αx/α0 >> α0 is satisfied.

The misaligned beams are expanded by the Hermite-Gaussian modes of the tilted

coordinates to the second order of the perturbation as

Rx(αx) ∗ U00+(x, y, z) '
[
1− 1

2

(
αx

α0

)2
]
U00+ − i

αx

α0

U10+ (5.35)

Rx(αx) ∗ U10+(x, y, z) '
[
1− 3

2

(
αx

α0

)2
]
U10+ − i

αx

α0

U00+ (5.36)

For the angular tilt, (αx/α0)
2 is the order of the optical power which is transferred

from one mode to others.

5.6.3 Parallel Displacement Along the Optical Axis

The parallel displacement along the optical axis has the first-order coupling to the

n = 2 or higher order modes (Refs. 36, 39, and 40):

Pz(δz) ∗ U00+(x, y, z) ≡ U00+(x, y, z − δz)

= U00+(x, y, z) exp iKδz + O

(
δz

z0

)
× (l + m = 2 terms)

+O

(
δz2

z2
0

)
(5.37)

Pz(δz) ∗ U10+(x, y, z) ≡ U10+(x, y, z − δz)

= U10+(x, y, z) exp iKδz + O

(
δz

z0

)
× (l + m = 3 terms)

+O

(
δz2

z2
0

)
. (5.38)
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Here we do not take the mismatching effect into account. In such cases, the displace-

ment δz is the second-order term of ax and αx. Therefore we do not have to make the

second-order perturbation calculation.

5.6.4 Matrix Representation of a Misalignment-Operator

We have seen that the field which propagates the forward direction can be considered

as the linear combination of only U00+ and U10+ modes, so far as we do not take the

mismatching effect into account. Thus any paraxial field is represented as the two-rows

vector as

[E+] =




< 00 + |E+ >

< 10 + |E+ >


 . (5.39)

The operators we have calculated are written in the matrix form as:

[Px(ax)]+ =




1− 1
2

(
ax

w0

)2 − ax

w0

ax

w0
1− 3

2

(
ax

w0

)2


 (5.40)

[Rx(αx)]+ =




1− 1
2

(
αx

α0

)2 −iαx

α0

−iαx

α0
1− 3

2

(
αx

α0

)2


 (5.41)

[Pz(δz)]+ = eiKδz




1 0

0 1


 (5.42)

From Eqs 5.10, 5.11, and 5.12, it is apparent that the matrices for the back-propagating

fields are defined as

[Px(ax)]− = [Px(ax)]
∗
+ (5.43)

[Rx(αx)]− = [Rx(αx)]
∗
+ (5.44)

[Pz(δz)]− = [Pz(δz)]
∗
+ . (5.45)

5.7 Matrices of the Misaligned Optical Components

We will calculate the expression for the matrices of the misaligned optical components

to the second order of the perturbation. We confine ourselves to the two-dimensional
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Figure 5.7: A mirror is reflecting the incoming beam. Because the radius of cur-

vature of the mirror is completely matched to the wavefront, the waist radius is

conserved.

case for simplicity. In such a situation, it is possible to take into account only the

fundamental and first off-axis mode (see Appendix A for the details). The transmission

and reflection coefficient are the 2× 2 matrices, and the field is expressed as the vector

which has two rows.

5.7.1 Modal Expansion

To calculate the transmission and the reflection coefficient of the optical components,

it is necessary to expand the misaligned beam by a set of the Hermite-Gaussian modes.

Here only the results of the expansions are shown. For the detailed calculations, see

Appendix A.

5.7.2 Misalignment of the Mirror

Suppose that a mirror is reflecting an incoming laser beam whose field is the (l +m)th

order Hermite-Gaussian field, Ein = Ulm+. We will neglect the mismatching effect, i.e.,

the radius of curvature of the mirror and the wavefront are equal to each other at the

reflection point (Fig. 5.7). Thus the reflected beam is the (l + m)th order Hermite-
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5.7. Matrices of the Misaligned Optical Components

Gaussian field on another axis with the same waist radius as the input, which is written

as U ′
lm−. When the mirror has an angular rotation α, the reflected field is expressed as

Er = rU ′
lm− exp 2i[−Kd + (l + m + 1)η(d)]

= r {Pz[d(1− cos 2α)] ∗ Px(−d sin 2α) ∗Rx(2α) ∗ Ulm−}
× exp 2i[−Kd + (l + m + 1)η(d)] (5.46)

where r is the reflection coefficient of the mirror, d is the distance between the waist

and the mirror, and Pz is a parallel displacement operator along the z axis. Since the

phase of the field must be continuous4, the phase factor exp 2i[−Kd + (l + m + 1)η(d)]

appears in the above expression.

By using Eqs. 5.43, 5.44, 5.45, and 5.46, the following equation is obtained:

[Er] = re2i[−Kd+η(d)]




1 0

0 e2iη(d)


 [Pz(2α

2d)]−[Px(−2dα)]−[Rx(2α)]−[Ein]

= re2i[−Kd+η(d)−2dα2/z0α2
0]




1 0

0 e2iη(d)




×



1− 2α2

α2
0

(
1 + d2

z2
0
− 2i d

z0

)
2i α

α0

(
1− i d

z0

)

2i α
α0

(
1 + i d

z0

)
1− 2α2

α2
0

(
3 + 3d2

z2
0

+ 2i d
z0

)


 [Ein] . (5.47)

The imaginary part in the diagonal terms can be neglected, because it does not affect

the power of the field Ir = |Er|2 to the second order of perturbation. The reflection

coefficient is thus approximated as

[r] = re2i[−Kd+η(d)−2dα2/z0α2
0]




1 0

0 e2iη(d)




×



1− 2α2

α2
0

(
1 + d2

z2
0

)
2i α

α0

(
1− i d

z0

)

2i α
α0

(
1 + i d

z0

)
1− 2α2

α2
0

(
3 + 3d2

z2
0

)


 (5.48)

The transmitted beam is not affected by the mirror (we neglect the lens effect of

the mirror), therefore the transmission coefficient of the mirror is represented as the

4All of the phase discontinuity between the input and the reflected field must be from the reflection

coefficient of the amplitude of the field.
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unit matrix times the conventional transmission coefficient:

[t] = t




1 0

0 1


 . (5.49)

Sometimes it is convenient to neglect the Gouy phase shift for the fundamental

mode, therefore we will write Eq. 5.47 as

[r] = re−2id[K+2α2/z0α2
0]




1 0

0 e2iη(d)







1− 2α2

α2
0

(
1 + d2

z2
0

)
2i α

α0

(
1− i d

z0

)

2i α
α0

(
1 + i d

z0

)
1− 2α2

α2
0

(
3 + 3d2

z2
0

)


 .

(5.50)

5.7.3 Misalignment of the Fabry-Perot Cavity

It is possible to get the reflection coefficient matrix of the Fabry-Perot cavity by using

Eq. 5.47 or Eq. 5.50 directly. However, it is simpler to use the reflection coefficients for

the respective modes to build the matrix. The reflection coefficient for the fundamental

mode of the cavity is

rc0(Ω) ≡ rc(Ω), (5.51)

where Ω is the frequency of the field and rc is defined by Eq. 4.4. For the first off-axis

mode, the reflection coefficient is

rc1(Ω) ≡ rc(Ω− 2πνG), (5.52)

where νG is represented by Eq. 5.17. Therefore, in the coordinate system where the

cavity axis lies on the z axis, the reflection matrix is written as

[rc]aligned =




rc0 0

0 rc1


 . (5.53)

To obtain the reflection coefficient matrix in a general coordinate system, first we have

to expand the input beam in terms of the cavity modes. Equation 5.53 is used to

get the reflection field in the cavity’s coordinate system. Finally the reflected field is

expanded in terms of the modes on the desired coordinate system. By comparing the

input and the reflected field, we will get the elements of the matrix.
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z

αx
ax

Figure 5.8: Misalignment of the cavity. The angle between the cavity axis and the

z axis is αx.

Suppose that the angle between the cavity axis and the reference is αx, and the

waist of the cavity is on (ax, 0) in the xz-coordinate. The cavity axis is on the z′ axis

in the x′z′ coordinate. If the cavity comprises the flat mirror and the concave mirror,

the axis of the cavity is perpendicular to the flat mirror, and it lies on the center

of curvature of the concave mirror. The radius of curvature of the mirrors are well

matched to the wavefront, thus the reflected beam has the same waist radius as the

input (Fig. 5.8). The input field Ein is expressed in the x′z′-coordinate as

[Ein]
′ = [R′

x(−αx)]+[P ′
x(−ax)]+[Ein] (5.54)

where [Ein] and [Ein]
′ are the vector representation of the field in the xz- and x′z′-

coordinate, and R′
x and P ′

x are the rotation and the displacement operator in the x′z′-

coordinate system, respectively. The reflection field is then written by using Eq. 5.53

as

[Er]
′ = [rc]aligned[Ein]

′

= [rc]aligned[R
′
x(−αx)]+[P ′

x(−ax)]+[Ein]. (5.55)

In the xz coordinate system, this is represented as

[Er] = [Px(ax)]−[Rx(αx)]−[Er]
′

= [Px(ax)]−[Rx(αx)]−[rc]aligned[R
′
x(−αx)]+[P ′

x(−ax)]+[Ein]. (5.56)

The reflection matrix in the xz coordinate is defined as

[rc(ω)] ≡ [Px(ax)]−[Rx(αx)]−[rc(ω)]aligned[R
′
x(−αx)]+[P ′

x(−ax)]+
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5. Modal Analysis

≡



M00 M01

M10 M11


 (5.57)

with

M00 ≡ rc0 − a2
x

w2
0

(rc0 − rc1)− α2
x

α2
0

(rc0 + rc1)− 2i
ax

w0

αx

α0

(rc0 + rc1) (5.58)

M01 ≡ ax

w0

(rc0 − rc1) + i
αx

α0

(rc0 + rc1) (5.59)

M10 ≡ ax

w0

(rc0 − rc1) + i
αx

α0

(rc0 + rc1) (5.60)

M11 ≡ rc1 − a2
x

w2
0

(3rc1 − rc0)− α2
x

α2
0

(3rc1 + rc0) + 2i
ax

w0

αx

α0

(rc0 + rc1) . (5.61)

The imaginary part in the diagonal terms (2iaxαx/w0α0 term) can be neglected, be-

cause it does not affect the power of the field |Er|2 to the second order of perturbation.

Thus, the reflection matrix is simplified as

[rc(ω)] =




rc0 − a2
x

w2
0
(rc0 − rc1)− α2

x

α2
0
(rc0 + rc1)

ax

w0
(rc0 − rc1) + iαx

α0
(rc0 + rc1)

ax

w0
(rc0 − rc1) + iαx

α0
(rc0 + rc1) rc1 − a2

x

w2
0
(3rc1 − rc0)− α2

x

α2
0
(3rc1 + rc0)


 .

(5.62)

Note that the matrix has the different dependence on the angle- and the displacement-

misalignment. For example, if the length of the cavity is tuned to the fundamental mode

of the field, rc0(ω) is the positive real number. In this case, the first off-axis mode is out

of resonance, thus rc1(ω) is approximately equal to −1. The cavity is more sensitive to

the misalignment of the lateral displacement which is proportional to rc0 + 1 than the

angular misalignment which is proportional to rc0 − 1.

On the other hand, if neither the fundamental nor the off-axis mode is resonant

with the cavity, both rc0 and rc1 are approximately equal to −1. Therefore the cavity

is sensitive to the angular misalignment, and insensitive to the misalignment of the

lateral displacement.
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5.8 The Frequency Noise and the Misalignment of

the Cavity

Suppose that the input field has a frequency fluctuation. The field is expressed by the

sum of the carrier and the sidebands of the frequency noise with a vector form as

[Ein(t)] = eiΩt [1 + iφ(t)] [E0]

= eiΩt

[
1 + i

∫ 2πδν̃(ω)

iω
eiωtdω

]
[E0] (5.63)

where [E0] is a constant vector. The reflected field is written by using Eq. 5.62 as

[Er] = eiΩt

{
[rc(Ω)] + i

∫ 2πδν̃(ω)

iω
eiωt [rc(Ω + ω)] dω

}
[E0]

≡ eiΩt [A(t)] [E0] (5.64)

where [A] is a matrix which represents the effects of the misalignment and the frequency

noise. Suppose that only the fundamental mode is resonant with the cavity, thus the

reflection coefficient for the off-axis mode is approximated as a constant:

rc1(ω) ' rc0(−2πνG) ' −1 (5.65)

Under this assumption, each of the elements of the matrix [A] is calculated as follows:

A00(t) = rc0(0)

(
1− a2

x

w2
0

− α2
x

α2
0

) [
1 + iφ(t)− iΨφ

FP(t)
]
−

(
a2

x

w2
0

− α2
x

α2
0

)
[1 + iφ(t)]

= rc0(0)

[
1− a2

x

w2
0

(
1 +

1

rc0(0)

)
− α2

x

α2
0

(
1− 1

rc0(0)

)]

×
{

1 + iφ(t)− iΨφ
FP(t)

[
1 +

1

rc0(0)

(
a2

x

w2
0

− α2
x

α2
0

)]}
(5.66)

A01(t) = A10(t)

= rc0(0)





[(
1 + 1

rc0(0)

)
ax

w0
−

(
1− 1

rc0(0)

)
αx

α0
φ(t) + αx

α0
Ψφ

FP(t)
]

+i
[(

1 + 1
rc0(0)

)
ax

w0
φ(t) +

(
1− 1

rc0(0)

)
αx

α0
− ax

w0
Ψφ

FP(t)
]





(5.67)

A11(t) = −
[
1− a2

x

w2
0

(3 + rc0(0))− α2
x

α2
0

(3− rc0(0))

]

×
[
1 + iφ(t) + iΨφ

FP(t)rc0(0)

(
a2

x

w2
0

− α2
0

α2
0

)]
(5.68)
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5. Modal Analysis

where Ψφ
FP(t) is the additional phase shift caused by the cavity which is defined by

Eq. 4.31. Comparing Eqs. 4.27 and 4.31 with Eqs. 5.64 and 5.66, one can see that not

only the amplitude but also the phase of the fundamental mode in the reflected field is

changed by the misalignment. This is because the cavity have the different responses

to the fundamental and off-axis mode when it is tuned to the fundamental mode.

On the other hand, when both the fundamental and first off-axis mode are off-

resonant with the cavity, the reflection coefficient of the cavity for the two modes are

considered as constant;

rc0(ω)
∣∣∣
off−resonant

' rc1(ω)
∣∣∣
off−resonant

' −1 . (5.69)

The matrix A(t) is written as

[A(t)]
∣∣∣
off−resonant

' −{1 + iφ(t)}



1− 2α2
x

α2
0

2iαx

α0

2iαx

α0
1− 2 a2

x

w2
0
− 4α2

x

α2
0


 . (5.70)

Because the response of the cavity for the two modes are the same, only the amplitude

of the reflected field is changed by the misalignment.
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6. Fabry-Perot-Michelson

Interferometer

We will study a Fabry-Perot-Michelson interferometer as an example of the realistic

detector.

6.1 Fabry-Perot-Michelson Interferometer Used as

a Gravitational Wave Detector

A Fabry-Perot-Michelson (FPM) interferometer is a Michelson interferometer which

has a Fabry-Perot cavity in each of its arms to fold the optical path (Fig. 6.1). We will

call the FP cavity which is placed along the input beam as the parallel cavity, and the

cavity which is set perpendicular to the input beam as the perpendicular cavity. To

distinguish the physical quantities of the parallel and the perpendicular cavity, we will

attach the index “1” to the former and “2” to the latter (rf2 represents the reflection

coefficient of the front mirror of the perpendicular cavity, for example) 1. The sign of

the reflection coefficients of the mirrors of the cavity are chosen to be plus inside the

cavity. The reflection coefficient of the beamsplitter is plus on the side which faces the

parallel cavity.

When the gravitational radiation passes the interferometer, it produces the phase

shifts in the fields in the two optical paths, which have the same amplitude and the

opposite sign. In general, the reflected field from the parallel and the perpendicular

1Most of the symbols used here have been defined in the preceding sections; tb represents the

transmission coefficient of the beamsplitter, etc. We will not write down their definition again. Only

the definition of the newly introduced symbols will be presented.
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Figure 6.1: A conceptual view of a Fabry-Perot-Michelson interferometer. BS,

beamsplitter; FM, front mirror; EM, end mirror. The signs of the transmission

coefficient of the mirrors and the beamsplitter are defined in this figure.
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6.2. Extraction of the Signal

arm are written as

E1(t) = E0tbrc1(Ω) exp i
[
Ωt− θo1 + δφ(t− 2l1/c)− δθGR1(t)− δθl1(t)

−δΨGR
FP1(t− l1/c)− δΨL

FP1(t− l1/c)− δΨφ
FP1(t− l1/c)

]

= E0tbrc1(Ω) exp i(Ωt− θo1 − δθ1(t)− δΨ1(t)) (6.1)

E2(t) = E0rbrc2(Ω) exp i
[
Ωt− θo2 + δφ(t− 2l2/c)− δθGR2(t)− δθl2(t)

−δΨGR
FP2(t− l2/c)− δΨL

FP2(t− l2/c)− δΨφ
FP2(t− l2/c)

]

≡ E0rbrc2(Ω) exp i(Ωt− θo2 − δθ2(t)− δΨ2(t)) (6.2)

in front of the beamsplitter, where θoi (i = 1, 2) are the static phase delay, δθi are the

phase fluctuations which are produced in the paths between the beamsplitter and the

front mirrors, and δΨi represent the fluctuations which are produced in the cavities.

Other symbols in the above equation are defined in the preceding sections. It is possible

to detect the effect of the gravitational radiation by measuring the phase of the two

field precisely.

6.2 Extraction of the Signal

To extract the signal from the interferometer, various kind of techniques have been

developed. Let us assume that we want to measure the phase of the field which has the

fluctuation of the amplitude and the phase at the same time. When the fluctuation is

small enough, the field is written as

Esig(t) = [1 + δa(t)] exp i [Ωt + δφ(t)]

' [1 + δa(t) + iδφ(t)] exp iΩt (6.3)

to the first order of the fluctuations, where δa(t) and δφ(t) represent the small fluctua-

tion in the amplitude and the phase, respectively. We call this field as the ’target field’

tentatively, because the aim of the measurement is to detect the phase of this field.

The phase of the target field is measured by using another oscillator as the phase-

reference. Without losing generality, the field of the reference oscillator is written as

Eref(t) = bref(t) exp i [Ωt + φref(t)] (6.4)
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6. Fabry-Perot-Michelson Interferometer

where bref(t) and φref(t) are the arbitrary real functions.

The idea of the phase detection is to ’mix’ the target field and the reference field

to correct the cross-terms of these fields. For this purpose, the field of the target and

the reference are added to give the intensity;

I(t) = |Esig(t) + Eref(t)|2

= |Esig(t)|2 + |Eref(t)|2 + [Esig(t)E
∗
ref(t) + c.c.] . (6.5)

By using some techniques which will be described later, only the cross-terms are selected

as the signal;

Icross(t) = Esig(t)E
∗
ref(t) + c.c.

= 2bref(t)
{

[1 + δa(t)] cos φref(t) + δφ(t) sin φref(t)
}
. (6.6)

When the relative phase of the reference and the signal field are quadrature, i.e.

φref(t) =
(
n +

1

2

)
π (6.7)

where n is an integer, it is apparent that only the term which is proportional to the

phase of the signal field is detected;

Icross(t) = (−1)n2bref(t)δφ(t). (6.8)

Since we know the waveform of the reference, it is possible to reconstruct the waveform

of the phase δφ(t) from the above expression in principle.

To summarize, for the phase measurement of the target field, we have to introduce

a reference which have the quadrature phase to the target. The field of the target

and the reference are added and detected as the intensity. Only the cross-terms of the

target and the reference are selected as the signal which is proportional to the phase

of the target field. Even if the target has the amplitude fluctuation, it will not be

detected.

If the frequency of the target and the reference are the same (i.e. bref(t) is a

constant), the detection procedure is called the homodyne detection. If we use a

frequency-shifted field as the reference (for example, bref(t) ∝ sin ωreft), it is called the

heterodyne detection. First we will study the pre-modulation as an example of the

heterodyne detection.
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Figure 6.2: A simple Michelson interferometer using the pre-modulation technique.

There is a difference in two optical lengths which is large enough for the sidebands to

be transmitted to the anti-symmetric port. The optical power in the anti-symmetric

port is detected and mixed with the local oscillator to produce the signal which is

proportional to the fluctuation of the phase-difference in two paths. Most of the

optical power is reflected from the interferometer.

6.2.1 Signal Extraction by Pre-Modulation

It is possible to sense the phase-difference between two optical paths by monitoring

the anti-symmetric output of the interferometer using RF modulation technique, in

the same way as Pound-Drever technique (see Sec. 4.2). The RF sidebands are used as

the reference to measure the phase of the carrier. Several scheme have been developed

(Refs. 41, 42) for this purpose, but we will study only the pre-modulation scheme.

Phase modulation is applied to the input field of the interferometer. However, as one

can see from Eq. 3.23, there will be no modulation sidebands as well as the carrier in

the anti-symmetric port if the length between the beamsplitter and the front mirrors

are equal to each other. In the pre-modulation configuration, the difference of the

length between the two optical paths is large enough for the modulation sidebands

to be transmitted to the anti-symmetric port of the interferometer even if there is no

carrier transmitted (Fig. 6.2).

The phase-modulated input field is expressed in Eq. 4.34. The modulation frequency

is chosen so that the sidebands are far from the resonance. The field of the anti-

67



6. Fabry-Perot-Michelson Interferometer

symmetric output is written in the form

Eanti = E0tbrbe
iΩt

{
e−i[θo1+δθ1(t)]

[
rc1(0)e−iδΨ1(t) + imrSB

c sin (ωmt− θm1)
]

−e−i[θc2+δθ2(t)]
[
rc2(0)e−iδΨ2(t) + imrSB

c sin (ωmt− θm2)
]}

, (6.9)

where θmi (i = 1, 2) are the difference between the phase shift of the carrier and the

sidebands which are produced between the beamsplitter and the near mirrors and rSB
c

is the reflection coefficient of the cavity for the sidebands, respectively. The sidebands

are out of resonance, therefore rSB
c is almost equal to unity and no phase fluctuation is

added by the cavity:

rSB
c ' −1. (6.10)

The phase shift θmi comprises the static term 2kmli and the fluctuation. However,

|θmi/ωm| is about the same order of |θi/Ω|. This means that the fluctuation in θmi has

the same order of amplitude as θiωm/Ω ∼ 10−7θi, assuming that the optical frequency

and the modulation frequency are the order of several hundreds terahertz and several

tens megahertz, respectively. Therefore we will neglect the fluctuation in θmi;

θmi ' 2kmli (i = 1, 2). (6.11)

When we define the mean and the difference of the static part of the phase delay as

θo ≡ θo1 + θo2

2
(6.12)

∆θo ≡ θo1 − θo2 (6.13)

and the common- and the differential-fluctuation of the phase as

δθ+ ≡ δθ1 + δθ2 (6.14)

δθ− ≡ δθ1 − δθ2, (6.15)

equation 6.9 is re-written as

Eanti = E0tbrbe
i(Ωt−θo−δθ+/2)

{
e−i

∆θo+δθ−
2

[
rc1(0)e−iδΨ1 + imrSB

c sin (ωmt− θm1)
]

−ei
∆θo+δθ−

2

[
rc2(0)e−iδΨ2 + imrSB

c sin (ωmt− θm2)
]}

. (6.16)
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The difference of the optical path lengths is controlled in such a way that the static

part of the difference of the phase is an integer times 2π;

∆θo = 2K(l1 − l2)

= 2nπ (6.17)

where n is an integer. The antisymmetric port is dark for the carrier, but a part of

the sidebands still appears in the anti-symmetric port, even if there is no fluctuation

(i. e. δθ− = 0). In this case, the intensity of the field is calculated from Eq. 6.16 as

Ianti = |Eanti|2

= I0TbRb

{∣∣∣rc1e
−iδΨ1 + imrSB

c sin(ωmt− θm1)
∣∣∣
2

+
∣∣∣rc2e

−iδΨ2 + imrSB
c sin(ωmt− θm2)

∣∣∣
2

− e−iδθ−
[
rc1e

−iδΨ1 + imrSB
c sin(ωmt− θm1)

]

×
[
rc2e

iδΨ2 − imrSB
c sin(ωmt− θm2)

]

+ c. c.

}
. (6.18)

If the modulation frequency is much larger than the characteristic frequency of the

fluctuations, i.e.

ω2
m >>

〈|δ̇θ|2〉
〈|δθ|2〉 ,

〈|Ψ̇1 − Ψ̇2|2〉
〈|Ψ1 −Ψ2|2〉 , (6.19)

the power spectral density of the intensity has the peaks at ω ≈ 0, ωm, and 2ωm. In

this case, it is possible to extract the terms which have the angular frequency ω ≈ ωm

by using the band pass filter (Fig. 6.3). The terms which is proportional to exp(±iωmt)

are the cross terms of the carriers and the sidebands, which is represented by

I±ωm = mI0TbRbr
SB
c

{
−2rc1 sin δΨ1 sin(ωmt− θm1)− 2rc2 sin δΨ2 sin(ωmt− θm2)

−e−iδθ−
[
i sin(ωmt− θm1)rc2e

iδΨ2 − i sin(ωmt− θm2)rc1e
−iδΨ1

]

−eiδθ−
[
−i sin(ωmt− θm1)rc2e

−iδΨ2 + i sin(ωmt− θm2)rc1e
iδΨ1

]}

' −2mI0TbRbr
SB
c

×
{[

δΨ1rc1(0)− δΨ2rc2(0)
][

sin(ωmt− θm1)− sin(ωmt− θm2)
]
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Figure 6.3: Power spectral density of the amplitude (left) and the intensity (right)

of the field in the anti-symmetric port with the modulation. If the modulation

frequency is much larger than the characteristic frequency of the fluctuations, the

spectrum of the intensity has peaks at ω ∼ 0, ωm, 2ωm. Only the peak at ω ∼ ωm is

extracted.

+δθ−
[
sin(ωmt− θm1)rc2(0)− sin(ωmt− θm2)rc1(0)

]}

≡ −2I0TbRbr
SB
c meff ×

{
[δΨ1rc1(0)− δΨ2rc2(0)] sin(ωmt + δm)

+δθ−
m

meff

[
sin(ωmt− θm1)rc2(0)− sin(ωmt− θm2)rc1(0)

]}
, (6.20)

where

meff ≡ m
√

2 [1− cos 2km(l1 − l2)] , (6.21)

tan δm ≡ − sin θm1 − sin θm2

cos θm1 − cos θm2

. (6.22)

These terms are lock-in detected by mixing the intensity signal with the local oscillator.

The phase of the local oscillator must be tuned to keep the amplitude of the signal at

its maximum, i.e.,

vLO(t) ∝ sin(ωmt + δm). (6.23)

The mixed signal is proportional to the fluctuation of the phase-difference of the carriers

in two paths;

vmix ' R
eηI0

h̄Ω
TbRbr

SB
c meff

[
δΨ1rc1(0)− δΨ2rc2(0) +

rc1(0) + rc2(0)

2
δθ−

]

= R
eηI0

h̄Ω
TbRbr

SB
c meffrc(0)

[
δΨ1

rc1(0)

rc(0)
− δΨ2

rc2(0)

rc(0)
+ δθ−

]
(6.24)

where rc(ω) is the mean reflection coefficient of the cavities, R is the constant which

have the dimension of the resistance, e is the elementary electric charge, η is the
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Figure 6.4: A Fabry-Perot-Michelson interferometer in the homodyne operation.

The difference in two optical length is controlled in such a way that the optical

power in symmetric and anti-symmetric output is equal to each other. In such a

situation, the fluctuation of the difference of the two optical power can be used to

sense the fluctuation of the phase-difference.

quantum efficiency of the photo-detector, and h̄ is the Planck’s constant divided by

2π, respectively. If rc1(0) = rc2(0), the above equation is simplified as

vmix ' R
eηI0

h̄Ω
TbRbr

SB
c rc(0)meff(δΨ1 − δΨ2 + δθ−). (6.25)

The effective modulation index meff is proportional to the length-difference between

the beamsplitter and the front mirrors (when km(l1 − l2) << 1), therefore the length-

difference must be large enough to obtain a considerable amplitude of effective modu-

lation index.

6.2.2 Homodyne Detection of the Signal

In the homodyne detection, each of the carrier field itself is used as the reference to

measure the phase of the carrier from another cavity. Figure 6.4 shows the concept of

how the homodyne detection is achieved. Compared with the heterodyne detection,

there is no modulation sideband in the field. Therefore, by using Eq. 6.9, the field of
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anti-symmetric and symmetric port are written as

Eanti = E0tbrbe
iΩt

{
e−i[θo1+δθ1(t)+δΨ1(t)]rc1(0)− e−i[θo2+δθ2(t)+δΨ2(t)]rc2(0)

}
(6.26)

Esym = E0e
iΩt

{
Tbe

−i[θo1+δθ1(t)+δΨ1(t)]rc1(0) + Rbe
−i[θo2+δθ2(t)+δΨ2(t)]rc2(0)

}
.(6.27)

Suppose we control the optical length between the beamsplitter and the mirror in

such a way that static part of the difference of the phase of the beams is written as

θo1 − θo2 ≡ π
(
n +

1

2

)
(6.28)

where n is an integer. From Eqs. 6.26, 6.27, and 6.28, the intensity of the antisymmetric

and symmetric port are calculated as

Ianti = I0TbRb [Rc1 + Rc2 + 2rc1rc2 sin(δΨ1 − δΨ2 + δθ−)] (6.29)

Ianti = I0

[
T 2

bRc1 + R2
bRc2 − 2TbRbrc1rc2 sin(δΨ1 − δΨ2 + δθ−)

]
. (6.30)

We can electronically subtract the constant term in the above expressions in order to

obtain a signal which is proportional to the term sin δΨ1 − δΨ2 + δθ− as

Ie ≡ Ianti − TbRb(Rc1 + Rc2)

T 2
bRc1 + R2

bRc2

Isym

= 2I0TbRbrc1rc2(1 + α) sin(δΨ1 − δΨ2 + δθ−). (6.31)

In the above equation, α ≡ TbRb(Rc1+Rc2)/(T
2
bRc1+R2

bRc2) is an electronic gain factor

which is nearly equal to unity in a well-balanced interferometer (it is equal to unity

when the transmittance and the reflectance of the beamsplitter are equal to each other,

even if rc1 6= rc2). Thus we can use the signal Ie to sense any small phase-difference

between two paths which is represented as δΨ1 − δΨ2 + δθ− [8] (Fig. 6.4). Note that

the optical power in the symmetric and anti-symmetric output is nearly equal to each

other in this homodyne operation.

We have directly obtained the product of the carriers from the different paths in

the above calculation. Thus it can be said that the DC technique is the technique to

measure the difference of the phase from the two cavities directly.
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6.3. Frequency Response of the Interferometer

6.3 Frequency Response of the Interferometer

The frequency response of the interferometer to the gravitational radiation, the fre-

quency fluctuation, and the motion of the mirrors will be shown here2. Again, we

assume that the detector is optimally placed for the propagation direction and the po-

larization of the incoming gravitational wave. Since all of the equations needed for the

derivation of the frequency responses have been presented in the preceding chapters,

only the results of the calculations are shown here.

6.3.1 Frequency Response to Gravitational Radiation

When gravitational wave passes the detector, the output of the FPM interferometer is

extracted by pre-modulation as

∆θ(t) ≡ δθGR1(t)− δθGR2(t) +
rc1(0)

rc(0)
δΨGR

FP1(t− l1/c)− rc2(0)

rc(0)
δΨGR

FP2(t− l2/c)

≡ +δθGR
MI (t) + δΨGR

FPM(t)

≡
∫

h̃(ω)HGR
MI (ω)eiωtdω +

∫
h̃(ω)HGR

FPM(ω)eiωtdω, (6.32)

where HGR
MI (ω) is defined by Eq. 3.35 and HGR

FPM(ω) is defined as

HGR
FPM(ω) ≡ rc1(0)

rc(0)
HFP1(ω) exp(−iωl1/c) +

rc2(0)

rc(0)
HFP2(ω) exp(−iωl2/c)

∼ Ω

2ωc1

1

rc(0)

F1Tf1

π

e−i
ωl1

c

1 + i ω
ωc1

+
Ω

2ωc2

1

rc(0)

F2Tf2

π

e−i
ωl2

c

1 + i ω
ωc2

(6.33)

By using Eqs. 3.35 and 6.33, one can calculate the ratio of HGR
FPM and HGR

MI as

∣∣∣∣∣
HGR

MI (ω)

HGR
FPM(ω)

∣∣∣∣∣ ∼
l̄

1
rc(0)

F2
Tf

π2 L
. (6.34)

In the most of the interferometric gravitational wave detectors, this ratio is the order

of 10−5 or less, thus HGR
MI can be neglected3.

2We will calculate the response of the signal extracted by the pre-modulation technique. However,

for the symmetric case, the frequency responses of the two scheme are identical. The difference between

these two schemes in asymmetric case will be discussed in Chap. 7
3The product of the finesse and the cavity-length is on the order of 105m, while the mean distance

between the beamsplitter and the near mirrors is on the order of 1 ∼ 10 meters. The product of
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6. Fabry-Perot-Michelson Interferometer

Symmetric case

It is important to note the two special cases. If the parameters of the cavities are

the same (F1 = F2 = F , rc1 = rc2 = rc etc.), the frequency response of the FPM

interferometer to the gravitational radiation is written as

HGR
FPM(ω) ∼ Ω

ωc

1

rc(0)

FTf

π

1

1 + i ω
ωc

e−iωl̄/c cos(ω∆l/2c) (6.35)

where l and ∆l are the mean and the difference of the distance between the beamsplitter

and the front mirrors.

No-loss case

Another important case is when there is no optical loss and the reflectance of the end

mirror is equal to unity. In such a situation, the finesse of the cavity is determined by

the transmission coefficient of the front mirror as

Tfi = (1− rfi)(1 + rfi) ' 2π

Fi

(i = 1, 2). (6.36)

Also, the reflection coefficient of the cavity is equal to unity. Equation 6.33 is simplified

as

HGR
FPM(ω) ∼ Ωe−iωl̄/c

(
1

ωc1

1

1 + i ω
ωc1

e−iω∆l/2c +
1

ωc2

1

1 + i ω
ωc2

e+iω∆l/2c

)
(6.37)

6.3.2 Frequency Response to Fluctuations of the Light Phase

Suppose that the input field has frequency fluctuations as expressed in Eq. 4.24. The

signal which is obtained in pre-modulation technique is calculated as

∆θ(t) = − [δφ(t− 2l1/c)− δφ(t− 2l2/c)]

−
[
rc1(0)

rc(0)
δΨ

(f)
FP1(t− 2l1/c)− rc2(0)

rc(0)
δΨ

(f)
FP2(t− 2l2/c)

]

≡ −δθφ
MI(t)− δΨφ

FPM(t). (6.38)

the finesse and the transmission coefficient of the front mirror is about 2π when there are no optical

losses in the mirrors and the reflection coefficients of the end mirrors are equal to unity. The reflection

coefficient of the cavity is on the order of 1.
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6.3. Frequency Response of the Interferometer

We define the frequency response which is represented by Hφ
MI and Hφ

FPM as

Hφ
MI(ω) =

2π

iω

(
e−2iωl1/c − e−2iωl2/c

)

=
−4π

iω
e−2iωl̄1/c sin

ω∆l

c
(6.39)

Hφ
FPM(ω) =

rc1(0)

rc(0)
H

(f)
FP1(ω)e−2iωl1/c − rc2(0)

rc(0)
H

(f)
FP2(ω)e−2iωl2/c

=
2

rc(0)

[F1Tf1

ωc1

1

1 + i ω
ωc1

e−2iωl1/c − F2Tf2

ωc2

1

1 + i ω
ωc2

e−2iωl2/c

]
. (6.40)

By using these response function, the terms δθφ
MI and δΨφ

FPM are written as

δθφ
MI(t) =

∫
Hφ

MI(ω)δν̃(ω)eiωtdω (6.41)

δΨφ
FPM(t) =

∫
Hφ

FPM(ω)δν̃(ω)eiωt. (6.42)

When the parameters of the two cavities are the same, Hφ
FPM is simplified to

Hφ
FPM(ω) =

−4i

rc(0)

FTf

ωc

1

1 + i ω
ωc

e−2iωl/c sin ω∆l/c. (6.43)

The expression of the function Hφ
FPM is similar to HGR

FPM. However, the phase noise of the

laser is a common fluctuation to both of the cavities, while the gravitational radiation

is the differential one. Thus, when the parameters of the cavities are the same, Hf
FPM

is proportional to O(ω∆l/c) while HGR
FPM is proportional to 1 + O(ω2∆l2/c2).

6.3.3 Frequency Response to the Motion of the Mirrors

Let us consider the motion of the mirrors. The distance between the beamsplitter and

the near mirrors are defined as li + δli(t) (i = 1, 2), where li is a static term and δli is

a fluctuation. In the same way, the lengths of the cavities are defined as Li + δLi(t)

(i = 1, 2).

The signal that is extracted by pre-modulation is written as

∆θ(t) = δθl1(t)− δθl2(t)
rc1(0)

rc(0)
δΨL

FP1(t− l1/c)− rc2(0)

rc(0)
δΨL

FP2(t− l2/c)

= δθl−
MI(t) + δθl+

MI(t) + δΨL−
FPM(t) + δΨL+

FPM(t), (6.44)
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6. Fabry-Perot-Michelson Interferometer

where the definition of δθl−
MI and δθl+

MI are given by Eqs. 3.47, 3.48, and 3.49. The

definition of δΨL±
FPM is given by

δΨL−
FPM(t) ≡

∫
δ̃L−(ω)HL−

FPM(ω)eiωtdω (6.45)

δΨL+
FPM(t) ≡

∫
δ̃L+(ω)HL+

FPM(ω)eiωtdω, (6.46)

where the difference and the sum of the motion δ̃L± are defined by

δ̃L±(ω) ≡ δ̃L1(ω)± δ̃L2(ω), (6.47)

and the frequency frequency response of a FPM interferometer to the common motion

and the differential motion are written as

HL−
FPM(ω) ≡ 1

2

[
rc1(0)

rc(0)
HL

FP1(ω) exp(−i
ωl1
c

) +
rc2(0)

rc(0)
HL

FP2(ω) exp(−i
ωl2
c

)

]

=
Ω

crc(0)


F2

1Tf1

π2

1

1 + i ω
ωc1

e−iωl1/c +
F2

2Tf2

π2

1

1 + i ω
ωc2

e−iωl2/c


 (6.48)

HL+
FPM(ω) ≡ 1

2

[
rc1(0)

rc(0)
HL

FP1(ω) exp(−i
ωl1
c

)− rc2(0)

rc(0)
HL

FP2(ω) exp(−i
ωl2
c

)

]

=
Ω

crc(0)


F2

1Tf1

π2

1

1 + i ω
ωc1

e−iωl1/c − F2
2Tf2

π2

1

1 + i ω
ωc2

e−iωl2/c


 (6.49)

6.4 Optical Recombination of the Light Beams

A term “recombination” is used associated with Michelson-type interferometers if the

beams divided into two paths are combined again on the beamsplitter. This term is of-

ten used in contrast with the “locked FP” type interferometers, in which the beams are

independently detected by using optical isolators (Figure 6.5). In locked-FP interfer-

ometers, the phase for each of the beams is detected separately. The recombined FPM

configuration is indispensable for the interferometric gravitational wave detectors, be-

cause of two outstanding advantages. The first is that a power-recycling technique [23]

can be applied to the interferometer in order to improve the strain sensitivity limited

by the shot noise. The second is that the effect of the common-mode frequency noise

of the laser on the strain sensitivity can be reduced in the recombination configuration,

which will be described in the next chapter.
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Figure 6.5: The locked Fabry-Perot interferometer. The beams reflected by the

cavities are detected independently by using optical isolators.
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7. Asymmetry of the interferometer

We have seen that the gravitational radiation and the differential motion of the

mirrors produce the differential phase shift in the two arms of the FPM interferome-

ter, while the common motion of the mirrors and the frequency fluctuation produce

the common phase shift. We will call the frequency noise and the common motion of

the mirrors the common-mode noise. From Eqs. 6.33, 6.40, 6.48, and 6.49, it is ap-

parent that the common-mode noise disappears when the interferometer is completely

symmetric1. However, when there is any asymmetry, a small fraction of the common

mode phase shift is detected and distorts the gravitational radiation signal. Therefore

it is useful to study the frequency response of the interferometer to the common-mode

phase shifts from the point of view of asymmetry.

7.1 Non-Geometrical Asymmetry

7.1.1 Asymmetry of the Optics for the Carrier

We represent the mean value of the constant parameters of the interferometer by the

bar-symbol, and the difference by ∆:

l̄ ≡ l1 + l2
2

(7.1)

∆l ≡ l1 − l2 (7.2)

F ≡ F1 + F2

2
(7.3)

1Both the differential- and common-mode terms disappear when the interferometer is symmetric.

However, the differential-mode signal is proportional to meff , while the common-mode noise is propor-

tional to meff×O(ω∆l/c). Thus the common-mode noise goes to zero faster than the differential-mode

signal.
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7. Asymmetry of the interferometer

∆F ≡ F1 −F2, (7.4)

for example. The ∆-terms are the parameters which characterize the asymmetry of the

interferometer. The frequency response of the interferometer in Eqs. 6.33, 6.40, 6.48,

and 6.49 are expanded in terms of the asymmetry-parameters as

HGR
FPM(ω) ∼ 2HGR

FP (ω)e−iωl̄/c

=
Ω

ωc

1

rc(0)

FTf

π

1

1 + i ω
ωc

e−iωl̄/c (7.5)

Hφ
FPM(ω) =

e−2iωl̄/c

rc(0)

×
{[

rc1H
φ
FP1(ω)− rc2H

φ
FP2(ω)

]
− iω∆l

c

[
rc1H

φ
FP1(ω) + rc2H

φ
FP2(ω)

]}

∼ 2

rc(0)

FTf

ωc

e−2iωl̄/c

1 + i ω
ωc

(
2∆F
F

1 + i ω
2ωc

1 + i ω
ωc

+
∆Tf

Tf

+
∆L

L

1

1 + i ω
ωc

− 2iω∆l

c

)

=
e−iωl̄/c

νo

HGR
FPM(ω)

(
2∆F
F

1 + i ω
2ωc

1 + i ω
ωc

+
∆Tf

Tf

+
∆L

L

1

1 + i ω
ωc

− 2iω∆l

c

)
(7.6)

H
L−
FPM(ω) ∼ 2Ω

crc(0)

F2
Tf

π2

1

1 + i ω
ωc

e−iωl̄/c

=
1

L
HGR

FPM(ω) (7.7)

H
L+

FPM(ω) =
e−iωl̄/c

rc(0)

×
{[

rc1H
L
FP1(ω)− rc2H

L
FP2(ω)

]
− iω∆l

2c

[
rc1H

L
FP1(ω) + rc2H

L
FP2(ω)

]}

∼ Ω

crc(0)

F2
Tf

π2

e−iωl̄/c

1 + i ω
ωc

(
2∆F
F

1 + i ω
2ωc

1 + i ω
ωc

+
∆Tf

Tf

− ∆L

L

i ω
ωc

1 + i ω
ωc

− iω∆l

c

)

=
1

2L
HGR

FPM(ω)

(
2∆F
F

1 + i ω
2ωc

1 + i ω
ωc

+
∆Tf

Tf

− ∆L

L

i ω
ωc

1 + i ω
ωc

− iω∆l

c

)
(7.8)

to the first order of the asymmetry parameters, where HGR
FP (ω) is the mean response

function of the cavities. In the above expression, the parameters ∆F , ∆Tf , and ∆L

are the parameters which describe the asymmetry of the cavities, while ∆l describes

the asymmetry of the length between the beam splitter and the front mirrors.
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7.1. Non-Geometrical Asymmetry

Correction for Homodyne Scheme

All of the above presented calculations are for the P-D-H detection scheme. In the

homodyne scheme, since only the difference of the phase between the carriers rather

than the amplitude is detected, correction terms are needed for the asymmetry analysis:

−e−iωl̄/c

νo

HGR
FPM(ω)× ∆rc

rc(0)
(7.9)

has to be added to Eq. 7.6, and

− 1

2L
HGR

FPM(ω)× ∆rc

rc(0)
(7.10)

to Eq. 7.8, where ∆rc is the difference between the DC reflection coefficients of the

cavities for the carrier.

7.1.2 Asymmetry of the Optics for the Sidebands

So far we have ignored the asymmetry of the sidebands because the reflectance of FP

for the sidebands is considered to be almost equal to unity. However, there may be

some asymmetry if there are apparent loss factors in the interferometer2. It is easily

shown that the asymmetry for the sidebands is interpreted as a shift of the optimal

demodulation phase and a change in the effective modulation index. If we introduce

the reflection coefficients for the sidebands for each of the cavities represented by rSB
cn

(n = 1, 2), the reflectance for the sidebands in Eq. 6.24 has to be replaced by the mean

reflectance,

rSB
c =

rSB
c1 + rSB

c2

2
. (7.11)

The new definition of the effective modulation index and the optimal demodulation

phase are:

meff ≡ m
(
rSB
c

)−1
√

(rSB
c1 )2 + (rSB

c2 )2 − 2rSB
c1 rSB

c2 [1− cos 2km(l1 − l2)] (7.12)

tan δm ≡ − rSB
c1 sin θm1 − rSB

c2 sin θm2

rSB
c1 cos θm1 − rSB

c2 cos θm2

. (7.13)

These have to be taken into account for the sideband-asymmetry.
2For example, the anti-reflection (AR) coating of the back side of the mirror has finite reflectance

which produce an apparent loss in the interferometer. Any asymmetry in such AR coatings will lead

to an asymmetry not only for the carrier but also for the sidebands.
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7. Asymmetry of the interferometer

7.2 Geometrical Asymmetry

Even if the optics have ideal quality, any misalignment produce an asymmetry in

the interferometer. This is because the phase of the reflected light is shifted by the

misalignment according to Eqs. 5.66 – 5.68. For convenience, let us assume that the

optics are completely symmetric except for the alignment. Also, let us consider only

the frequency noise for simplicity. Suppose that the input beam is matched to the

cavities of the interferometer, but there are small misalignments in the orientation

of the mirrors. Again for simplicity, only the misalignments in one dimension are

discussed. After some calculations using Eqs. 5.66 – 5.68 and 5.70, the amplitude of

the common mode noise in the differential phase measurement which is represented by

Ψφ
comm(t) is obtained3:

Ψφ
comm(t) ∼ −Ψφ

FP(t)
1

rc0(0)

(
a2

x1 − a2
x2

w2
0

− α2
x1 − α2

x2

α2
0

)
(7.14)

where axn and αxn (n = 1, 2) are the misalignment parameters of the cavities. There-

fore, in this case, the frequency response of the interferometer is written as

Hφ
FPM(ω) ∼ −e−iωl̄/c

νo

HGR
FPM(ω)× 1

rc0(0)

(
a2

x1 − a2
x2

w2
0

− α2
x1 − α2

x2

α2
0

)
. (7.15)

7.3 Rejection of the Common-Mode Noise

From Eqs. 7.5 –7.8, we can see that the disturbance that acts in-phase on the two

cavities “leaks” to the anti-symmetric port if there is any asymmetry, and distorts

the gravitational wave signal. The common-mode-noise-rejection-ratio (CMRR) of the

interferometer is defined as the ratio of the difference of the phase delays of the field

from the perpendicular cavity and the parallel cavity to the mean phase delay of the

cavities. For the frequency fluctuation, CMRR is defined to

γφ(ω) ≡ Hφ
MI(ω) + Hφ

FPM(ω)

Hφ
FP(ω)

∼ Hφ
FPM(ω)

Hφ
FP(ω)

(7.16)

3This expression can be used both for P-D-H scheme and homodyne scheme, except for some factor

which is close to unity.
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where Hφ
FP(ω) is the mean response function of the cavities to the frequency fluctuation.

Using Eqs. 7.6 and 7.16, the expression of CMR to the phase noise is obtained as

γφ(ω) '
(

2∆F
F

1 + i ω
2ωc

1 + i ω
ωc

+
∆Tf

Tf

+
∆L

L

1

1 + i ω
ωc

− 2iω∆l

c

)
e−2iωl̄/c (7.17)

for the asymmetry of the optics, and

γφ(ω) ' 1

rc0(0)

(
a2

x1 − a2
x2

w2
0

− α2
x1 − α2

x2

α2
0

)
e−2iωl̄/c (7.18)

for the asymmetry of the alignment. The amplitude of the equivalent noise which is

caused by the phase noise is written as

hφ
n(ω) = γφ(ω)× δν(ω)

νo

eiωl̄/c (7.19)

in the unit of the dimension-less strain h, and

δLφ
n−(ω) = γφ(ω)× L

δν(ω)

νo

eiωl̄/c (7.20)

in the unit of the differential motion δL−.

No-Loss case

When there is no optical loss in the mirrors and the reflectances of the end mirrors

are equal to unity, ∆F and ∆Tf are not independent. From Eq. 6.36, we obtain the

following equation:
∆Tf

Tf

= −∆F
F . (7.21)

In this case, the expression for CMRR is simplified as

γφ(ω) '
[(

∆F
F +

∆L

L

)
1

1 + i ω
ωc

− 2iω∆l

c

]
e−2iωl̄/c. (7.22)

When L1F1 = L2F2 (or, in other words ωc1 = ωc2), the asymmetry term of the cavity

disappears.
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8. 3-meter Fabry-Perot-Michelson

Interferometer

The recombined Fabry-Perot-Michelson (FPM) configuration is indispensable for

the interferometric gravitational wave detectors, because of two outstanding advan-

tages. The first is that a power-recycling technique [23] can be applied to the inter-

ferometer in order to improve the sensitivity, which is limited by the shot noise. The

second is that the common-mode noise due to frequency fluctuation of the laser can be

reduced in the recombination configuration. The common-mode-noise-rejection ratio

of the interferometer is quite important, because the requirement on the frequency sta-

bility of the laser can be considerably relaxed if the interferometer has a good CMRR.

Since all of the optical components must be suspended independently as pendulums

for GW detection, it is quite significant to test the properties of the optical system and

to develop a technique to control the interferometer in a more realistic situation. There-

fore an optically recombined FPM interferometer with the 3m baseline has been built

in the campus of the University of Tokyo. The mirrors and the beamsplitter of the

interferometer are suspended independently by wires. The aim of the construction of

this interferometer was to experimentally investigate the optical recombination, espe-

cially the common-mode noise rejection under the all-suspended configuration. This

was the first example of the optically recombined, all-suspended interferometer with

the Fabry-Perot cavities in the arms[16]1. The experimental setup of the 3m-FPM

interferometer is shown in Fig. 8.1. There are three important points about this setup.

1Before the 3m-FPM experiment, the recombined FPM configuration was experimentally investi-

gated with only table-top interferometers having rigidly mounted mirrors and beamsplitter [24, 25],

while the all-suspended configuration of the FPM was studied with the locked-Fabry-Perot configura-

tion [26].
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Figure 8.1: The schematic diagram of the 3m FPM interferometer which was built

in the campus of the University of Tokyo. As a light source, a laser-diode-pumped

Nd:YAG laser (Lightwave, MISER model 124) was used. FM, front mirror; EM,

end mirror; BS, beamsplitter; FI, Faraday isolator; PM, partial mirror for pick-off

purpose; PD, photo-detector; EOM, electro-optical modulator; Osc, local oscillator;

DBM, double-balanced modulator. L, spherical lens; CL, cylindrical lens.
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8.1. Layout of the Optics

• The laser beams reflected by the two FP cavities were recombined again on the

beamsplitter. The relative phase difference between the two beams was detected

by using the recombined beam.

• For convenience, the operation point of the interferometer was chosen at the

steepest slope of the fringe. In other words, the signal was extracted by using

homodyne detection2.

• All of the optical components were suspended independently by wires.

In this chapter, the experimental apparatus of the 3-meter interferometer is de-

scribed. Calibration procedures that were the basis of the displacement sensitivity

analysis are also be shown.

8.1 Layout of the Optics

Figure 8.2 shows the optical layout of the interferometer. The input optics were set on

a small optical bench. As a light source we used a laser-diode-pumped Nd:YAG laser

(Lightwave, MISER model 124). It has a linearly polarized, single mode beam with

a power of 54mW. Also it has an elliptical beam profile, because the laser resonator of

MISER is a non-planar ring cavity. Two cylindrical lenses were used to transform the

beam to the axisymmetric one. A lens was used to match the beam to the fundamental

mode of the 3-m cavity. An electro-optical modulator (EOM, Newfocus model 4003)

was used to apply a phase modulation at 15MHz. The modulation index of the EOM

was measured to be m ≈ 0.67. After EOM, two Faraday isolators (FI) were used

to prevent optical feedback to the laser. The beam was introduced into the vacuum

2Because of this feature, i.e. the homodyne scheme, the interferometer was not directly compatible

with power-recycling. However, the demonstration of the recombination technique in this experiment

led to the power-recycling demonstration. As soon as this experiment had been finished, the optical

configuration of the interferometer has been changed to the pre-modulation topology to lock the

operation point to the dark-fringe [43]. After the reconfiguration of the optical and servo topology

to pre-modulation scheme [44], the power-recycling has been demonstrated successfully with the all-

suspended FPM interferometer [45, 46].
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8. 3-meter Fabry-Perot-Michelson Interferometer

Figure 8.2: Layout of the optics. The laser and the input optics were set on a 1 m

by 1m optical bench. The mirrors and the beamsplitter of the interferometer were

housed in a vacuum enclosure. FM, front mirror; EM, end mirror; BS, beamsplitter;

FI, Faraday isolator; PM, partial mirror for pick-off purpose; PD, photo-detector;

EOM, electro-optical modulator; L, spherical lens; CL, cylindrical lens.
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chamber through an anti-reflecting coated glass window. Several mirrors were used for

the coarse alignment of the beam. Though the output power of the laser was about

54mW, the optical power which was led into the interferometer was about 29mW, due

to the optical loss of the optics placed between the laser and the interferometer.

In the vacuum chamber, a beamsplitter and two Fabry-Perot cavities formed a

Fabry-Perot-Michelson type interferometer. The beam was led to the beamsplitter and

was injected to the arm Fabry-Perot cavities. The reflected beams from the cavities

were optically recombined on the beamsplitter. A part of the optical power of the

recombined beam was led to the photo detector in the center chamber (PD1 in Fig. 8.2),

while the rest of the power was reflected back to the optical bench, reflected by the

Faraday isolator and detected by another photo-detector (PD2 in Fig. 8.2). The outputs

of the photo-detectors were used for the signal extraction of the interferometer (see also

8.4.3). A small part of the optical power reflected from the arm cavities was picked off

by two partially reflecting mirrors (PO in Fig. 8.2). The picked-off beams were also

used for the signal extraction of the arm cavities (see 8.4.2).

8.2 Vacuum

The main part of the interferometer is housed in a vacuum system (Fig 8.3) to protect

the interferometer against any acoustic noise. The whole system comprises three iden-

tical chambers with an inner diameter of one meter. The center chamber and the end

chambers are connected by 15-cm-diameter vacuum tubes. The distance between the

center and the end chamber is 3m, from center to center. The whole system is evacu-

ated by using a scroll pump connected to the center chamber. All of the measurements

were made under a pressure of less than 10 Pa.

8.3 Mirror Suspension

The beamsplitter and the mirrors of the Fabry-Perot cavities were suspended by the

suspension system shown in Fig.8.4. Seismic vibration was isolated horizontally by a

double pendulum [27] and vertically by the coil springs. The intermediate mass of the
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Figure 8.3: The vacuum system of the interferometer comprises three identical

chambers. The inner diameter of each chamber is one meter. The distance between

the center and the end chamber is three meters, from center to center.
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Figure 8.4: The suspension system of the mirrors. Horizontal vibration was isolated

by a double pendulum. The vertical isolation was mainly provided by the coil-

springs. The leaf springs were used for the fine adjustment of the alignment by

using the actuators.
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Figure 8.5: A mirror and four magnets were glued to each of the test masses which

are made of aluminum. The diameter and the thickness of the mirror is 3 cm and

5 mm. The diameter and the thickness of the test mass are 7 cm and 5 cm. The

diameter of the hole drilled at the center of the cylinder is 2cm.

pendulum was made of copper and was suspended by two coil springs. The bottom

mass (the test mass) was a cylinder made of aluminum and was suspended by two loops

of wire from the intermediate mass. Each mirror with the diameter of 3 cm and the

thickness of 5mm was glued to the test mass (Fig. 8.5). The diameter and the thickness

of the test mass was 7 cm and 5 cm, respectively. Four small permanent magnets for

the control purpose were glued on the opposite side of the test mass to the mirror.

The beamsplitter was also suspended by the same suspension mechanism as the

mirrors. The diameter and the thickness of the beamsplitter 3 was 10 cm and 3 cm.

Figure 8.6 shows the physical dimensions of the beamsplitter. Both sides of the half-

mirror coating are covered with anti-reflection coated glass. Four magnets were glued

directly on one side of the beamsplitter. The translation of the mirrors and the beam-

splitter was controlled by using two coil-and-magnet-type actuators which were verti-

3This beamsplitter is identical to the one used in the 20-m FPM interferometer built in the campus

of National Astronomical Observatory, Japan.
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Figure 8.6: Physical dimensions of the beamsplitter. The diameter is 10 cm and the

thickness is 3cm. Four magnets were glued to the beamsplitter.
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�

Figure 8.7: A force, proportional to the current in the coil, was applied to the test

mass.

cally aligned on the test mass. The other two horizontally-aligned actuators on the test

mass were used for the fine adjustment of the yaw-alignment. The suspension point of

the coil springs were supported by the leaf springs. The two actuators set on the leaf

springs were used for the fine pitch-alignment. No active feedback servo was used for

the alignment.

Strong permanent magnets were used to damp by eddy currents the large motion

of the intermediate mass due to the resonance of the pendulum [27]. The permanent

magnets were also isolated from external vibrations by a leaf spring.

8.3.1 Actuator

The actuators used for the translational and rotational control of the test masses were

of the coil-and-magnet type (Fig.8.7). Magnets were glued to the masses and the coils

were fixed to the optical table in the vacuum chamber. The coils were driven by a

simple buffer amplifier which had the finite output impedance R. The force applied

on the test masses were proportional to the current in the coil. The internal resistance

and the inductance of the coils of the actuators were measured as being 13.4Ω and

1.53mH for the mirror control, and 7.35Ω and 0.793mH for the beamsplitter control.

In a voltage-driven coil circuit, a pole is generated by the output impedance and

the inductance as
1

1 + iω L
R+r

,
(8.1)

where r and L are the internal resistance and the inductance of the coil. However,

the measured frequency of the pole was 50.3kHz for the mirror and 39.2kHz for the
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Figure 8.8: The suspension is well approximated by a two-mode oscillator.

beamsplitter (see AppendixB for the circuits of the drivers), therefore the poles can be

ignored.

8.3.2 Model of the Suspension

The suspension is well approximated by a two-mode oscillator illustrated in Fig. 8.8.

In the figure, y, mi, xi, and ki (i = 1, 2) are the displacement of the suspension point,

the masses, the displacements, and the spring constants. Also, ω1 and Q1 are the

resonant angular frequency and the Q-factor of the first stage pendulum without the

second stage (k2 = 0), and ω2 and Q2 are those of the second stage pendulum with the

intermediate mass fixed (x1 = 0). The equations of motions for the masses are written

as

−ω2x̃1 =

[
−m2

m1

(
ω2

2 + i
ωω2

Q2

)
(x̃1 − x̃2)−

(
ω2

1 + i
ωω1

Q1

)
(x̃1 − ỹ)

]
(8.2)

−ω2x̃2 = −
(
ω2

2 + i
ωω2

Q2

)
(x̃2 − x̃1) +

1

m2

F̃ (8.3)

where F is the force applied on the test mass. Solving theses equations, the transfer

function of the actuator system defined as the transfer function from the force of the

actuator to the position of the test mass is written as follows;

Hp(ω) =
1

m2

ω2
1 + αω2

2 − ω2 + iω (ω1/Q1 + αω2/Q2)

(ω2
2 − ω2 + iωω2/Q2) (ω2

1 − ω2 + iωω1/Q1)− αω2 (ω2
2 + iωω2/Q2)

(8.4)

where α ≡ m2/m1 is the ratio of the masses. In a similar way, the isolation ratio

defined as the transfer function from the vibration of the suspension point to the
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Figure 8.9: Measurement of the transfer function from the voltage applied to the

actuator to the displacement of the mirror. The motion of the mirror is measured

by using reflection type photo sensor(see Appendix B).

mirror-displacement is calculated as

Hisol(ω) =
(ω2

1 + iωω1/Q1) (ω2
2 + iωω2/Q2)

(ω2
2 − ω2 + iωω2/Q2) (ω2

1 − ω2 + iωω1/Q1)− αω2 (ω2
2 + iωω2/Q2)

. (8.5)

To identify the parameters of the suspension system, the transfer function of the

actuator system was measured (Fig. 8.9) by using a reflection type photo-sensor4.

Figure 8.10 shows the measured and fitted transfer function from the input voltage

of the coil driver to the motion of the test mass. In the calculation of the transfer

function, it is a good approximation that the loss in the wire of the last stage was

negligible in the measurement frequency band. Therefore, in the least-squares fit, the

4see Appendix B for the detail of the reflection type photo sensor)
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fitting parameters were the frequencies (ω1 and ω2), the quality factor of the first

stage (Q1), and the ratio of the masses (m2/m1). The least-squares fit resulted in

f1 = ω1/2π = 1.53Hz, Q1 = 0.59, f2 = ω2/2π = 1.23Hz, and m2/m1 = 0.58. From

these parameters, the isolation ratio of the suspension system was calculated. Figure

8.11 shows the calculated plot of the isolation ratio. The Q-value of the final pendulum

(Q2) was not measured, but it is quite reasonable to assume that the Q-value was more

than 1000. There are two curves plotted in the figure, one with Q2 = ∞ and the other

with Q2 = 1000. As the plot shows, there is almost no difference between the two

curves in the frequency range lower than 1kHz, therefore the model with Q2 =!∞ will

be adopted as the isolation ratio model in the low-frequency range. Note that all of the

mechanical resonances except the pendulum peak are ignored in this model, therefore

the real isolation ratio is believed to have been much poorer than this, especially in

the frequency range higher than 100Hz.

8.3.3 Beamsplitter

The beamsplitter has a polarizing property. Its transmittance and reflectance were

measured with various polarizations of the input beam by using a half-wave plate that

is mounted on a rotating holder (Fig. 8.12). Figure 8.13 shows the measured dependence

of the beamsplitter to the polarization. When the input beam has the S-polarization,

the reflectance is about 51% and the transmittance about 49%.

As shown in Fig. 8.6, each side of the beamsplitter coating is covered with the

anti-reflection (AR) coated glass with a thickness of 15mm. The reflectance of the AR

coat was measured to be 0.5±0.1%. Though the reflectance of the AR was small, the

beams generated by the reflection at the AR coats interfered with the main beams.

Therefore baffles having small apertures were inserted to shut out the spurious paths

(Fig. 8.14).

8.3.4 Mirrors

The optical paths of the arms of the interferometer are folded by using FP cavities.

Each FP cavity comprises a flat front mirror (reflectance 97.5 %) and a concave end
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Figure 8.10: The measured and the fitted transfer function from the input voltage

of the coil driver to the motion of the test mass.
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Figure 8.11: Theoretical isolation ratio of the suspension system with the parameters

obtained by the least-squares fit in Fig. 8.10. One plot is for Q2 = ∞ and the other

is for Q2 = 1000. Since there is almost no difference in the low frequency range, the

model with Q=∞ will be used as the isolation-ratio of the system in the frequency

range lower than 100Hz. Note that the real isolation ratio is believed to have been

much poorer than this plot, especially in the frequency range higher than 100Hz,

because there were many mechanical resonances.

���������

	�


λ��


Figure 8.12: The measurement of the polarization characteristic of the beamsplitter.

The polarization of the input beam was rotated by rotating the half-wave plate which

is indicated by λ/2 in the figure.
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Figure 8.13: The polarizing property of the beamsplitter. The angle of the plane of

polarization of the input beam is expressed as a relative value to the angle of the

S-polarization plane. Dots are the measured data and the solid lines are the fitted

sinusoidal curves.

Figure 8.14: The beams generated by the AR coats interfered with the main beams

(left). Therefore baffles having small apertures were inserted to shut out the spurious

paths (right).
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mirror (radius of curvature, 4.5 m; reflectance, 99.9%). The diameter and the thickness

of the mirrors are 3 cm and 5mm, respectively.

In order to measure the finesse of each FP cavity, a sinusoidal force was applied

to the test-mass to change the length of the cavity with a frequency of 2Hz and

an amplitude of typically a few micro-meters. The transmission of the cavity was

monitored by a photo-diode and stored by a computer with 40 µs of sampling interval.

Each large peak of the carrier appeared with two small peaks of the sidebands which

originated from phase modulation at 15MHz (Fig. 8.15). The intervals of time between

a carrier peak and two sideband peaks represented as δt1 and δt2 in Fig. 8.15 correspond

to the phase difference of 4πνml/c, where νm, l, and c are the modulation frequency,

the length of the cavity, and the speed of light, respectively. Because of the external

disturbances, the phase change was not always proportional to the time change in fact.

Therefore we selected the data which satisfied the condition that δt1 − δt2 must be

less than 2.5 per cent of δt1 + δt2, and assumed that the time was proportional to the

phase in the selected data (a more strict condition would considerably decrease the

number of available data). After the selection of the data, the finesse of the cavity

was calculated by applying least-squares fitting to the transmission of the carrier peak

(Fig. 8.16). The finesse of the cavities under the pressure of less than 10Pa were

F1 = 221± 11 (8.6)

F2 = 235± 19 (8.7)

where the errors are expressed as the square root of the variance (18 and 12 data of

the carrier peaks were used to obtain F1 and F2, respectively). From these values, one

of the parameters which represent the symmetry of the interferometer was calculated

as ∣∣∣∣
F1 −F2

F1 + F2

∣∣∣∣ ' (3.1 + 6.8− 3.1) %. (8.8)

The length of the cavity was 2.95m, therefore the cut-off frequency of the cavity was

calculated as

fc =
c

4FL0

∼ 100kHz (8.9)

We observed that the finesse decreased under the atmospheric pressure,

Fatm1 = 206± 4
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Figure 8.15: The transmission of one of the Fabry-Perot cavities. A large peak of

the carrier and two small peaks of the sidebands can be observed.

Fatm2 = 219± 9

The transmittance of the cavity was measured as being 14 % which was in good

agreement with the reflectance of each individual mirror.

8.4 Servo Topology

There were three important servo loops to control the interferometer; the frequency

stabilization loop, the cavity locking loop, and the Michelson fringe control loop. Fig-

ure 8.17 shows the basic idea of the servo loops. If the interferometer is completely

symmetric, the frequency noise of the laser doesn’t appear in the phase difference be-

tween the two beams reflected from the cavities. However, in fact, there was a small

asymmetry, therefore the laser frequency was stabilized using one of the cavities (par-

allel cavity). We call this cavity as the reference cavity. Only the DC part of the error
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Figure 8.16: A closer view of the peak of the carrier. Dots show the measured data

and the solid line shows the fitted curve (the fitted value of the finesse was 225 in

this case).
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Figure 8.17: Basic idea of the servo loops. One of the cavities was used as the phase

reference of the frequency stabilization loop. The other cavity was loosely locked

to the resonance. Thus the recombined beams had the phase proportional to the

difference of the cavity lengths. The fringe of the recombined beams was fed back

to the beamsplitter.
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signal was fed back to the reference mechanically. The other cavity which is denoted

as “free cavity” in Fig.8.17 was loosely locked to the resonance by the mechanical feed-

back. Thus the phase difference between the two reflected beams from the cavities

was proportional to the difference of the length fluctuation of the cavities. This phase

difference was extracted from the recombined beams. For convenience, the homodyne

technique was used. In other words, the operation point of the interferometer was cho-

sen to the steepest slope of the fringe. To lock the Michelson fringe to the operation

point, the error signal was fed back to the position of the beamsplitter.

In this section, the servo loops are studied in detail.

8.4.1 Frequency Stabilization Loop

One of the cavities was used as the reference for the frequency stabilization. Pound-

Drever-Hall (P-D-H) technique [28] was used to extract the deviation of the frequency

(or the cavity length) from the resonance by using the 15MHz phase modulation. For

this purpose, a small fraction (10%) of the optical power reflected from the cavity was

sent to a photo-detector. The demodulated signal was used as the error signal, and

was fed back to the laser tightly. Only the DC signal was fed back mechanically to the

end mirror of the cavity by using the magnet-coil actuator; the front mirror was not

controlled at all.

Figure 8.18 shows the characteristic frequencies of the frequency stabilization loop.

The PZT to control the frequency of the laser had a resonance at 366 kHz. To maximize

the bandwidth of the PZT control loop, a notch filter with a Q of 4 was used to eliminate

the large resonance peak.

The equations which governs this servo system are described as

δν = δνn −Gf−PZT

(
δν +

νo

L0

δL1

)
(8.10)

δL1 = δL1n −Gf−mass

(
δL1 +

L0

νo

δν
)

(8.11)

where δν, δνn, δL1, δL1n, L0, and ν0 are the fluctuation of the frequency with and

without the stabilization, the fluctuation of the length of the reference with and without

the stabilization, mean length of the cavity, and the center frequency of the laser,
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Figure 8.18: Characteristic frequencies used in the frequency-stabilizing servo.
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respectively. Also, Gf−PZT, and Gf−mass are the open-loop transfer function of the

PZT- and the mass-control loop, respectively. These equations are solved as

δν =
1 + Gf−mass

1 + Gf−PZT + Gf−mass

δνn − Gf−PZT

1 + Gf−PZT + Gf−mass

νo

L0

δL1n

≡ δνstab − Gf−PZT

1 + Gf−PZT + Gf−mass

νo

L0

δL1n (8.12)

δL1 = − Gf−mass

1 + Gf−PZT + Gf−mass

L0

νo

δνn +
1 + Gf−PZT

1 + Gf−PZT + Gf−mass

δL1n (8.13)

where δνstab represents the reduced frequency-noise level. The phase fluctuation of the

reflected beam from the reference cavity (which is denoted here as Ψ1) is written as

Ψ1 ∝ 2k
[
δL1n +

L0

νo

δνn

]
1

1 + Gf−PZT + Gf−mass

. (8.14)

The open-loop transfer function of the whole system is written as Gf−PZT +Gf−mass,

but this is not the frequency stabilization gain itself. Equation 8.12 shows that the

frequency of the laser is reduced by the factor of

1 + Gf−mass

1 + Gf−PZT + Gf−mass

=
1

1 + Gf−PZT

1+Gf−mass

. (8.15)

The equivalent noise-stabilization gain Gstab is defined as

Gstab ≡ Gf−PZT

1 + Gf−mass

. (8.16)

When the mass-loop gain is much larger than unity, Gstab is approximately equal to

Gf−PZT/Gf−mass. Therefore, to maximize the frequency-stabilization gain, the loop

gain of the mass-loop (Gf−mass) had to be made as small as possible. On the other

hand, since the frequency control range by using PZT was limited, it was impossible

to completely remove the mass-loop because the seismic disturbance was too large to

be compensated by only using frequency control. In such kind of system in general, it

is practically important to make the cross-over frequency, at which the absolute value

of the two loops are equal to each other, as small as possible.

In this experiment, the cross-over frequency of the PZT- and mass-control loop was

designed to be 7Hz. For this purpose, special care had to be taken for the design of

the feedback filter. In the frequency range larger than the first resonance at around
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Figure 8.19: When the feedback transfer function of PZT- and mass-loop have

approximately the opposite phase at the cross-over frequency, a deep notch appears.

1Hz, the phase delay of the transfer function of the pendulum Hpend is almost 180◦.

On the other hand, the response of PZT represented by HPZT is almost flat at around

several tens kHz and less. Suppose that the open-loop gain of PZT- and mass-loop is

proportional to HPZT and Hpend:

Gf−PZT = aHPZT (8.17)

Gf−mass = bHpend. (8.18)

If the cross-over is at several Hz while a and b in the above equations are real, the

open-loop transfer function of the whole system will have a deep notch at the cross-

over frequency, because the phase of HPZT is close to zero, while the phase of Hpend

is almost close to −180◦ (see Fig. 8.19). This will lead to a serious instability of the

system.

To avoid this instability, a negative phase shift (delay) has to be added to the PZT-

loop, or a positive shift has to be added to the mass-loop. Phase adjustment in the

opposite sign (i.e. positive phase shift to the PZT-loop or delay in mass-loop) never

works because the whole system does not meet the Nyquist criteria of stability in such

a case. Since the mass-loop gain had to be minimized, we added a phase delay to the

PZT-loop by adding two poles and one zero.

Figure 8.20 shows the measured open-loop transfer function of the whole stabiliza-

tion system together with the calculated gain of the PZT-loop, mass-loop and the whole
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loop. The calculated curve for the mass-loop (dashed line in the Figure) was derived

from the transfer function of the pendulum shown in Fig. 8.10 and the poles and zeros

of the servo circuits. Only the DC gain factor was least-squares fitted. The calculated

curve for PZT-loop was least-squares fitted to the measured transfer function of the

whole system (dots in the figure) in the frequency range higher than 1kHz where the

mass-loop was negligible. Again, the only one fitting parameter was the gain factor,

and all of the poles and zeros were taken from those of the electrical circuits. The

mechanical resonance of PZT was ignored here for convenience. The calculated curve

for the whole system is the simple sum of the mass- and the PZT-loop. As the figure

shows, the theory and the experiment agrees quite well. There still was a notch in the

absolute value plot, because there were more poles in this feedback system than in the

simple single pendulum system illustrated in Fig.8.19. However, due to a careful servo

design, the bottom of the notch is at least more than 60dB and didn’t lead to instability.

The bandwidth of this servo system was about 55kHz in this plot and the phase mar-

gin was about 25◦. Also a calculated plot of the equivalent frequency-noise reduction

factor Gf−PZT/1 + Gf−mass, which has been obtained from the fitted transfer functions

Gf−PZT and Gf−mass, is shown in the figure. The equivalent reduction factor reached its

maximum of 76dB at around 440Hz, and crossed the unity-gain line at about 7Hz (the

cross over frequency of the two loops). A narrower mass-loop would have made the

frequency-noise reduction factor larger between several tens Hz and 440Hz. However,

since the frequency stability was well below the other noise levels in the interferometer

(see 9.1), the mass-loop was not optimized further. A wider bandwidth was possible

but was not necessary for our experiment for the same reason.

While the frequency stabilization system reduced the frequency noise, the length

fluctuation of the reference cavity was also corrected by the frequency tuning. This

may cause a doubt that the frequency stabilization made some problem with the length

measurement which was the aim of this experiment. However, in fact this was not a

problem at all. To understand the system behavior, let us consider the ideal case, i.e.,

|Gf−PZT| = ∞ and |Gf−mass| = 0. In this case, the phase fluctuation of the reflected

beam caused by the length fluctuation of the reference cavity is completely compensated

by the laser frequency tuning, i.e. Ψ1 = 0. The laser frequency fluctuation is equal to
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Figure 8.20: The open-loop transfer function of the frequency stabilization system.

The dots show the measured transfer function for the whole loop. The dotted line is

the calculated one for the PZT-loop, with the AC gain factor least-squares fitted to

the dots. The dashed line shows the calculated transfer function for the pendulum-

loop. For this curve, only the DC gain factor was least-squares fitted. The thick

solid line is the sum of the calculated values for pendulum- and PZT-loop, which

agrees well with the measured values. The thin solid line is the equivalent frequency

noise reduction factor of this servo system.
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−δ̃L1ν0/L0. The phase fluctuation of the reflected beam from the loosely locked cavity

is always the sum of the length-originated and frequency-originated fluctuations. Since

the frequency-originated one is proportional to −δ̃L1, Ψ2 is proportional to −δ̃L1+ δ̃L2.

The purpose of the experiment is to measure the phase difference Ψ1 − Ψ2, therefore

one can see that the length signal is not affected at all by the frequency stabilization.

More realistic and quantitative discussions are shown in the following contexts.

8.4.2 Cavity Length Control Loop

The length of the perpendicular cavity was loosely locked to the resonance. The same

signal extraction system used for the frequency stabilization was used to extract the

deviation of the cavity length from the resonance. The demodulated signal was me-

chanically fed back to the end mirror of the cavity. Figure 8.21 shows the characteristic

frequencies used in the servo. As Eq. 8.4 and Fig. 8.10 show, the phase delay of the

pendulum was slightly larger than or nearly equal to 2π, therefore the control filter

was basically designed as a lead-lag filter that had a positive phase shift to compensate

the phase delay. The frequency of poles were 658 Hz and 2 kHz, and that of the zero

was 87 Hz. Also, the coil driver for the actuator had a pole at 1026 Hz. Figure 8.22

shows the measured and the calculated open-loop transfer function of the cavity length

control loop. In the ’calculated’ plot, all of the poles and the zero were determined from

the electronic circuit, and the only free parameter was the DC gain which was obtained

from the least-squares fitting. The typical servo bandwidth of the cavity-locking loop

was between 200 and 400 Hz.

The phase of the reflected light from the perpendicular cavity was corrected by the

control loop as

Ψ̃2(f) ∝ 2k

[
δ̃L2n(f) + L0

δ̃ν(f)

ν0

]
1

1 + GFP(f)
(8.19)

where δL2n and GFP denotes the fluctuation of the cavity length without the servo

system and the open-loop transfer function, respectively.

When the frequency stabilization loop was turned on, the error signal of the cavity
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Figure 8.21: Characteristic frequencies used in the cavity locking servo. A filter

having a zero at 87Hz was used to compensate the phase delay of the double-

pendulum.
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Figure 8.22: Open-Loop transfer function of the cavity locking servo. The dots show

the measured points and the line represents the calculated value. The typical servo

bandwidth of the cavity-locking loop was between 200 and 400 Hz ( 390 Hz in this

plot).
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locking system was calculated by using Eqs. 8.12 and 8.19 as

ṽFP
err ∝

[
δ̃L2n − Gf−PZTδ̃L1n − (1 + Gf−mass) L0δ̃νn/νo

1 + Gf−PZT + Gf−mass

]
1

1 + GFP

=

[
δ̃L2n − δ̃L1n

(
1− 1

1 + Gstab

)
− L0

δ̃νstab

ν0

]
1

1 + GFP

. (8.20)

One can see that the error signal is proportional to the difference of the length of the

cavities if the equivalent frequency stabilization gain (Gstab) is much larger than unity.

8.4.3 Michelson Interferometer Fringe Control

The fringe of the Michelson interferometer was detected by using two DC-photo-

detectors, one to detect the transmission of the interferometer (referred to as PD1

in Fig. 8.1) and one to detect the reflection (PD2 in Fig. 8.1). The transmission de-

tector was placed inside the center chamber, while the reflection detector was put on

the table for the input beam optics. A feedback system was used to keep the fringe

at its operation-point where the optical power is equally divided to the two output

ports. There was an amplifier to provide the electronic gain factor α which is defined

in Eq. 6.31, even though the interferometer itself had a good symmetry. This was

because the reflected beam from the interferometer was reflected three times by the

aluminum plated mirrors after the recombination (see Fig. 8.2), while the transmission

beam was directly detected by the photo-detector. After the correction by the elec-

tronic gain α, the difference of the two detectors were used as the error signal which was

proportional to the deviation of the fringe. The error signal was filtered appropriately

and fed back mechanically to the position of the beamsplitter by using coil-magnet

actuator. The feedback was done tightly and the feedback signal was read-out by mon-

itoring the current in the feedback coils: In tight-lock system one can able to reduce

the noise contribution of the driver circuit, in general (see 9.1). The feedback filter

was the same type as the one used for the cavity-locking, but the control bandwidth

was rather large, typically from 400Hz to 1kHz. Figure 8.23 illustrates the character-

istic frequencies in the feedback servo. There were two large mechanical resonance at

15kHz and 24kHz, which were identified as the resonances of the BS. Though notch
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Figure 8.23: The servo system to control the Michelson fringe.

filters were used to suppress these peaks, these resonances still prevented the control

bandwidth from being larger than about 2kHz.

Figure 8.24 is the typical open-loop transfer function of the fringe control loop.

Dots are the measured data and the lines are the fitted curve. In the fitting, the only

one free parameter was the DC gain. All of the poles and zeros were calculated from

the electronics constants, except for the pendulum’s poles which were not important

here because the frequency range of interest was far above the pendulum’s poles. The

fitted curve and the measured data agrees quite well.

With the servo system, the measured signal is written as follows:

vFPM
err ∝ δθ− + δΨ−

1 + GFPM

=
δθ− + δΨ−
1 + GFPM

(8.21)

where GFPM is the open-loop transfer function of the Michelson fringe locking servo,

δΨ− = Ψ1−Ψ2 is the cavity-originated phase difference, and δθ− is the phase difference
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Figure 8.24: A typical open-loop transfer function of the Michelson-fringe locking

servo. Dots are the measured data and the lines are the fitted curve. In the fitting,

only one free parameter was the DC gain, and the theoretical values were used for

all of the poles and zeros.
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caused by the fluctuation of the length between the beamsplitter and the near mirrors.

When the interferometer was operated in simple Michelson configuration comprising

only the beamsplitter and the near mirrors, δΨ− was considered to be zero. For the

Fabry-Perot-Michelson configuration, one could ignore the δθ− term, because the finesse

of the cavity was large enough (about 230). In this case, the error signal was calculated

by using Eqs. 8.19, 8.12, and 8.14, together with Eq. 8.21 as

ṽFPM
err ∝

[
δ̃L1n + L0δ̃νn/νo

1 + Gf−PZT + Gf−mass

− δ̃L2n + L0δ̃ν/ν0

1 + GFP

]
1

1 + GFPM

=

[
δ̃L1n (1− 2γs

m)− δ̃L2n − γs
f L0

δ̃νstab

ν0

]
1

(1 + GFPM) (1 + GFP)

=

[
δ̃L− (1− γs

m)− γs
mδ̃L+ − γs

f L0
δ̃νstab

ν0

]
1

(1 + GFPM) (1 + GFP)
(8.22)

where γs
m(f) and γs

f (f) are the asymmetry factors for the motion of the mirror and

for the frequency noise which were introduced into the system by the feedback. The

definition of these factors are as follows:

γs
m(f) ≡ Gf−mass(f)−GFP(f)

2 [1 + Gf−mass(f) + Gf−PZT(f)]
(8.23)

γs
f (f) ≡ Gf−mass(f)−GFP(f)

1 + Gf−mass(f)
. (8.24)

Figure 8.25 shows the typical absolute value of these asymmetry factors, which were

derived from the fitted transfer functions in Figs. 8.22 and 8.20.

8.5 Calibration of the Signal-Extraction and the

Feedback System

To evaluate the displacement sensitivity of the interferometer, it was necessary to

calibrate both the signal-extraction system and the feedback actuators. The calibration

process was done step by step, beginning from the simplest configuration to the more

complex ones. The interferometer was calibrated whenever the displacement sensitivity

spectrum was measured, even though the interferometer was fairly stable and the

voltage-displacement conversion factor obtained by the calibration didn’t significantly

change for a long period.
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Figure 8.25: The asymmetry factor for the motion of the mass (γs
m) and for the

frequency noise (γs
f ) introduced by the feedback system.
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8.5.1 Calibration of the Near Mirror Actuators by Using the

Simple Michelson Configuration

First, the optical paths for the Fabry-Perot cavity were shut by using the gate-valve

at the joint of the tube and the tank. The interferometer was operated in a simple

Michelson configuration. The feedback circuit for the Michelson fringe-locking was

turned off, and the beamsplitter was driven by the slowly changing (typically 3Hz or

smaller) signal with relatively large amplitude (typically several fringes peak-to-peak).

The maximum and the minimum voltage of the error signal, denoted as V max
MI and V min

MI

were recorded. The absolute values of these were almost the same, V MI
max = −V MI

min.

Then the feedback circuit was turned on to lock the fringe to its operation point. In

this condition, the error signal was approximated by

vMI
error = V MI

max sin 2kδl− (8.25)

∼ 2V MI
maxkδl− (8.26)

where k and δl− are the wave number of the laser and the fluctuation of the Michel-

son path difference. Thus the displacement-to-voltage conversion ratio of the simple

Michelson interferometer was

dvMI
error

dl−
= 2V MI

maxk. (8.27)

The open-loop transfer function of the fringe locking servo was measured in this config-

uration. A small sinusoidal calibration signal with the frequency of 3kHz was added to

one of the front mirrors5, and the amplitude of the error signal vMI
cal at the calibration

frequency was measured by using a spectrum analyzer (Fig. 8.26). From this value, we

could know the displacement amplitude of the calibration signal by using the equation

δxcal =
vMI

cal

2V MI
maxk

|1 + GMI|f=3kHz . (8.28)

Both of the front mirrors were calibrated by the same method.

5The calibration frequency, 3kHz, was carefully chosen to avoid any mechanical resonances while

minimizing the effect of the mechanical feedback.
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Figure 8.26: For the calibration of the interferometer, the simple Michelson config-

uration was used at first. A small calibration voltage was used to drive one of the

front mirrors at 3kHz.

8.5.2 Calibration of the Displacement Sensitivity of the Single

Fabry-Perot Cavity

After the calibration of the near-mirror actuators, the optical paths of the FPs were

opened. The frequency stabilization loop and FP loose locking loop were closed in this

order, while the Michelson locking loop was opened6. The open-loop transfer function

of the cavity-locking servo was measured. The same calibration signal as used in the

simple Michelson configuration was applied to the near mirror of the loosely-locked

cavity (Fig. 8.27). The Fabry-Perot locking error signal vFP
cal at 3kHz was measured by

using servo analyzer. The amplitude of the mirror motion caused by the calibration

signal was thought to be the same as that in the simple Michelson configuration.

Therefore, by comparing the calibration displacement δxcal with the error signal, the

displacement-to-voltage conversion factor for the Fabry-Perot signal extraction system

6The frequency stabilization was not essential for the calibration purpose. Nevertheless it was

useful to maximize the SNR of the measurement by suppressing the frequency noise.
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Figure 8.27: The same calibration voltage as used in the simple Michelson config-

uration was used for the calibration of the single Fabry-Perot cavity. The typical

value for this was 1010volt/m.

was obtained:
dvFP

err

dL
=

vFP
cal

δxcal

|1 + GFP|f=3kHz (8.29)

where δL and GFP is the length of the cavity and the open-loop transfer function of

the loose-locking servo of the cavity. Both of the cavities were calibrated by the same

procedure.

8.5.3 Calibration of the Displacement Sensitivity of the Fabry-

Perot-Michelson Interferometer

The frequency stabilization loop and FP loose locking loop were closed in this order,

while the Michelson locking loop was opened. Just in the same way as the simple

Michelson configuration, the maximum and the minimum voltage of the error signal,

V max
FPM and V min

FPM, were measured while BS was driven with a large amplitude7. After the

Michelson fringe locking servo was closed, the open-loop transfer function of the three

7The measurement of V max
FPM and V min

FPM wasn’t directly related with the calibration, but by using

this value we could check the consistency of the fringe voltage with the reflectance of the cavity and

the open-loop transfer function.
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loops (frequency control, FP loose lock, and Michelson lock) were measured. Because

the reflectance of the FP was smaller than that of the front mirror, the open-loop

transfer function of the Michelson fringe control loop was smaller in this configuration

than in the simple Michelson configuration. The same calibration voltage as used in

simple Michelson configuration was applied to one of the front mirrors (Fig. 8.28).

The Michelson error signal voltage denoted as vFPM
cal at the calibration frequency was

measured by using the spectrum analyzer (Advantest, R9211). From this value, one

could obtain the displacement-to-voltage conversion factor as expressed in the following

equation:
dvFPM

err

dL−
=

vFPM
cal

δxcal

|(1 + GFPM)(1 + GFP)|f=3kHz (8.30)

where δvFPM
err , δL−, GFPM, and GFP are the error signal of the Michelson fringe of FPM,

the differential fluctuation of the length of the arm cavities, the open-loop transfer func-

tion of the Michelson fringe locking loop of FPM, and the open-loop transfer function

of loose FP locking loop. For our experiment, this factor was typically 1010V/m. In

the above equation the frequency stabilization loop was ignored, because the gain of

the PZT-control was much larger than that of the mass-control in the frequency stabi-

lization loop at the calibration frequency, thus there was almost no phase modification

by this loop.
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Figure 8.28: In the full FPM configuration, the same calibration voltage as used

in the simple Michelson configuration was used to drive one of the front mirrors at

3kHz. The amplitude of the error signal of the Michelson fringe of the FPM was

compared with that of the simple Michelson configuration. Taking into account the

effects of the open-loop transfer function, the displacement-to-voltage factor of the

interferometer was obtained. The typical value for this was 1010 V/m.
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9. Displacement Sensitivity and the

Noise Analysis

In this chapter, the noise level in the displacement sensitivity of the interferometer

is studied. The measured noise level and the identification of the noise sources are

shown.

9.1 Displacement Sensitivity of the Interferometer

To evaluate the displacement sensitivity of the Fabry-Perot-Michelson interferometer,

the noise-spectrum of the feedback signal of the Michelson fringe locking servo was

measured as the current in the feedback actuator by using the spectrum analyzer, while

the interferometer was in operation. All of the calibration measurement described in

the preceding section were done. The feedback signal vFPM
fed was measured using the

spectrum analyzer. Combining this signal with Eq.8.22, putting zero to all of the

terms except for the differential fluctuation δL−, the displacement spectrum of δL−

was obtained as

δ̃L−(f) =

(
dvFPM

err

dL−

)−1 |1 + GFPM(f)| · |1 + GFP(f)|
|Gfilt| · |1− γs

m|
vFPM

fed (9.1)

where Gfilt is the transfer function of the feedback filter from the error point to the

feedback point of the Michelson fringe locking servo. In the calculation above, the

measured value of the transfer functions were used whenever it was possible. “Fit-

ted” transfer functions were used only in the frequency range where it was difficult to

measure the correct transfer functions (i.e. below 10Hz). For the asymmetry factor

originating from the servo system represented by γs
m, the calculated value shown in

Fig.8.25 was used, since it was impossible to directly measure it.
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Figure 9.1: The displacement noise spectrum for δL− of the 3m Fabry-Perot-

Michelson interferometer.

Figure 9.1 shows the obtained displacement noise for δL−. There are three major

noise sources in 3-meter interferometer; the seismic-induced displacement of the mirror,

frequency noise of the laser, and the photon shot noise. There are also many noise

sources related to the signal extraction and control system. All of these noise sources

are described in detail in the following sections.

9.2 Seismic-Induced Noise

The mirrors of the interferometer are driven by the seismic motion, even though they

are isolated from such disturbances by suspension system. The seismic motion of the
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campus of the University of Tokyo approximately follows the “standard” formula [29]

ỹ(f) =

(
1Hz

f

)2

× 10−7 m/
√

Hz (9.2)

in the frequency range between 10−1 and 1kHz [30], where ỹ is the power-spectral

density of the seismic motion. The seismic-induced displacement of the mirrors is

related to the seismic motion as

x̃seism = Hisolỹ (9.3)

where Hisol is the isolation ratio of the suspension system. Putting the theoretical values

of Eq.8.5 and Eq. 9.2 into the above equation, we can obtain the expected amplitude of

the seismic-induced noise for one mirror. If we assume that the motion of the mirrors

were independent from each other, the seismic-induced noise of the interferometer was

calculated to be factor two larger than xseism.

On the other hand, the seismic-induced noise was able to evaluate by measuring

the displacement noise spectra of the interferometer in two configurations.

Noise spectra of a simple Michelson interferometer.

In the simple Michelson interferometer comprising BS and the two front mirrors, the

error signal ṽMI
err(f) of the fringe-locking servo was measured by using spectrum ana-

lyzer. The error signal was corrected by the open-loop transfer function of the fringe

locking servo GMI. The displacement-to-voltage conversion factor for a simple Michel-

son configuration given by Eq. 8.27 was used to obtain the displacement noise of the

simple Michelson interferometer as

δ̃l−(f) = ṽMI
err(f)

(
dvMI

err

dl−

)−1

|1 + GMI(f)| . (9.4)

Noise spectrum of the Fabry-Perot locking system.

When the frequency control loop was turned on, the error signal of the perpendicular

cavity was written by Eq. 8.20. Assuming that the seismic fluctuation for the two

cavities were of the same amplitude and were independent from each other, one can
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calculate the seismically-induced noise for the differential motion using Eq. 8.20:

δ̃L−(f) = ṽFP
err (f)

(
dvFP

err

dL

)−1

|1 + GFP(f)|
√√√√ 2

1 + |1− 1/ [1 + Gstab(f)]|2 (9.5)

All of the above mentioned three power-spectra were plotted together with the

displacement noise of Fabry-Perot-Michelson interferometer in Fig. 9.2. The FPM

signal agreed well with the FP locking signal from 10 to several hundreds hertz. For

the simple Michelson configuration, it was possible to evaluate the seismic-induced

noise level only below 100 Hz because the sensitivity was poor, but the spectrum also

agreed with the FPM signal from 10 to several tens hertz. From the fact that the

signals obtained by the different phase sensing system agreed well with each other, the

noise of the FPM interferometer between ten and hundred hertz range was identified as

seismic-induced noise. In this range, the spectrum didn’t agree with the “theoretical”

noise, because of the resonances of the suspension (mainly vertical) which appears as

the large peaks at around 18 and 28 Hz in Fig. 9.21.

On the other hand, the “theoretical”, the MI, and the FP signals agreed well below

10Hz, while FPM signal was much larger. However, this does not mean that the FPM

was much noisier than MI or FP in the lower frequency region. This was because the

length between the beamsplitter and the near mirrors were ignored when the FPM was

calculated. In calculating Eqs. 8.22 and 9.1, the δθ− term in Eq. 8.21 was ignored on the

assumption that the phase change caused by cavity-length fluctuation was much larger

than that by the Michelson path fluctuation. Since the phase change caused by the

cavity was corrected by the FP locking servo, this assumption is not true if the control

gain of the FP locking loop was larger than or comparable to the finesse of the cavity.

Though the FP loose-locking servo was designed to be as low-gain as possible, it was

not possible to ignore this effect in the low frequency range. Figure 9.3 shows the raw

feedback voltage of the beamsplitter in MI and FPM configuration in the low frequency

range. The plot shows that the spectrum for the two configuration were at the same

level. Because the fringe control gain was much larger than unity, the same voltage

in this plot means that the phase fluctuation which had to be compensated by the

beamsplitter control for MI and FPM configuration were at the same level. Therefore
1These peaks were difficult to measure with photo-sensor measurement (Fig. 8.10).
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Figure 9.2: Displacement noise spectra of the FPM (thick solid line), the MI (thin

dotted), and the FP (thin solid) configuration. The thin dashed line is the “the-

oretical” line calculated from the seismic vibration formula and the ideal isolation

ratio of the system. From the fact that the signals obtained by the different phase

sensing system agreed well with each other, the noise of the FPM interferometer

between 10 and 100 hertz range was identified as seismic-induced noise. There were

resonances of the suspension system (mainly vertical) which appears as the large

peaks at around 18 and 28 Hz in this plot. (The difference between the FPM signal

and others in the frequency range below 10Hz will be discussed in the next plot.)
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Figure 9.3: Raw feedback voltage of the Michelson fringe locking servo, i.e. the volt-

age applied to the actuator of the beamsplitter, for MI (thin line) and FPM (thick)

configuration. The same voltage in this plot means that the phase fluctuation which

had to be compensated by the beamsplitter control for MI and FPM configuration

were at the same level. This strongly indicates that the FPM signal was dominated

by the Michelson path fluctuation (δl−) in the frequency range lower than 10Hz.

one can conclude that the spectrum of the FPM configuration was actually dominated

by the fluctuation of the Michelson path in the frequency range lower than 10Hz; the

vibration of the mirrors of FPM was at the same level as MI, FP, and “theoretical”

level, but the finite servo gain of the FP loose locking system suppressed the cavity-

originated signal, which added the relative weight to the Michelson-originated signal.

This was not a problem at all in this experiment because the frequency where this

effect had to be counted was rather low.

To summarize the above discussions, the noise spectrum of the FPM interferometer

was dominated by seismic-induced motion of the mirrors in the frequency range below

100 Hz. Because of the finite control gain of the FP loose locking system, the seismic-

induced fluctuation of the Michelson path length (δl−) dominated the spectrum, but

this was in the lowest frequency band of the measurement (i.e. below 10Hz).
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9.3. Frequency Noise and Common-Mode-Rejection

9.3 Frequency Noise and Common-Mode-Rejection

If the interferometer was completely symmetric, the frequency fluctuation of the laser

would not be the noise source to the differential phase measurement. However, since

there were optical asymmetry as well as the servo asymmetry, the frequency noise ap-

peared in the displacement spectrum of the FPM interferometer, in the high frequency

range. Here, the frequency noise and the CMRR of the interferometer are studied.

9.3.1 Frequency Noise Spectra Obtained by Using Two Cav-

ities

Frequency noise of the laser was evaluated from the error signal of the frequency sta-

bilization servo as well as that of the FP loose locking servo. The error signals were

measured with and without the frequency stabilization, thus the noise corresponding

to the free-running and frequency-stabilized laser were obtained. First, the reference

cavity was locked to the resonance loosely by only using mechanical feedback using the

same feedback filter as used in the FP loose locking servo. The spectrum was corrected

by the measured open-loop transfer function to give the frequency fluctuation of the

free-running laser as

δ̃νfree(f) = ν0
vFP1

free (f)

L0

(
dvFP1

err

dL

)−1

|1 + GFP1(f)| (9.6)

With this free-running noise and the measured open-loop transfer function of the fre-

quency stabilizing loop, the expected error signal of the frequency-stabilized system

would be calculated as

δ̃ν
calc

err−stab(f) =
δ̃νfree(f)

|1 + Gf−mass(f) + Gf−PZT(f)| . (9.7)

When the frequency stabilization loop was turned on, the error signal of the stabiliza-

tion loop as well as that of the free cavity was measured:

δ̃ν
FP1

err−stab(f) = ν0
vFP1

err−stab(f)

L0

(
dvFP

err

dL

)−1

(9.8)

δ̃ν
FP2

err−stab(f) = ν0
vFP2

err−stab(f)

L0

(
dvFP

err

dL

)−1

|1 + GFP(f)| (9.9)

131



9. Displacement Sensitivity and the Noise Analysis

Figure 9.4 shows the typical power-spectrum of the above mentioned four signals.

One can see that the expected (δνcalc
err−stab) and the measured (δνFP1

err−stab) error signal for

the stabilization loop agreed well with each other, which indicates that the servo loop

worked quite correctly. It is apparent that the measured signals were dominated by

the seismic-induced noise in the lower frequency range (see the previous section about

the seismic-induced noise). For the free-running laser, the data in the frequency range

higher than 100Hz was least-squares fitted by the power-law to give the model of the

frequency noise below 100Hz:

δ̃ν
model

free (f) = 2.21× 103 ×
(

1Hz

f

)0.825

. (9.10)

There were also the shot-noise of the P-D-H sensing system for the two cavities,

which will be calculated in the followings.

9.3.2 Shot Noise Level of the Pound-Drever-Hall Sensing Sys-

tem

Even though one took the effect of the seismic-induced noise into account, there still

remained the difference between the measured error signal of the stabilization loop

(δνFP1
err−stab) and that of the loosely locked cavity (δνFP2

err−stab) in the frequency range

between 200 and 2kHz. In the loosely-locked cavity’s spectrum, which is the measure

of the “real” frequency stability, there was a noise floor originating from the shot noise

of P-D-H sensing system. To confirm this, the shot noise level of the P-D-H system

was measured as follows.

As mentioned earlier in Sec. 8.4, a small fraction of the reflected beams from the

cavities were picked off and demodulated at 15 MHz to give the P-D-H error signal.

The noise level of the demodulation system was the sum of the shot noise of the real

photo-current and the electronics noise. The electronics noise of the demodulating

system was expressed as the corresponding photo-current in the photo diode. The

noise level of the demodulated signal was then represented by

ṽdemodn =
√

2e (I + IDn)Requivn (n = 1, 2) (9.11)

132



9.3. Frequency Noise and Common-Mode-Rejection

101 102 103 104 10510–3

10–2

10–1

100

101

102

103

104

105

106

frequency (Hz)

H
z/

� H
z

free run

stabilization error

measured by loosely–locked FP

shot noise

Figure 9.4: The frequency noise of the laser with and without the frequency sta-

bilization of the typical servo setting. The thin solid line is the noise level of the

free-running laser. The fitted line for the free-running laser is also shown. The the

thin dotted and the thick broken lines are the calculated and the measured error

signal of the closed stabilization loop. The thick solid line shows the frequency noise

level of the stabilized laser measured by using loosely-locked cavity as another ref-

erence. Below 100Hz, frequency noise was masked by the seismic-induced vibration

of the mirrors. The dot-dashed line is the shot-noise level of the P-D-H systems for

the two cavities.
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Figure 9.5: Calibration of the shot-noise level, the dark current, and the equivalent

gain of the RF P-D-H circuits. Incoherent light from the bulb was used as the

standard of the shot-noise level. The DC photo-current in the photodiode and the

spectrum of the demodulated signal were measured with several input power levels.

where vdemodn, I, IDn, and Requivn are the demodulated signal, the DC photo-current in

the diode, the equivalent photo-current (the dark current) of the electronics, and the

equivalent gain of the system with the dimension of the resistance,

The shot noise level corresponding to the demodulated signals are written by

δ̃νshotn(IDC) = ṽdemodn
ν0

L0

(
dvFPn

err

dL

)−1

(n = 1, 2). (9.12)

The dark current and the equivalent gain of both of the P-D-H circuits were cali-

brated by using incoherent light from an electric bulb (Fig. 9.5). The DC current in

the photodiode and the power-spectral density of the demodulated signal were mea-

sured with various input power. Since it is reasonable to assume that the intensity

noise of the incoherent source from the bulb reached the shot-noise level at 15MHz,

this measurement can be thought as a calibration of the shot-noise level. Figure 9.6

shows the measured data. The data were least-squares fitted to give the dark current

and the equivalent gain of the circuits as

(ID1, Requiv1) = (91.5µA, 16.1kΩ) (9.13)

(ID2, Requiv2) = (169µA, 22.4kΩ). (9.14)

The data showed the saturation of the RF gain in IDC > 2 mA range, so the data in

this range were not used for the fitting.

Combining these values with Eqs. 9.11 and 9.12 and the DC current in the photo-

diodes in the operation (0.48 mA for FP1 and 0.38 mA for FP2), the shot-noise level
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Figure 9.6: Measured and fitted plot of the shot-noise level of the P-D-H circuits for

both of the arms. The data showed the saturation of the RF gain in IDC > 2 mA

range, so the data in this range were not used for the fitting.
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9. Displacement Sensitivity and the Noise Analysis

for the P-D-H circuits were obtained as

δ̃νshot1 = 6.9mHz/
√

Hz (9.15)

δ̃νshot2 = 11mHz/
√

Hz. (9.16)

The two shot-noise levels are uncorrelated, so the root of the square sum of these levels

(13mHz/
√

Hz) should have appeared in the measured spectrum of the loosely locked

cavity, though this is not the shot-noise level of the real frequency noise of the stabilized

laser. From Fig. 9.4 one can see that the floor noise of the loosely locked cavity agreed

with the shot-noise level.

9.3.3 Estimation of the Frequency Noise of the Stabilized Laser

It is a good assumption that the spectrum of the error signal of the loosely-locked cavity

with the frequency stabilization agreed well with the real frequency noise of the laser

at several kilohertz and above. At 100Hz and below, the seismic-induced noise masked

the frequency noise. Also, in the frequency range between several hundred and several

kilohertz, there was the shot-noise of the P-D-H sensing system of FP2 (δνshot2) which

had nothing to do with the stabilization system. Though it was impossible to directly

measure only the frequency noise separately from the displacement of the mirrors and

the shot noise of the sensing system in the low frequency range, one could calculate

the frequency noise of the stabilized laser:

∣∣∣δ̃νstab(f)
∣∣∣ =

√√√√∣∣∣δ̃νshot1

∣∣∣
2
+

∣∣∣∣∣
δ̃νn(f)

1 + Gstab

∣∣∣∣∣

2

(9.17)

where δ̃νn(f) is the frequency noise of the free running laser. Therefore the following

values are used as the frequency noise of the stabilized laser in this paper:

• The calculated spectrum by using the combination of Eq. 9.17 and the model

spectrum of the free-running laser for f < 100Hz.

• The calculated spectrum by using the combination of Eq. 9.17 and the measured

spectrum of the free-running laser between 100 and 5 kHz.
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Figure 9.7: Estimated frequency noise of the stabilized laser. In the frequency

range lower than 100 Hz, the spectrum was obtained by using the model spectrum

of the free-running laser and the stabilization gain. Between 100 and 5 kHz, it

was calculated from the measured spectrum of the free-running laser, the shot-noise

level, and the stabilization gain. At 5 kHz and above, the measured spectrum of

the stabilized laser was used. The broken line shows the shot-noise level of the

stabilizing system.

• The measured error spectrum of the loosely-locked cavity corrected by the open-

loop transfer function of the FP locking servo for 5 kHz and above.

Figure 9.7 shows the estimated frequency noise level of the stabilized laser.

9.3.4 Measurement of the Optical Common-Mode-Rejection

After the measurement of the frequency noise of the laser, the optical CMRR of the

FPM interferometer was measured by intentionally applying the frequency noise to the

laser. Figure 9.8 shows the setup of the measurement. The laser frequency stabilization

was not used in this measurement, and both of the cavities were loosely locked to the

resonance by means of mechanical feedback. The Michelson path was also locked,

therefore the whole configuration was the FPM interferometer without the frequency
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Figure 9.8: Measurement of the CMRR of the FPM interferometer. A sinusoidal

signal with the frequency fSG was applied to the tuning PZT of the laser. Both of

the cavities were locked loosely to the resonance without the frequency stabilization.

The transfer function from the error of the FP locking to that of the FPM fringe

locking was measured by using a spectrum analyzer.

stabilization. A sinusoidal voltage was applied to the tuning PZT of the laser to

generate the intentional frequency fluctuation. The transfer function from the error

signal of one of the FPs to that of the FPM fringe locking was measured by using a

spectrum analyzer. In this measurement, the error signals were approximated by

ṽFP1
err (f) = L0

δ̃ν(f)

ν0

(
dvFP1

err

dL

)
1

1 + GFP1

(9.18)

ṽFPM
err (f) = L0

δ̃ν(f)

ν0

(
dvFPM

err

dL−

) (
1

1 + GFP1

− 1 + γopt(f)

1 + GFP2

)
1

1 + GFPM

(9.19)

thus the measured transfer function is represented by

H(f) ≡ ṽFPM
err (f)

ṽFP1
err (f)
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=

(
dvFPM

err

dL−

) (
dvFP1

err

dL

)−1 {
1− 1 + GFP1

1 + GFP2

[1 + γopt(f)]
}

1

1 + GFPM

(9.20)

where H is the measured transfer function and γopt is the optical CMRR. One can see

that the measured transfer function can be simply translated to the CMRR when all of

the control gains GFPM, GFP1, and GFP2 are much smaller than unity (i.e. f > 10kHz)

as

|γopt(f)| = |H(f)|
(

dvFPM
err

dL−

)−1 (
dvFP1

err

dL

)

,

(9.21)

The above equation is also true if the open-loop transfer function of the servo for

the two cavities were identical. Figure 9.9 shows the measured optical CMRR of the

interferometer. The optical CMRR had no significant frequency dependence, which

agreed with the fact that the cut-off frequencies of the cavities were about 100 kHz.

Though there seemed to be the frequency dependence in f < 10 kHz range, this was

because of the difference between GFP1 and GFP2. Even though it was theoretically

possible to correct the measured transfer function to CMRR, it was very difficult to

do the correction in fact, because the small CMRR value had to be calculated as the

difference of the large numbers which was the same order of or much larger than CMRR

itself in this frequency range. The value of CMRR was measured as

γopt = 2 ∼ 3× 10−3. (9.22)

The optical CMRR of 1% level was almost always realizable without any difficulties.

However, the best value on the order of 0.1% was possible only when the mirrors of

the interferometer were aligned very carefully2. Though the dependence of the CMRR

on alignment was not measured quantitatively, we have observed the degradation of

the CMRR when the mirrors were poorly aligned (Fig. 9.10). Also we have observed

that the CMR was degraded after several hours of operation, which could be recovered

by aligning the mirrors again.

The measurement of the optical parameters such as the finesse and the reflection

coefficient of the cavities were not as accurate as 0.1% level, therefore it was difficult

2The mirrors were aligned to maximize the contrast of the FPM interferometer.
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Figure 9.9: The optical CMRR of the FPM interferometer was measured to be

2 ∼ 3 × 10−3. One can see that there was no significant frequency dependence in

f > 10 kHz range. The frequency dependence in the lower frequency range came

from the asymmetry of the cavity-locking servos when the measurement was done,

and this had nothing to do with the optical CMRR.
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Figure 9.10: The displacement sensitivity of the FPM interferometer. When the

interferometer was aligned carefully (solid line), the CMRR of 10−3 order was

obtained. With a small misalignment, the CMRR was degraded and thus the

frequency-noise contribution in the spectrum increased (broken line).
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to conclude if the best value was limited by the asymmetries in the optics. However,

it is quite reasonable to assume that the asymmetries in the optics were within 1 %,

considering the fact that the CMRR of 1% was relatively easy to realize. From Eqs. 7.6

and 7.15, there still remains the possibility that the asymmetries in the optics was

compensated by the alignment. This possibility was not studied further, because the

alignment sensors that directly measure the coupling of the cavities to the fields would

have been required for such purpose.

9.3.5 Total CMRR and the Projection of the Frequency Noise

on the Displacement Sensitivity

As shown in Eq. 8.22, not only the optical CMRR but the control asymmetry factor γs
f

also determined the interferometer’s response to the frequency noise in this experiment.

Therefore both of these two factors have to be taken into account to project the fre-

quency noise of the laser onto the displacement sensitivity of the FPM interferometer:

γ(f) =
√
|γo|2 + |γs

f (f)|2 (9.23)

where γ represents the total CMRR of the interferometer. By combining Eqs. 8.22

and 9.23, the frequency noise of the stabilized laser was projected on the displacement

sensitivity of the FPM,

δ̃L
FM

− (f) =

√
|γo|2 + |γs

f (f)|2
1− γs

m(f)
L0

δ̃νstab(f)

ν0 .

(9.24)

In Fig. 9.11, both of the optical CMRR and the servo symmetry are projected on the

displacement sensitivity. Due to the servo asymmetry, the frequency noise level was

the dominant noise source between 400 and 1 kHz.

9.4 Shot Noise of the Michelson Fringe Detection

System

The Michelson fringe detection system also had its own shot-noise level. The analysis of

this was rather simple and straightforward compared with that of the P-D-H system,
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Figure 9.11: The projection of the frequency noise of the stabilized laser on the

displacement sensitivity of the FPM interferometer. The solid line shows the FPM

sensitivity, the dashed line is the projection of the frequency noise that coupled

to the optical CMRR, and the dotted line is the projection of the frequency noise

coupled to the asymmetry factor of the servo system.
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because there was no RF circuits used in the system. During the operation of the

interferometer, the DC voltage of the photo detectors were measured, from which the

current in the photodiodes were calculated. The shot-noise voltage of the detectors are

written by

vPDn
shot =

√
2e

vDCn

R
×R (n = 1, 2) (9.25)

where vDCn is the DC voltage of the photo-detector for PDn (n = 1, 2) and R is the

feedback resistance of the detector circuit (see Fig. B.7 for the circuit of the detectors).

Though the shot-noise voltage itself should have flat spectrum, it had to be corrected

by the cavity pole (100kHz) in the higher frequency range. Also, since the shot noise in

the DC detectors were added to the system after the recombination of the beam, it had

to be corrected by the servo asymmetry factor and the open-loop transfer function of

the FP locking servo, but not by that of the Michelson fringe servo. Thus the shot-noise

level of the displacement sensitivity was obtained from the following equation:

δ̃L
shot

− (f) =

(
dvFPM

err

dL−

)−1 √
|vPD1

shot |2 + |αvPD2
shot |2

∣∣∣∣∣
[1 + GFP(f)] [1 + if/fc]

1− γs
m(f)

∣∣∣∣∣ (9.26)

where α is the electronic gain factor (Eq. 6.31) and fc is the cut-off frequency of the

cavities. Putting the measured values into the above equation, the shot-noise level of

the displacement sensitivity was calculated as

δ̃L
shot

− (f) = 6.6× 10−18 m/
√

Hz×
∣∣∣∣∣
[1 + GFP(f)] [1 + if/fc]

1− γs
m(f)

∣∣∣∣∣
,

(9.27)

which is plotted in Figure 9.12.

9.5 Other Noise Sources

In this section, other two noise sources (i.e. the electronics noise and the intensity

noise) and their levels which are plotted in Fig. 9.13 are described briefly.

9.5.1 Electronics Noise

Among the many electronics circuits, the largest noise source was the coil driver for the

actuator of the FP loose-locking servo. The end mirror of the FP cavity was driven by
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Figure 9.12: Shot-noise level of the Michelson fringe detection system (broken line)

and the displacement noise level of the FPM interferometer (solid). The floor level

was 6.6× 10−18 m/
√

Hz. The spectrum was corrected by the cavity pole (100 kHz)

and the feedback servo of the FP locking.
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Figure 9.13: The equivalent displacement noise level of the electronics noise (thin

solid line) and the intensity noise of the input light (broken line). The thick solid

line is the displacement noise level of the FPM interferometer.
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Figure 9.14: Transfer function from the feedback current to the displacement of the

mirror. This plot is the calculated value which was obtained from the open-loop

transfer function of the FP locking servo, the transfer function of the control circuit

from the error signal to the feedback signal, the impedance of the current read-out

resistance, and the displacement-to-voltage conversion factor of the FP.

the electronics noise in the feedback circuit, thus the phase fluctuation was generated

in the reflected beam from the cavity. The input of the driver was grounded and the

voltage noise of the feedback signal represented by vdrv was measured. During the

measurement, the output of the driver was connected to the coil-and magnet just in

the same way as in the operation of the interferometer3. On the other hand, the open-

loop transfer function of the FP locking servo (GFP) and the transfer function from

the error signal to the feedback voltage which is represented by Hcirc were measured.

The ratio of GFP to Hcirc was used as the transfer function from the feedback voltage

to the error signal, which is shown in Fig. 9.14. The plot showed that the actuator’s

transfer function agreed well with the f−2 formula:

1.8× 10−2 ×
(

1Hz

f

)2

m/A. (9.28)

The equivalent displacement noise by the electronics of the coil driver was then

written by

δLdrv
− =

GFP

Hcirc

vdrv

(
dvFP

err

dL

)−1

.

(9.29)

3Otherwise the load-impedance to the driver would have changed the noise property.
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As Fig. 9.13 shows, though the driver noise was not the dominant source, it was

close to the noise level of the FPM interferometer between 100 and 1kHz.

9.5.2 Intensity Noise

In general, though the interferometer is tightly locked to its operation point by servo

systems, there still remains some residual deviation in the phase-extraction point of

the signal. The intensity noise of the laser couples to this residual deviation and is

converted to the displacement signal:

δLI
− = 〈δL−〉RMS

δI

I0

, (9.30)

where δLI
−, 〈δL−〉RMS, and δI/I0 are the equivalent displacement noise originating from

the intensity noise, the RMS residual fluctuation, and the relative intensity noise of

the laser, respectively. To evaluate this noise level, the intensity noise of the input

light and the residual fluctuation of the Michelson fringe were measured (Fig. 9.15).

Because the input optics were in the open air, the intensity noise of the input light

was thought to be larger than the intensity noise of the laser itself. Especially, the

spectrum was not stationary in the lower frequency range, which indicates that the

noise came from the dust or the air flow. On the other hand, the residual fluctuation

of the Michelson fringe was typically several millivolts, which corresponded to 10−13 m

of the displacement. Because of this small residual fluctuation, the intensity noise was

not a problem at all in this experiment: Multiplying the intensity noise in Fig. 9.15 by

10−13m, the displacement noise level of 10−18 m/
√

Hz was obtained at 100Hz.

9.6 Summary of the Noise Analysis

We have identified noise sources which limited the strain sensitivity in almost all of

the frequency range of our interest. Figure 9.16 shows the measured displacement

noise of the FPM interferometer, together with the noise level of the various sources.

The displacement noise level of the interferometer reached 2 × 10−17m/
√

Hz at 1kHz

and 1 × 10−17m/
√

Hz at the noise floor between 2kHz and 10kHz. The floor noise

was identified as the shot noise of the light in the Michelson fringe detection system.
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Figure 9.15: Measured relative intensity noise of the input light to the interferom-

eter. Since the input optics were placed in the open air, this plot is thought to be

larger than the intensity noise of the laser itself. Especially, the spectrum was not

stationary in the lower frequency range, which indicates that the noise came from

the dust or the air flow.
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Figure 9.16: Displacement noise level of the 3-m FPM interferometer, plotted to-

gether with the noise sources. δνγo, the frequency noise coupled to the optical

CMRR (2 ∼ 3× 10−3); δνγs, the frequency noise coupled to the servo asymmetry;

drv, the electronic noise of the driver of the coil-magnet actuator used for the FP

control; shot, the shot noise of the Michelson fringe detection; seismic, the seismic-

induced vibration of the mirrors. The noise floor between 2kHz and 10kHz was

dominated by the shot-noise level, which was 6.6× 10−18m/
√

Hz.
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9.6. Summary of the Noise Analysis

Below 100Hz, the seismic noise was dominant. At 20kHz and above, the spectrum

was dominated by the the frequency noise of the laser. The frequency stabilization

and the good optical CMRR of 2 ∼ 3 × 10−3 suppressed the frequency noise level

smaller than the shot-noise limited sensitivity of the Michelson fringe detection in the

kilohertz range. The servo asymmetry factor degraded the CMRR below 1 kHz, thus

the frequency noise was also the dominant noise source between 400 and 1 kHz. This

was because of the asymmetric design of the servo system used in this experiment.

Though the noise of the driver circuit of the actuators was the dominant source, it was

close to the noise level of the FPM interferometer between 100 Hz and 1 kHz.

Though the dependence of CMRR on the alignment was not measured quantita-

tively, the dependence itself was observed during the operation of the interferometer.
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10. Discussions

10.1 Asymmetry of the Optics

In this experiment, the CMRR on the order of 10−3 was obtained. It was difficult to

conclude if this was limited by the asymmetries in the optics, because the measurement

of the optical parameters such as the finesse and the reflection coefficients of the cavities

were not as accurate as 0.1% level. However, from the measured finesse (Eq. 8.8), it is

quite reasonable to assume that the asymmetries in the optics were about or within 1%.

The CMRR of 1% was relatively easy to realize, which also supports this assumption.

The finesse of each of the cavity was about 230, which should be on the same order as,

or smaller than, the finesse of the cavities used in the full-scale interferometers. Also

the optics for the full-scale detectors will have higher optical quality than those used in

this experiment. Thus it seems that one can expect to have the optical CMRR around

1% in full-scale interferometer. On the other hand, further experimental study for the

large optics for the full-scale detectors has to be made, since the results were obtained

only in the small optics with the beam size only less than 1 mm; any non-uniformity

in the mirror coating for large area would change the result in a large detector.

10.2 Geometrical Asymmetry

For the geometrical asymmetries due to the misalignment of the mirrors to the laser

beam, we could not make the quantitative measurement. However, on the assumption

that the modal analysis presented in this paper is correct, the requirement for the

alignment of the mirrors which would be put by the degradation of CMRR will not be

as severe as the one put by the power-recycling requirements.
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10. Discussions

For example, if we require that the CMRR limited by the geometrical asymme-

tries should be 10−2, the same order as the optical CMRR, the requirements for the

misalignment parameters are:

(
ax

w0

)2

< 10−2 (10.1)

(
αx

α0

)2

< 10−2, (10.2)

where w0, α0, ax, and αx are the waist size of the cavity, the divergence angle, and

the misalignment parameters corresponding to the lateral displacement and the angu-

lar rotation of the modes. For example, in the TAMA300 interferometer, the beam

parameters are w0 =8.5mm and α0=40µm. From Eqs. 10.1 and 10.2, the allowable

misalignment angle of each of the mirrors is on the order of several µrad. This require-

ment is not as severe as the one coming from the power-recycling factor requirements

[40, 47], thus an interferometer with the automatic alignment control system will realize

this requirement.

However, the analyses presented here are the simplest ones. A more detailed anal-

yses are required to discuss the geometrical asymmetries such as the mismatching and

the roughness of the surface of the mirrors.

10.3 Servo Asymmetry

In the full-scale detectors, any asymmetries in the servo system have to be carefully

avoided, because such asymmetries will potentially degrade the CMRR even though

the interferometer is optically symmetric. The servo asymmetry factor is proportional

to the difference of the control gains for the two arms; for example, Equation 8.24 is

the representation specific to this experiment. Even though the optics and the servo

design of the interferometer are symmetric, some asymmetry may exist in the physical

implementation of the servo system, i.e. the imbalance in the actuators of the mirrors.

Let us see the simplest case (Fig.10.1). To simplify the problem, only the two degrees

of freedom, i.e. δL− and δL+ are considered here. As the noise source, only the

frequency noise is taken into account. Suppose that the signal extraction is completely
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Figure 10.1: The simplest system with the servo asymmetry.

symmetric. In such system, the error signals are written by:

V− ∝ δL− (10.3)

V+ ∝ δL+ + 2δν
L0

ν0

(10.4)

where δL± represents the differential and common variation of the cavity lengths. There

are control asymmetries, so the feedback signals have the contamination terms:

G−δL− + ε1G+ (δL+ + 2δνL0/ν0) (10.5)

G+ (δL+ + 2δνL0/ν0) + ε2G−δL−, (10.6)

where G± are the mechanical control gain for the common and the differential displace-

ment and εn (n = 1, 2) represent the imbalances in the servo system. Assuming that

the imbalances are much smaller than unity, the above equations are solved as

V− ∝ −ε1δν
L0

ν0

G+

(1 + G+)(1 + G−)
(10.7)

to the first order of εn. One can see that the imbalance in the servo actuator directly

couples to the frequency noise to contaminate the signal of the differential displacement.

It would be possible to match the coupling of the actuators in 1% accuracy, thus

the CMRR of 10−2 is a reasonable assumption for the servo asymmetry [48] if the

control system is well-designed. Moreover, it is apparent that the servo asymmetry is

minimized by minimizing the control gain for the common-mode motion: The common
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10. Discussions

mode motion should be compensated by the frequency of the laser as long as it is

possible 1.

10.4 Frequency Noise and CMRR

As shown in the preceding discussions, one can expect to have a total CMRR on the

order of or less than 1% even in a full-scale detector. This will relax the requirement

for the frequency noise of the laser used in the detector. For example, in the TAMA300

detector, the noise level of the interferometer must be less than 3×10−21 in strain with

a 300 Hz bandwidth, which corresponds to 5× 10−20 m/
√

Hz displacement sensitivity.

Considering the length of the cavity (300m) and the frequency of Nd:YAG laser (about

300 THz), the requirement for the frequency noise of the laser used in the TAMA

detector is

δνstab < 5× 10−6 Hz/
√

Hz , (10.8)

if the CMRR is 1%. This requirement is thought to be feasible.

10.5 Electronics

In this experiment the noise of the driver circuit for the actuators was close to the

FPM noise level between 100 and 1 kHz. A more careful design of the actuator system,

i.e. the optimal coupling and the minimum noise current, are needed for the actuator

of the full-scale detectors.

In the experiment, the measured noise level of the driver was roughly -140 dBv/
√

Hz,

which corresponded to the order of 100 pA/
√

Hz. From the technological point of

view, the smallest noise possible would be the order of 10 pA/
√

Hz which is limited

by the thermal noise of the resistors. Also, the coupling of the actuator represented

by Eq. 9.28 was larger than required. From the resonant frequencies of the suspension

(1.2 and 1.5 Hz) and the maximum current which the driver was able to supply (about

1This is the basis of the design of the common-mode control of the TAMA300 interferometer. The

mechanical gain of the common-mode control should be minimized to avoid the potential contamina-

tion of the common mode signal to the gravitational wave signal due to the mechanical imbalances.
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10.5. Electronics

40mAp−p), Eq. 9.28 indicates that the actuator could make the testmass move as

large as 600µmp−p. Since the motion of the mirrors which had to be compensated

were several tens microns at their maximum, it is apparent that the coupling of the

actuator was at least 10 times larger than required, which made the effect of the

current noise larger. In the large-scale interferometers, the coupling of the actuators

for the mechanical control has to be optimized so that the amplitude of the motions of

the mirrors can just be compensated by the actuators. Only the electronics with the

minimum current noise and the minimum coupling will satisfy the crucial requirement

for the noise and the dynamic range of the actuator for the full-scale interferometers

[49]2.

2After this study has been finished, actuator system for the TAMA300 interferometer was carefully

designed. The noise level of the actuator was measured to be 30 pA/
√

Hz for each coil, with the

dynamic range of 50 µmp−p for the differential displacement. The displacement noise level is still

about factor three larger than the full sensitivity of the TAMA interferometer (5 × 10−20 m/
√

Hz),

therefore the compensation of the displacement by other means in the low frequency range is being

studied.
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11. Summary and Conclusion

We have developed a 3-m Fabry-Perot-Michelson interferometer in the campus of

The University of Tokyo to experimentally investigate the optical recombination.

Optical recombination of the reflected beams from the two cavities on the beamsplit-

ter was successfully demonstrated. The optical CMRR of 2 ∼ 3× 10−3 was observed,

which showed that it is possible to optically reduce the effect of the common-mode

noise even in the all-suspended interferometer. This was the first example of the op-

tically recombined, all-suspended interferometer with the Fabry-Perot cavities in the

arms[16].

As the result of the detailed analysis of the interferometer, noise sources which

limited the strain sensitivity were identified in almost all of the frequency range of our

interest. The displacement noise level of the interferometer reached 2 × 10−17m/
√

Hz

at 1kHz and 1× 10−17m/
√

Hz at the noise floor between 2kHz and 10kHz, which was

limited by the shot noise of the light in the Michelson fringe detection system. The

frequency stabilization and the good optical CMRR of 2 ∼ 3 × 10−3 suppressed the

frequency noise level smaller than the shot-noise limited sensitivity of the Michelson

fringe detection in the kilohertz range.

We have observed that the servo asymmetry degraded the optical CMRR between

400 and 1 kHz. However, an appropriate design of the servo system would make the

servo asymmetry smaller than the optical one.

Though the dependence of CMRR on the alignment was not measured quantita-

tively, the dependence itself was observed during the operation of the interferometer.

The requirements for the alignment of the mirrors put by geometrical asymmetry effect

is not as severe as the ones put by other effects, so this will not a problem.

The results obtained in this paper became the bases of many of the research and
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11. Summary and Conclusion

development work on all-suspended FPM interferometer in Japan. Also, the analyses

and the considerations for the servo system, modal approach, and the electronics were

fed back to and are being applied to the design and fabrication works for the TAMA300

interferometer.
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A. Modal Expansion of the

Misaligned Beam

The detailed calculations about the modal expansion of the misaligned beam are

shown here. For clarity, some of the equations which are presented in Chap. 5 appear

again in this chapter.

A.1 Lateral Displacement

The two coordinate systems, (x, y, z) and (x′, y′, z′), are related to each other by a

small parallel displacement ax:

(x′, y′, z′) = (x− ax, y, z). (A.1)

A set of Hermite-Gaussian fields in (x, y, z) coordinate system are defined by Eqs. 5.2

and 5.3. Let us consider an Hermite-Gaussian beam on the z′ axis, which is represented

by {U ′
lm+} (Fig. 5.5). We can expand the beam U ′

lm by the set {Ulm} to the second

order of the displacement as

Ulm+(x′, y′, z′) = Ulm+(x− ax, y, z)

' Ulm+(x, y, z)− d

dx
Ulm+(x, y, z)ax +

1

2

d2

dx2
Ulm+(x, y, z)a2

x

≡ ∑
pq

< pq + |lm+′ > Upq+

'
∫ ∫ [

Ulm+ +
d

dx
Ulm+ax +

1

2

d2

dx2
Ulm+a2

x

]
U∗

pq+dxdy (A.2)

After carrying out the above expansion, we obtain the expression for the laterally

misaligned fundamental mode as

Px(ax) ∗ U00+(x, y, z) ≡ U00+(x− ax, y, z)
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A. Modal Expansion of the Misaligned Beam

= U00+(x, y, z)

[
1− eiη(z)

(
−2

x

w(z)

ax

w0

+
w0

w(z)

(
ax

w0

)2
)

+2e2iη(z)

(
x

w(z)

ax

w0

)2

+ O
(
a3

x/w
3
0

)



=

[
1− 1

2

(
ax

w0

)2
]
U00+ +

ax

w0

U10+ +
1√
2

(
ax

w0

)2

U20+

+O
(
a3

x/w
3
0

)
(A.3)

where Px denotes the parallel transport operator. In the same way the expression for

the first off-axis mode is obtained as

Px(ax) ∗ U10+(x, y, z) ≡ U10+(x− ax, y, z)

=

[
1− 3

2

(
ax

w0

)2
]
U10+ − ax

w0

U00+ +
√

2
ax

w0

U20+

+

√
3

2

(
ax

w0

)2

U ′
30+ + O

(
a3

x/w
3
0

)
. (A.4)

A.2 Angular Tilt

The two coordinate systems are related to each other as




x′

z′


 =




cos αx − sin αx

sin αx cos αx







x

z


 (A.5)

y′ = y. (A.6)

In the same way as the parallel displacement, we can expand the beam by the Hermite-

Gaussian modes of the tilted coordinates to the second order of the perturbation. For

the fundamental mode, we obtain

Rx(αx) ∗ U00+(x, y, z) ≡ U00+(x cos αx − z sin αx, y, z cos αx + x sin αx)

=

{
1− α2

x

2

[
1

α2
0

− 1

2
− α2

0

8

(
1 + i

z

z0

) (
1 + 3i

z

z0

)]}
U00+

−iαx

[(
1

α0

+
iα0

2

z

z0

)
U10+ +

√
2

8
α0

(
1− i

z

z0

) (√
3U30+ + U12+

)]

+O
(
α2

x/α
2
0

)
× (l + m ≥ 2 off−axis terms), (A.7)
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A.2. Angular Tilt

where Rx is the rotation operator and α0 is the far-field divergence angle of the beam.

For the first off-axis mode, we obtain

Rx(αx) ∗ U10+(x, y, z) ≡ U10+(x cos αx − z sin αx, y, z cos αx + x sin αx)

=

{
1− α2

x

[
3

2α2
0

− 1− i
3

4

z

z0

α2
0e

2iη(z)
(
1− i

3

2

z

z0

)]}
U10+

−iαx

{[
1

α0

− α0

2

(
1 + i

z

z0

)]
U00+

+

[√
2

α0

− α0

√
2

8

(
1− 7i

z

z0

)]
U20+ +

√
2α0

8

(
1 + i

z

z0

)
U02+

+
α0

4

(
1− i

z

z0

)
U22+ +

√
6α0

4

(
1− i

z

z0

)
U40+

}

+O
(
α2

x/α
2
0

)
× (l + m ≥ 2 off−axis terms). (A.8)

(For the exact expansion coefficients of the second order perturbation, see Ref. 40.)

Equations A.3, A.4, A.7, and A.8 are simplified under some approximations which we

will discuss later.

A.2.1 Simplification of the Expressions

To simplify the expressions for the misaligned beam, we will make some assumptions.

Under these assumptions, it is possible to neglect the second or higher-order off-axis

modes.

Small-Divergence-Angle Approximation

In the most of the laser beams and the resonators, the divergence angle is very small

1. Therefore α2
x/α

2
0 terms are the leading terms of the second order perturbation in

Eqs. A.7 and A.8. We can neglect other terms such as α2
xα

2
0 and α2

x.

The divergence angle is so small that we can neglect some of the first order pertur-

bation terms. When the following condition is satisfied,

(
αx

α0

)2

>> αx, αxα0, (A.9)

1For example, the divergence angle of the arm cavity of the 3-m FPM interferometer we have

developed is about 4× 10−4rad. In TAMA-300 interferometer, α0 is equal to 4× 10−5rad.
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A. Modal Expansion of the Misaligned Beam

we can neglect such terms as αxα0 and αx. Thus we obtain the equations

Rx(αx) ∗ U00+(x, y, z) '
[
1− 1

2

(
αx

α0

)2
]
U00+ − i

αx

α0

U10+

+O
(
α2

x/α
2
0

)
× (l + m ≥ 2 off−axis terms), (A.10)

Rx(αx) ∗ U10+(x, y, z) '
[
1− 3

2

(
αx

α0

)2
]
U10+ − i

αx

α0

[
U00+ +

√
2U20+

]

+O
(
α2

x/α
2
0

)
× (l + m ≥ 3 off−axis terms), (A.11)

for the angular tilt.

We have to clarify the extent of the condition expressed in Eq. A.9. It is deformed

into the following form: (
αx

α0

)2

>> α2
0. (A.12)

As an example, we use the beam parameters of TAMA-300 interferometer. Since the

waist radius of the arm cavity of TAMA-300 interferometer is 4 × 10−5, the right

side of the above inequality is 1.6 × 10−9. We have seen (Eqs. A.7 and A.8) that

(αx/α0)
2 is the order of the power which is transferred from one mode to others. Thus,

Eq. A.9 says that the power which is “lost” from one mode by the misalignment is

much larger than 1.6ppb. The loss of 1.6ppb can be neglected compared with the

loss of the optics (absorption and the diffraction), therefore practically we can always

assume that Eq. A.9 is satisfied.

Assumption About the Input Beam

We assume that the input beam which illuminates the interferometer is the funda-

mental Gaussian beam. From Eqs. A.3 and A.10, one can see that the misaligned

fundamental mode has the first order coupling to the first off-axis mode and the sec-

ond order couplings to the second or higher off-axis modes. Therefore the field in the

interferometer has a 0-th order coupling to the fundamental mode, the first order to

the first off-axis mode, and the second order to the second or higher off-axis modes:

E = O(1)U00 + O(a/w0, α/α0)Ul+m=1 + O(a2/w2
0, α

2/α2
x)Ul+m≥2. (A.13)

The optical power of the field in the interferometer is second order for the first off-axis

mode and the fourth order for the second or higher modes. Thus, for the optical power
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A.3. Misalignments and the Mode Structure

calculation, we can neglect the second and higher order modes. To the second order

perturbation, all of the optical power is carried by the fundamental and the first off-axis

mode.

To summarize, for the optical power calculation, as far as the input beam is the

fundamental mode and the conditions 1 >> ax

w0
and 1 >> αx

α0
>> α0 are satisfied, we

can simplify Eqs. A.3, A.4, A.10, and A.11 to the following form:

Px(ax) ∗ U00+(x, y, z) '
[
1− 1

2

(
ax

w0

)2
]
U00+ +

ax

w0

U10+ (A.14)

Px(ax) ∗ U10+(x, y, z) '
[
1− 3

2

(
ax

w0

)2
]
U10+ − ax

w0

U00+ (A.15)

Rx(αx) ∗ U00+(x, y, z) '
[
1− 1

2

(
αx

α0

)2
]
U00+ − i

αx

α0

U10+ (A.16)

Rx(αx) ∗ U10+(x, y, z) '
[
1− 3

2

(
αx

α0

)2
]
U10+ − i

αx

α0

U00+ (A.17)

We can neglect the higher order modes than U10.

A.3 Misalignments and the Mode Structure

Generally, the mode structure of the laser beam is not conserved when the beam prop-

agates through the optical components. For example, when the optical components are

misaligned, the off-axis modes appear in the optical system. The mode transformation

is described by the ABCD matrix (Refs. 22, Ref. 32, etc.). In this section, the relation

between the ABCD matrix formulation and the modal expansion will be shown.

A paraxial Hermite-Gaussian field is completely characterized by the waist radius w,

the waist position (x, z), the angle between the the z axis and the optical axis α, and the

order number n in the xz coordinate system. An Hermite-Gaussian field is transformed

to another beam with another set of parameters by a system described by an ABCD

matrix (Fig. A.1). The parameters are transformed from (w0, x = ax0, z = d0, αx = αx0)

to (w1, ax1, d1, αx1). The order of the mode is not changed. It is well known (Refs. 22,

Ref. 32, etc.) that the relations between the two set of parameters are written as
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Figure A.1: Beam transformation by a system described by a ABCD matrix

follows:



ax1

αx1


 =




A B

C D







ax0

αx0


 (A.18)

i
Kw2

1

2
=

iAKw2
0/2 + B

iCKw2
0/2 + D

(A.19)

We can see the description of this system from another point of view. For conve-

nience, we define here the two modes with the parameters (w0, x = 0, z = d0, αx = 0)

and (w1, x = 0, z = d1, αx = 0) (no deviation from the z axis) as Ulm(x, y, z) and

ulm(x, y, z), respectively. Equations 5.31∼ 5.36 indicates that the input field and the

output field are the linear combinations of the fields {Ulm} and {ulm}. For the funda-

mental mode, we obtain

Ein =

[
1− 1

2

(
ax0

w0

)2

− 1

2

(
αx0

α0

)2
]
U00+ +

(
ax0

w0

− i
αx0

α0

)
U10+ (A.20)

Eout =

[
1− 1

2

(
ax1

w1

)2

− 1

2

(
αx1

α1

)2
]
u00+ +

(
ax1

w1

− i
αx0

α1

)
u10+ (A.21)

where α0 and α1 are the divergence angle of the input and output beam, respectively.

The cross term which is proportional to iaxnαxn(n = 0, 1) was neglected. We can

say that U00+ and U10+ are transformed into u00+ and u10+ respectively, because the

order-number is not changed by the ABCD system.

When the following equation is satisfied,

det




A B

C D


 = 1 (A.22)
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it is shown by using Eqs. A.18 and A.19 that the ratio of the power of the fundamental

and first off-axis mode is conserved before and after the matrix:

(
ax0

w0

)2

+
(

αx0

α0

)2

=
(

ax1

w1

)2

+
(

αx1

α1

)2

. (A.23)

For the system which comprises the thin lenses, thin mirrors and the free space prop-

agators, it is easily shown that the determinant of the ABCD matrix is equal to the

unity.

The Gouy-phase shift is related to the transformation of the factor of the off-axis

modes. When the difference of the phase between the fundamental and first off-axis

mode due to the Gouy-phase shift is η0 in the ABCD system, the amplitude of the first

off-axis modes are related to each other as

(
ax1

w1

)
− i

(
αx1

α1

)
= eiη0

[(
ax0

w0

)
− i

(
αx0

α0

)]
. (A.24)

It is difficult to show that this relation is true in the arbitrary ABCD system in which

the determinant of the matrix is equal to unity, because the ABCD matrix is a kind of

black box and it has no information about the phase. However, again for the system

with the thin lenses, thin mirrors and the free-space propagators, the above relation is

always valid.

For the propagation of the first off-axis mode, we obtain the same result as the

fundamental mode.
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B. Circuits

The circuits used in the experiment are shown.
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Figure B.1: Wideband (1kHz) coil driver, which is used for the cavity locking servo.

Two of the four coils for one mirror are sequentially connected and driven by one

driver.

Figure B.2: Narrowband (48Hz) coil driver, which is used for the DC control of

the cavity for the frequency stabilization. Two of the four coils for one mirror are

sequentially connected and driven by one driver.

Figure B.3: PZT driver for controlling the frequency of the laser.
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Figure B.4: Coil driver for the beam splitter-control. Two of the four coils for BS are

parallel-connected to one driver. For monitoring the feedback current, the voltage

of the small resistance was used.

�

�

Figure B.5: RF photo detector to detect the picked-off light from the arm cavities.

This detector was used for the Pound-Drever-Hall detection of the cavity deviation

from the resonance.
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B. Circuits
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Figure B.6: Response of the photo diode (S3759, Hamamatsu Photonics) used in the

RF detector versus the wavelength. This plot is from the spec sheet of Hamamatsu

Photonics.

�

Figure B.7: DC photo detector to detect the Michelson fringe. The feedback resis-

tance R was 1.5kΩ and 2.19kΩ for PD1 and PD2, respectively.
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Figure B.8: Efficiency of the photo diode (S1223-01, Hamamatsu) used in the DC

detector versus the wavelength. This plot is from the spec sheet of Hamamatsu

Photonics.
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