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The following is a partial list of the symbols used in this paper.

c = the speed of light in vacuum
i = V-1
L = the length of a linear optical cavity
l = the length between the beam splitter and the mirror
v, = the frequency and the angular frequency of the light, respectively

(typically on the order of 10'* Hz)
fiw = the frequency and the angular frequency of the audio sidebands,

respectively (also used for the RF sidebands)
o, P, 0,0,9, ¥ = the phase

Tilde is used to represent either the Fourier transform or the power-spectral-density

(PSD) of a time-domain function.




1. Introduction

Gravitational waves are the wave solutions of Einstein’s equations under the weak
gravitational field. In the long term study of a binary pulsar system which Hulse
and Taylor have discovered in 1975 [1], the orbital decay of the binary system has been
observed, which has been proved to be in excellent agreement with the general relativis-
tic prediction for the energy losses originating due to the radiation of the gravitational
wave [2-5]. The energy carried by gravitational waves is so small that they become
detectable only if generated by the large acceleration of the compact objects with the
huge masses which can only be observed in astronomical phenomena; the coalescence
of various types of binary systems, the asymmetric bursts from supernovae, the pulsars
with high eccentricity, and so on. If the waveform of the gravitational waves from such
objects are measured, we can not only verify the validity of general relativity but also
extract information about the source which is complementary to the knowledge from
the optical and radio measurements (see Ref. 6 and references therein). Therefore,
though the gravitational wave has not been detected directly so far, it is important to
develop the gravitational wave detectors which can be used as the new device for the

astronomy.

In the pursuit of the detection of gravitational waves, several kinds of detectors
have been studied and developed. Among them, the idea to use a Michelson laser
interferometer as the gravitational wave detector originated in 1970’s [7, 8]. The wide-
band nature of the Michelson interferometer makes it suitable for the extraction of the
waveform. The laser technology of today allows us to realize extremely sensitive strain
meters by using laser interferometry. In fact, it is believed that the “real” detectors are
within the reach of the modern optical and mechanical technologies at present. Several

interferometers for gravitational-wave detection are now under construction around the



1. Introduction

Group Site Scale | Type

LIGO (USA) Washington, Louisiana | 4km | Power-recycled Fabry-Perot
VIRGO (Italy, France) | Pisa 3km | Power-recycled Fabry-Perot
GEO (Germany, UK) | Hanover 600m | Dual-recycled Michelson
TAMA (Japan) Tokyo 300m | Power-recycled Fabry-Perot

Table 1.1: Brief summary of the interferometric gravitational wave detectors which

are now being built. The interferometer “types” are described in Chap. 4.

Sources Wave form Amplitude | Frequency (Hz)
NS-NS coalescence (200 Mpc) Chirp 1072 ~ 1072 10~1000
BH-BH coalescence (200 Mpc) Chirp 10~ 10~1000
SN explosion (15 Mpc) Burst 107 <1000

SN explosion (Our Galaxy) Burst 1071 <1000
Pulsar (1kpc) Continuous 107% 1~500
BH-MACHO coalescence (20 Mpc) | Chirp 10~ 10~100

Table 1.2: The possible high-frequency sources of the gravitational waves [6, 15].

world, which are summarized in Table 1.1 briefly [9 — 14]. Because there is a limitation
on the scale of the ground-based system, these detectors will have optimal sensitivity
at relatively high frequency like 100 Hz. In fact all of these detectors will aim at the
sources in the frequency range from 10 to 1000 Hz, approximately.

Table 1.2 shows the possible “high-frequency” gravitational wave sources and their
expected wave amplitude [6, 15]. The amplitude of the gravitational wave is repre-
sented by the dimension-less parameter h, which is a strain of the metric of space-time.
Because of the extremely small amplitude as shown in Table 1.2, the interferometric
detector has to be free from any noise sources; thermally— and seismically—excited vi-
bration of the mirrors of the interferometer, noise of the readout and control electronics,
noise of the laser source such as amplitude— and phase—fluctuation etc.

Michelson-based interferometers have a great property of being insensitive to the

common-mode noise to their two orthogonal optical paths (often called “arms”), es-
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L However, any

pecially to the phase noise (or frequency noise) of the laser source
asymmetry in the real interferometer will make it sensitive to common-mode noise,
therefore it is really important to stabilize the frequency of the laser. The sensitiv-
ity of the interferometer to common-mode noise is expressed by the parameter called
Common-Mode-Rejection Ratio (CMRR). CMRR is a function of asymmetry of the
interferometer. Any asymmetry in the system, introduced intentionally or not, will
make CMRR worse; on-axis, non-geometrical asymmetry such as difference of the re-
flectance of the mirrors in the two arms, geometrical asymmetry such as misalignment
of the mirrors, and the asymmetry of the control system, for example. Because the
requirement for the frequency stabilization of the laser, which depends upon the aimed
strain sensitivity and CMRR, is crucial, it is necessary to study the relation between
the CMRR and many asymmetries in the interferometer, and to investigate the real-
istic value of CMRR that is feasible using the current technology, theoretically and
experimentally.

For this purpose, a 3m Fabry-Perot-Michelson (FPM) interferometer was built in
the campus of The University of Tokyo. The optical components of the interferometer
are suspended independently as in the real interferometric detectors. All of the major
noise sources have been identified, and the displacement noise level of the interferome-
ter reached 2 x 10717 m/\/E at 1kHz and 1 x 1017 m/\/E at the noise floor between
2kHz and 10kHz. The floor noise was identified as the shot noise of the light. This
was the first demonstration of the all-suspended FPM interferometer [16]. The basic
parameters such as the reflectance of the mirrors, finesse of the cavities and so on were
measured to estimate the non-geometrical asymmetry. The CMRR of the interferom-
eter was demonstrated to be 1/300 at its best, and the consistency of this value with
the measured asymmetry of the interferometer was verified. Also the relation between
CMRR and the misalignment of the mirrors was demonstrated.

In this paper, some basics about the gravitational wave and the interferometry are
calculated in Chap. 2-6. Because it is necessary to analyze the off-axis asymmetry, the

mode-picture is presented in Chap.5. Using the calculations in the preceding chap-

ters, CMRR of the FPM interferometer is studied in detail in Chap.7. In Chap.S8,

'See Chap.?2 and 3.



1. Introduction

the development of the 3-m FPM is described. The control scheme, noise analysis,
frequency-stabilization and CMRR analysis, and the demonstrated displacement sen-
sitivity of the interferometer will be discussed. Also some discussions on the full-scale

interferometers will be presented in this paper.



2. Gravitational Radiation

In this chapter, the Greek subscripts and superscripts («, 3, p, etc.) represent the
space-time coordinates, i.e. 0---3, while the Latin (i, j, etc.) represent the space-
coordinates only. Time coordinate z° is defined by 2° = ct, where ¢ is the speed of

light.

2.1 Linearized Theory

When the gravitational field is weak®, the geometry is represented by the sum of the

metric of the background Minkowski space-time and the small perturbation hy,;

G = 77,uu+h,uzz (21)
-1 0 0 0

Nag = ! oo (2.2)
0 0 1 0
0 0 0 1

hw| < 1. (2.3)

The Riemann tensor, the Ricci tensor, and the Riemann curvature of the space-time

can be expanded to the first order of h,, as

1
Ropuw 3 (Pawsu + Poper — Papsr — Mpvan) (2.4)
Ry = R (2.5)
R = R (2.6)

The trace reverse tensor of h,,,, which is represented by B,“,, is defined as

- 1
v = h’“’—;y‘“’h (2.7)

1See textbooks and reviews such as references [17— 21] for a fuller discussion.

5



2. Gravitational Radiation

h = h*, (2.8)
or,
af  — af 1 aB
h*” = h n“’h (2.9)
h = h*, (2.10)
The Einstein tensor is written as
1
Gaﬁ = Raﬁ - igaﬁR
L H Lo oMY H__ S
= —5 (haﬂ,,u,’ —+ na,@hm/’ — hozu,ﬁ’ — h,@,u,,a ) . (211)
To simplify the above equation, we require the Lorentz gauge condition
h , = 0. (2.12)
In this gauge, the expression for the Einstein tensor is simplified considerably as
1-
Gag = —Ghasu”
1 _
= —§Dha5 (2.13)
where the symbol O represents the D’Alembertian operator
52
O=— A 2.14
c20t? + ( )

Thus the Einstein equations of the fields take the simple form in the Lorentz gauge:

. 167G
Ohy = _CTTW (2.15)
where G is the gravitational constant.
2.2 Gravitational Wave
In vacuum, the weak field Einstein equations reduce to the wave equations,
Ohy, = 0. (2.16)

6



2.2. Gravitational Wave

Any solutions to these equations are expressed as the linear combinations of the plane-

wave solutions;

hop = Aapgexp(ik,z"), (2.17)

where the wave number and the amplitude must satisfy the equations

kok® = 0 (2.18)
Akg = 0. (2.19)

Equation 2.19 is derived from the Lorentz gauge condition.

We can use another gauge freedom to impose the conditions,

A%, = 0 (2.20)
ApUP = 0, (2.21)

where U? is an arbitrary time-like unit vector. The above conditions are called the
transverse-traceless (TT) gauge conditions. In the TT gauge, the trace reverse tensor

h* is equal to the perturbation of metric tensor A* because the trace is equal to zero

(hly = hj; = 0);

hag = hag. (2.22)

We choose U” as the time-basis of the background Minkowski space-time. When the
space part of the wave number vector k; is parallel to the z axis (the wave is propagating

parallel to the z axis), the perturbation tensor is represented by

hog = Aapexpiw(t —z) (2.23)
0 O 0 0
0 Ay Ay O

Aug = L , (2.24)
0 Ay —-A; O
0 O 0 0

where w is the angular frequency of the gravitational wave. There are two degrees of
freedom, A, and A,. When A, is equal to zero, the wave is called plus-polarized,
while the wave with A, = 0 is called cross-polarized in this coordinate system.

Two gravitational waves, which are represented by h,, and hj,, and are propagating

together, have orthogonal polarization to each other if the metric perturbation satisfies

7



2. Gravitational Radiation

the following equation:

B W =0 (2.25)

where h* indicates the complex conjugate of h. If the ratio of A, and A, is real,
h,(t, z) is orthogonalized in a new coordinate system (¢,2’, 3/, z) by a simple space-part
rotation with the z axis as the center of rotation. Such kind of waves are called linearly
polarized. Plus- and cross-polarized waves are examples of the linearly polarized waves
which are orthogonal to each other. On the other hand, if A, and A, satisfy the
equation

A, = +iA,, (2.26)

the wave is called circularly polarized. It is easy to show that circularly polarized waves
with opposite signs (A, = 1Ay and Ay = —iA) are orthogonal to each other. It is
impossible to orthogonalize h,, (¢, z) by a simple space rotation. In general, however, it
is still possible to find a new coordinate system [¢, 2'(t, 2),y/'(t, 2), 2] in which h,,, (¢, 2)
is orthogonalized at specific values ¢t and z, by a simple space rotation with the z axis
as the center of rotation. A set of new axes z/(t, z) and (¢, z) for all values of t and z
form two surfaces which we call “polarization surfaces” in this paper. In the linearly
polarized wave, the polarization surfaces are the two planes which are orthogonal to
each other, and we call these the “polarization planes”. The polarization planes for the
plus- and cross-polarization form an angle of 7/4. In the circularly polarized wave, the
surfaces are two helicoidal surfaces that are propagating along the z axis with the wave.
The period of the helicoid is equal to that of the gravitational wave. The polarization
surface of the two orthogonal circularly polarized waves have the same period, but the
rotation directions of the helicoids are opposite (Fig.2.1).

A more general expression for the wave which is propagating along the z axis is

0 0 0 0
0 h h 0
has(t, 2) = L. (2.27)
0 hy —hy O
0 0 0 0
Fourier-transform of the wave represented by h, (s = +, x) is defined as
hs(t — z) = /ﬁs(w)ew(t_z)dw (s =4, %) (2.28)

8



2.2. Gravitational Wave

LIt

Figure 2.1: Three-dimensional plot of the “polarization surface” for the linear po-

larization (left two) and the circular polarization (right two) of the gravitational
wave. For the linearly polarized wave, the surfaces are the two orthogonal planes
in which the propagation vector lies. For the circularly polarized wave, the surfaces

are the two helicoidal surfaces which propagates together with the wave.



2. Gravitational Radiation

where w is the angular frequency of the wave.

2.3 Free Particle in the Field of the Gravitational
Wave

A “free particle” is a particle free from any forces except for the gravity. Its world-line

is determined by the equation of the geodesic,

d
—U*+ 1, 00" =0 2.29
dT + j% ) ( )

where 7 and U® represent the proper time and the four-vector of the particle, and
I, represents the Christoffel symbols. We will neglect the gravitational field which
is generated by the particle itself, therefore the particle can be used as a probe of the
gravitational field. In this sense, the particle is often referred to as the “test” mass.
Suppose that a test mass is in the field of the gravitational wave that is represented
by Eqgs. 2.27 and 2.28. For simplicity we assume that there is only a “plus” polarization
of the gravitational wave field and h, = 0. Since all of the time-time and time-space
components of the metric perturbation hgs in this field are equal to zero, all of I/

vanish:

1
oo = 577”[3(}150,0 + hogo — hoo,s) = 0. (2.30)

Thus it is apparent that the time-basis vector
{U”} = (1,0,0,0) (2.31)

satisfies Eq. 2.29. Therefore we can say that a test mass which is initially at rest in the
TT coordinate system will be at rest even in the gravitational waves. However, this
does not mean that the gravitational wave has no effect on the free particles, because
the coordinate itself has no physical meaning. The physical effect of the gravitational
wave on the free particles is calculated below.

Suppose that there are two test masses, one at the origin and the other at

ro(cos ¢, sin ¢, 0) = ro(ng, ny, n,) (2.32)

10



2.3. Free Particle in the Field of the Gravitational Wave

in the TT coordinate, where n; is the constant unit three-vector in the zy plane and
ro is the distance between the two particles when the space-time is flat. A photon is
emitted from the test mass at the origin at the coordinate time ty. When the photon
reaches the other test mass at the coordinate time t;, it is reflected and returns back
to the origin at the coordinate time t,. The round-trip time of the photon is defined
by the difference of the coordinate time, At = t5 — ty. Since the test mass is at rest at
the origin in this coordinate system, At is interpreted as the proper time between the
emission and the capture of the photon.

When there is no gravitational radiation, it is apparent that At is equal to 2rq/c.

We define any deviation of At from 2ry/c as dt:
0t = At —2rg/c = O(h). (2.33)

where O(h) indicates the first or higher order term(s) of h. Also, the coordinate time

to and t; are represented by

to = ta—2rg/c+ O(h) (2.34)
tl = tQ - 7”0/0 + O(h) (235)

The world line of the photon is parametrized by the coordinate time ¢. The trajectory
of the photon is described as
x;i(t) = nir(t), (2.36)

1/2

where r = (z;2%)"/? is the radial coordinate in TT coordinate system?. Under the field

of the gravitational wave, r(t) is given by

) clt—to) +O(h) (t<t) 037

where O(h) expresses the first or higher terms of h. The line element along the world

line of the photon is calculated as

ds® = —c*dt* + (1 + hy (t,0) cos 2¢) dr* = 0, (2.38)
2A deviation (if any) of the first order of the gravitational wave field h from Eq. 2.36 produces a

second order perturbation in the line element. Therefore such a deviation can be neglected within the

first order approximation.

11



2. Gravitational Radiation

therefore

1
|dr| ~ (1 - §h+(t, 0) cos 2qb) cdt. (2.39)

Integrating the above equation along the world line of the photon, we obtain the
expression
t1 t2 1
2rg = U + ] {1 — C082¢h+(t,0)} cdt
to t1 2

1 t
= cAt— 5 cos 2¢ ’ hy(t,0)cdt (2.40)
to
thus the expression for 0t is written as

1 t
ot = 5 cos 20 * B (t,0)dt. (2.41)
to

By using Eqgs. 2.34 and 2.41, §t is written as

1 t2
0t = = cos?2 h.(t,0)dt. 2.42
9 " ¢ ta—2ro/c+O(h) +(t,0) ( )
The first order term of h which is represented by O(h) in the above equation produce

the second order perturbations in ¢t, thus can be neglected within the first order

approximation:
1 t2
0t = —cos2¢ hy(t,0)dt
2 t2—2T0/C
= C082¢/ E+(w)ei‘”(t2_ro/c)wdw. (2.43)
—00 W

One can see that the round-trip time of the photon has a small modulation which
is proportional to the amplitude of the gravitational wave. This can be interpreted in
two ways: The speed of light (or the absolute refractive index of vacuum) is constant
and the distance between the masses changes, or the distance is constant and the speed
of light changes®. For the plus-polarized wave with the frequency fixed, the amplitude

of the modulation is maximized with the opposite signs on the xz and the yz planes;

”= (2n + 1)7/2 (2.44)

3In this paper, we will take the interpretation in which the speed of light is constant. However,

the choice of the interpretation will not affect the observation of the phenomena.

12



2.3. Free Particle in the Field of the Gravitational Wave

where n is an integer. Therefore, we can say that the cross section of the polarization
surface and the wave front (the plane in which the phase of the wave is constant)
indicates “the direction of maximum modulation”. For the cross polarization, the angle
¢ is replaced by ¢ + 7/4 (Fig.2.2). In general, for any linearly polarized gravitational

wave that is represented by

0 0 0
cos2¢y sin2¢y 0
sin2¢g —cos2¢g 0

0 0 0

hu(t, z) = h(t — 2) (2.45)

o o o O

¢ can be replaced by ¢ — ¢, that represents the angle between one of the polarization
planes and the vector that connects the two test masses. The fact that the amplitude
of the strain in space has a cos 2(¢ — ¢) dependence reflects the quadrupole nature of
the gravitational wave.

To summarize, in the TT coordinate system, free particles which are initially at rest
will be at rest, even in the gravitational radiation field. However, the round-trip time
of the photon between two free particles is modulated with the amplitude proportional
to that of the gravitational wave. If we assume that the speed of light is constant, the
modulation is interpreted as the change in the distance. The amplitude of the variation
of the distance is proportional to the mean proper distance ry. The frequency and the

polarization of the wave also affect the amplitude of the variation.

2.3.1 Gravitational Wave Detection by the Round-Trip Time

Measurement

It has been shown that the round-trip time of the photon between two free particles is
modulated with the amplitude proportional to that of the gravitational wave. There-
fore, the free particles can be used as a gravitational wave detector. The simplest form
of such a detector is shown in Fig.2.3. There are two free masses in the field of the
gravitational wave. Photons are emitted from the observer on the test mass at the
origin, and reflected by the other mass. The observer records the round-trip time of

the photon repeatedly. When there are no gravitational waves, the observer will always

13



2. Gravitational Radiation
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Figure 2.2: When the gravitational wave passes the two free particles, the proper
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distance between them varies. These plots show how the distance between two
masses is modulated by the linearly polarized gravitational wave that propagates
perpendicular to the plane of the figure. In the upper plots, the wave has a plus-
polarization, thus the distance has a cos 2¢ dependence. In the lower plots, the wave

has a cross-polarization, thus the distance has a cos 2(¢ + 7/4) dependence.

Figure 2.3: The concept of the two free masses and an observer as a gravitational
wave detector. Photons are emitted from the observer and reflected by the other
mass. The observer measures the round-trip time by using a clock. The measure-

ments are made repeatedly.
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2.3. Free Particle in the Field of the Gravitational Wave

<
Figure 2.4: The idea of the differential measurement. Photons are emitted from the
apex in two different directions. When there is no gravitational wave passing, the

photons in the two paths return to the observer at the same time, thus no pseudo-

signal will be generated by a deviation of the clock from the coordinate time.

obtain the same constant (2rg/c) as the results of the measurements. Therefore the
observer interprets any change in the round-trip time as the effect of the gravitational
wave.

Suppose that the clock is not “accurate”, i.e., the clock has a deviation from the
coordinate time. The round-trip time measured by the observer will have a variation
due to the deviation of the clock’s time, even if no gravitational wave is passing. The
observer cannot distinguish the deviation of the clock’s time from the fluctuation of the
distance caused by the gravitational wave, therefore the stability of the clock directly

determines the accuracy of the measurement.

Differential Detection

The requirement for the stability of the clock can be relaxed, if the observer measures
the distance between the masses in two directions simultaneously. Figure 2.4 shows
the idea. Three free masses are aligned in an isosceles L-shape. On the “apex” of this
L-shape, the observer sends photons to the other two test masses, then the photons
are reflected back to the observer. The observer measures the difference of the round-
trip time in two orthogonal directions. Any appropriately polarized gravitational wave

causes a difference in round trip time in the two directions, which appears as the signal
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2. Gravitational Radiation

in the measurement. If the wave propagates perpendicular to the plane on which the
detector lies?, and if the two sides of the detector lie on the polarization surfaces, then
the changes in the round-trip time have the same amplitude with opposite signs due to
the quadrupole nature of the gravitational wave. Therefore the amplitude of the signal
is two times larger than that of the two-masses detector. If there is no gravitational
wave passing through the detector, the photons from the two directions always reach
the observer at the same time. Therefore the observer will obtain no signal even if the
clock has a deviation, or an “error”, from the coordinate time; thus the signal-to-noise
ratio of the detector is considerably better, compared with the detector which measures
the round-trip time directly. Michelson interferometers are the optical realization of

such a kind of differential detectors.

Let us calculate the angular response of the differential detector to the gravitational
waves. At first, for convenience, we choose the coordinate system (z,y, z) in which the
masses of the detector are fixed at (0,0,0), (ro,0,0), and (0, r9,0). The orientation of
the linearly polarized gravitational wave is expressed in the spherical coordinates (6, ¢).
The polarization angle ¢ is defined as the angle between one of the polarization planes

and the plane that the z axis and the wave vector forms (Fig.2.5).

Another coordinate system (z’,y',2') is obtained by the three rotations on the
original coordinate system; ¢ around the z axis, 6 around the y axis, and ¢y around
the new z axis. In this coordinate system, it is apparent that the metric perturbation
of the gravitational wave is orthogonalized and expressed by Eq. 2.27 with hy, = 0. The

observer is still at the origin, but the other two masses are located at

cos  cos ¢ cos ¢y — sin ¢ sin ¢g

roi = 7o | —cosfcos¢@singy — sin ¢ cos ¢y (2.46)
sin 6 cos ¢

cos 6'sin ¢ cos ¢g + cos ¢ sin ¢g

ronz = To | — cosfsingsin ¢y + cos @ cos Py (2.47)

sin @ sin ¢

4We call this plane the detector’s plane.
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2.3. Free Particle in the Field of the Gravitational Wave

Z &

Figure 2.5: The definitions of the propagation direction and the polarization angle

of the gravitational wave. In this figure, the detector is fixed.

in this (2/,9/, 2’) coordinate system. The delay for each path is calculated as
ti(t) = 1o {cos 2¢0(cos?® § cos® ¢ — sin® @) — cos f sin 2¢ sin 2(;50] hy  (2.48)
Ita(t) = 1o [COS 2¢(cos? §sin® ¢ — cos® @) + cos fsin 2¢ sin 2¢0] hy  (2.49)

in the low-frequency limit. The signal observed is the difference of the variation of the

round-trip time:
0ty — 0ty = — {cos 2¢ cos 2¢(1 + cos? 0) + 2 sin 2¢y sin 2¢ cos 9} h (2.50)

The detector is insensitive to the wave from the following direction, no matter how the

polarization of the wave is chosen:
(0,6) = [r/2, (20 + )7 /4] (2.51)

where n is an arbitrary integer. With the propagation direction (6, ¢) fixed, the signal

takes its maximum
|0t1 — 0ta|max = {[cos 2¢(1 + cos? )] + (2sin 2¢ cos 9)2}1/2 h (2.52)

when ¢ satisfies the equation

2sin 2¢ cos 0

cos2¢(1 + cos? ) (2:53)

tan 2¢g =

17



2. Gravitational Radiation

Figure 2.6: A spherical plot of the angular response of the differential detector
when the frequency of the wave is very small (wrg << 1). The polarization of the

gravitational wave is chosen to maximize the response.

Also, the amplitude of the signal is equal to zero when the polarization angle is offset
by 7 /4 from the above condition, it i.e. for:

_ cos2¢(1 + cos® 0)

tan 2¢g =
an 200 2sin 2¢ cos

(2.54)

Figure 2.6 shows the absolute value of the amplitude of the signal normalized by the

amplitude of the wave.
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3. Michelson Interferometer

The Michelson interferometer is the simplest differential gravitational wave detector.
All of the interferometric gravitational wave detectors are based on the Michelson
interferometer, which has been pioneered by Weiss [7| and Forward [8]. As discussed
in the previous chapter, a differential detector is insensitive to the inaccuracy of the
clock. This is interpreted as the rejection of the common mode noise, especially the

frequency noise, in Michelson interferometers.

3.1 Basic Assumptions

Before discussing the interferometers, we must clarify some assumptions and definitions

of some quantities that will appear throughout this paper.

3.1.1 Electromagnetic Wave

A general expression for the electric and magnetic field of the light in vacuum is written

B = [ B (Q)expiQ [t — T(Q) - T /d] dO (3.1)
B = [ B(Q)expiQ[t — 7(Q) - T /e d (3.2)
BO) = iﬁ(@)xfm) (3.3)

where () is the angular frequency of light, F, B, E, and B represent the electric
and magnetic field and their Fourier transform, and 7 () is a unit three-vector which
describes the propagation direction. From Eq. 3.3, one can see that either of the electric

and the magnetic field describes the electromagnetic wave completely, because one of
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3. Michelson Interferometer

the fields is calculated from the other. Therefore we will use only the electric field to
express the electromagnetic wave. Also, we will neglect the polarization properties of
the wave unless it is necessary, therefore the field is represented by the amplitude.

In this paper, the complex amplitude will always be used for the expressions of the
electromagnetic fields. For example, consider a monochromatic field which is written
as

Ereal(t) = Egcos(Q + ¢) (3.4)

where Fy and ¢ are the real numbers. In the complex amplitude representation, this
is written as

Eernpix(t) = Egexp (2 + ¢). (3.5)

For the conversion from the complex to the real amplitude, simply take the real part

of the complex amplitude:
Ereal(t) = Re [Eempix(t)] - (3.6)
Poynting’s vector is defined by
()= Mloﬁreal(t) % Brea(t) (3.7)

where 1 is the magnetic permeability of vacuum. The absolute value of the Poynting’s
vector represents the flow of the electromagnetic energy per unit time per unit area
perpendicular to the propagation direction. A simple calculation shows that the abso-

lute value of the Poynting’s vector is proportional to the square of the real amplitude
of the electric field as

Fﬂﬂ==¢2ﬁﬂﬂ

— ;\/QES [14 cos2(Q2t + ¢)] (3.8)
Ho

where ¢ is the dielectric constant of vacuum. The second harmonic term in the above
equation, which is rapidly oscillating, has nothing to do with the net flow of energy.

Therefore the power density (or the intensity) of the field is defined to represent the

1 [t+T
1=z MZ@Q@ﬁ (3.9)
20
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3.1. Basic Assumptions

Figure 3.1: The amplitude of a field is represented by a vector in a complex plane.
For a sinusoidal wave with a fixed power, the vector rotates at the same angular

frequency as the field.

where 7' is a constant which is much larger than the inverse of the angular frequency
of the field. In the complex amplitude expression, the integration procedure is not
necessary because the absolute value of the complex amplitude does not contain the
second harmonics term;

1 /e
I(t) =35 70 |E7<:rnplx(t>|2 . (310)
Ho

In this paper, the factor (eq/p,)/?/2 for the intensity will always be omitted for con-

venience.

The power of a laser beam is defined as

P(t) = / ds I(t) (3.11)

where ds denotes the surface integration over an arbitrary plane perpendicular to the

beam.

In the complex amplitude expression, the amplitude of the field is represented by a
vector in a complex plane (Figure 3.1). One of the axes denotes the real part, and the
other axis denotes the imaginary part, of the amplitude. The length and the polar angle
of the vector represents the absolute value and the phase of the amplitude, respectively.

Usually the vector is rotating rapidly with the same frequency as the field.
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3. Michelson Interferometer

3.1.2 Interference of the Fields

Two fields which are represented by Fi(t) and E,(t) interfere with each other if the
amplitude of the sum of the fields is not equal to the sum of the amplitude of the

respective fields:

B1(t) + Bx(t)* # | By ()] + | B2 (1), (3.12)

or in other words if

E\(t)B5 (1) + E; () Ex(t) # 0. (3.13)

If the fields are represented by the vectors ﬁl(t) and ﬁg(t) in the complex plane, the

above conditions are interpreted as
EL(t)- Ea(t) #0 (3.14)

where the ‘dot’ () denotes the inner product of the vectors. Thus, we can say that
the fields do not interfere if the vectors are always orthogonal in the complex plot. For

example, the two fields which are represented by

Ei(t) = Epe’* (3.15)
Ey(t) = iEye™™ (3.16)

do not interfere with each other.

The usual complex plot is inconvenient for seeing the relative phase between the
fields, because the vectors are rotating rapidly. Therefore, to eliminate the rapid rota-
tion of the vectors, we will fix the angle of one of the fields in the plot. In other words,
we will choose a coordinate system of the complex plane that is rotating with one of

the vectors (Fig.3.2).

3.1.3 Mirror

Figure 3.3 shows a mirror which is illuminated by a beam of light whose field is ex-
pressed as F;. The incident light is partially transmitted (E;) and partially reflected

(E;). The reflection coefficient r; and the transmission coefficient ¢; of one side of the
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3.1. Basic Assumptions

Jm(B)

wl

’éfe (B)

Figure 3.2: In the complex plot, all of the vectors are rotating rapidly with the
optical frequencies of the fields (left). In a relative phase plot (right), the polar
angle of one of the vectors is fixed. The phase, or the rotation angle, of the vectors

are measured by using the fixed vector as the reference.

mirror (see the left side of Fig. 3.3) are defined as the ratios of the complex amplitude

of the reflected and transmitted field to the incident field,

E,

r = & (3.17)
E
t = Et (3.18)

The reflectance R; and the transmittance 7T are defined as the ratios of the intensity,

2

Rl = ‘7’1’2 = % (319)
no= )P = Bl (3.20)

For the other side of the mirror (see the right side of Fig. 3.3), another set of numbers
ry, t], R}, and T] are defined in the same way.

The reflectance and the transmittance are positive numbers. Also, in this paper,
reflection and transmission coefficients are chosen to be real'. They are represented by

two positive numbers, r and ¢:

r= -1 =7,

= t, =t (3.21)

"Whether these coefficients are real or complex is a matter of definition: it depends on the definition

of a reference plane where the phases of the fields are measured (for a fuller discussion, see Ref. 22).
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Figure 3.3: A mirror is illuminated by an incident wave of light which is partially
transmitted and partially reflected. As the two figures show, each side of the mirror

has its own pair of reflection and transmission coefficients in general.

For the reflection coefficient and the transmission coefficient of a simple mirror, we
use the definition which is represented by the relations shown above. Note that the

reflection coefficients of the two sides of a mirror then have opposite signs.

3.2 Michelson Interferometer

A Michelson interferometer comprises a beam splitter and two mirrors (Fig. 3.4). We
define that the reflection coefficients of the mirrors represented by r; and ry have the
same sign. The reflection coefficient of the beam splitter is positive on one side which
faces Mirror 1 in the figure, and negative on the other side. We place the beam splitter,
Mirror 1, and Mirror 2 on (0,0), (11,0), and (0,ly), respectively. The incident light,

measured at the beam splitter, is expressed as

The delays of the phase of the field in the two paths are expressed as #; and 6. We
define the transmission of the interferometer as the field which is once reflected and
once transmitted by the beam splitter. The reflection of the interferometer is defined
as the field which is propagating toward the light source from the beam splitter. The
fields of transmission and reflection are related to the difference of phase of light in two

paths as
E. = Eotyryexp(i§2t) [7’1 exp(—ify) — 19 exp(—z'eg)} (3.23)
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3.2. Michelson Interferometer

Mirror 2

Mirror 1

Figure 3.4: A simple Michelson interferometer comprising a beam splitter and two

mirrors. The divided beams are recombined on the beam splitter.

E, = Eyexp(iQ2t) [Tbrl exp(—ibh) + Rpro exp(—i(‘)g)} : (3.24)

where ty,, ,, T}, and Ry, represent the transmission coefficient, the reflection coefficient,
the transmittance, and the reflectance of the beam splitter. The intensity of the above

fields are easily calculated as

I = |B

= [T Ry [Ry + Ry — 2r175 cos Af] (3.25)
L = |E|

= Iy |TZRy + RYRy + 2T} Ryrira cos AG) (3.26)

where I is the intensity of the input beam and Af = 6; — 05 is the difference of phase
of the fields E; and E.

When the interferometer is symmetric, i.e. [; is equal to I and 71 is equal to 79, most
of the power of the input light is reflected; there is no transmission at all. Basically
the transmission appears when there is any asymmetry. In this sense, the transmission
and the reflection are sometimes called the anti-symmetric output and the symmetric

output, respectively.
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3. Michelson Interferometer
The contrast of a Michelson interferometer is given by

Inax — I
C = max min 327
Imax + ]rnln ( )

(ry +12)% — (ry — 19)?
(r1 +19)2 + (r; — 1r9)?

(3.28)

where [, and I, are the maximum and minimum intensity of the anti-symmetric
output. The contrast is equal to unity when the optics of the interferometer is sym-
metric.

One can see that Michelson interferometers are insensitive to any common phase
fluctuation in the two arms, because such a kind of phase fluctuation does not affect
Af. On the other hand, Michelson interferometers are sensitive to any differential
phase fluctuation. As we have already seen, the gravitational wave modulates the
proper distance between the free particles. If the mirrors and the beam splitter are
the test masses, the gravitational wave which have a proper polarization will modulate
the round-trip phase in the two arms with the same amplitude and the opposite signs,
therefore the gravitational wave can be thought as a source of the differential phase
modulator. In other words, Michelson interferometers are sensitive to the gravitational
waves and thus can be used as a gravitational wave detectors. This idea was originally
developed by Weiss [7] and first experimentally explored by Forward [8]. Later in this
section we will calculate the frequency response of a simple Michelson interferometer,

then more complex interferometer.

3.3 Frequency Response of a Michelson Interferom-

eter

In this section the frequency response of a Michelson interferometer to the gravitational
waves and to the motion of the mirrors are studied. In this and the following sections,
the propagation direction and the polarization of the gravitational waves are chosen to

maximize the response for convenience?.

20ne has be careful when one calculates the response to the wave from an arbitrary direction, be-

cause not only the sensitivity but the frequency dependence are affected by the propagation direction.
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3.3. Frequency Response of a Michelson Interferometer

3.3.1 Frequency Response to the Gravitational Waves
We choose the coordinate system in which the metric has the form
ds® = —c2dt* 4 [1 + h(t)]dz® + [1 — h(t)]dy? + dz?, (3.29)

where h(t) is the dimensionless amplitude of the wave. The field of the input light
is given by Eq. 3.22 at the position of the beam splitter. The field of light which is

reflected by Mirror 1 is written in the form
Ey = ty By exp [iQ(t — Aty)] (3.30)

where () is the optical frequency of light. We can use the same expression as Eq. 4.10
to obtain At;. The delay of the phase 2At; is represented by two parts, the static

delay 6, and the phase shift caused by the gravitational wave J0SR:

01 = QAtl
21 1 st
= Q<1+ h(t’)dt’)

C 2 t—2l1/c

= 0, +06°%, (3.31)

In other words, the phase of the field of light is modulated by the gravitational waves.
In the same way, the field of light reflected by Mirror 2 is given by

Ey = r,Epexp [zQ(t — Atg)}. (3.32)

However, the sign of the effect of the gravitational wave is opposite:

92 = QAtQ
2, 1
= Q(Q— h(t’)dt’)
C 2 t—2l2/c
= B + 0O5™. (3.33)

The difference of the phase of the two fields F; and E5 is expressed as

AO = 6, — 6
= Oo1 — 0oz + 00FF — 505
= Af, + 0053
= AG,+ / T (W) HERM(w, Q) du, (3.34)
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3. Michelson Interferometer

where Af, is the static term and J6$F is the fluctuation produced by the gravitational
radiation. By observing the difference of the phase between two beams, the gravita-
tional wave signal is extracted®. In the above expression, the frequency response of a

Michelson interferometer to the gravitational radiation H{® is defined as

Q Lwl u}l Lwl C()l
Hyl(w,Q) = — (el e sin —- + ¢~ sin 2)

w c c
= QQe_iw?z (sin w—l cos® % — 1.COS w—l sin? wl_>
w c 2c c 2c
Q wl wl_
— 277" sin — 4+ O(=—=)2 3.35
e sin L+ 0(0), (335)
where
- I +1
[ — 1; 2 (3.36)
l, = ll - l2 (337)

are the average and the difference of the distance between the beam splitter and the
mirrors. When the frequency of the light is thought to be a constant, we will sometimes
write Hit(w, Q) as HiR(w). Figure 3.5 shows the plot of the frequency response of
a Michelson interferometer to the gravitational radiation. The absolute value of the
frequency response is equal to zero at the angular frequency of w = nme/l where n is a
positive integer. When the frequency is much lower than the zero-response frequency
(i.e., wl/c < 1), Eq. 3.35 is approximated as

Hif (w, Q) = l !

N 3.38
c1+ z%w ( )

Therefore the baseline [ is related with the typical bandwidth wyy of the frequency

response of the interferometer by
WMt ~~ C/l_ (339)

On the other hand, at a given angular frequency w, |H{®| takes its maximum value
2Q/w at | = (2n + 1)ew/2w. Therefore the optimum baseline loptimum for the tar-
get gravitational radiation with the frequency f should be determined to satisfy the

3The techniques for the phase detection are discussed later in Sec. 6.2.
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Figure 3.5: Frequency response of a simple Michelson interferometer with the base-
line of 150 km (solid line). Dashed line shows the upper envelope of the Michelson

interferometer’s response functions.

equation,
loptimum = C/4f . (340)

For example, in order to detect the sinusoidal gravitational radiation with a frequency

of 500 Hz, the optimum baseline is [ = 150 km.

3.3.2 Frequency Response of a Simple Michelson Interferom-

eter to the Motion of the Mirrors

Let us assume that the beam-splitter is fixed at the origin, while the two mirrors are
moving along the optical axis. The distance between the beam-splitter and the mirrors
are expressed as l; + dl; (i = 1,2). The field of light which is reflected by Mirror 1 or 2
in Fig. 3.4 is represented in the same way as Eq. 3.30. However, here the origin of the

fluctuation of the delay is the motion of the mirrors, not the gravitational waves:
2 1 .
Am:[h+5ut—2Aaﬂ (i=1,2). (3.41)
c

To the first order of Al;/c, the expression for the delay At; is written as

Am:iv+&«ﬁjv] (i=1,2). (3.42)

C
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3. Michelson Interferometer

Thus the delay of the phase Qt; (i = 1,2) is represented by
20, 2 l;
ot (i1
c c c
= 901‘ + (59[1 (343)
We define the difference and the sum of the motion of the mirrors as

Sl = 61y + 6l (3.44)
Sl = 6l — dls. (3.45)

The difference of the phase of the fields E; and F, is expressed as

A = 0, —6,
= 001 - 002 + 6911 - 59[2
= A0, + 56, (3.46)

where
S0l = 86 + 86
/ 51 () Hr (w)e ™ dw + / 51, (W) HY ()™ du. (3.47)

In the above equation, the frequency response of a simple Michelson interferometer to

the difference and the sum of the motion of the mirrors are represented by

202 —iwl wl_
H- = = 4
MI(W) B exp( )C_OS 9% (3 8)
20) —iwl I_
HA(w) = —i—" exp( ’”)Sm%, (3.49)
C C

When the optical paths of the interferometer are equal to each other (I; = ly), the
fluctuation of the phase difference §6%;; is insensitive to the common motion 6l

On the condition wl;/c < 1 (i = 1,2) and |I_| < I, one can expand Eqgs. 3.35 and
3.48 to the first order of wl/c as

Hlgw) ~ m(l—z"”)+0<“’l‘>2

c c 2c
201 wl wl_ ——
HMw) ~ - <1 — zc> + 0(2—(:)2 ~ I Hi;(w). (3.50)



4. Fabry-Perot Cavities

In this chapter, the Fabry-Perot cavities as the parts of the interferometer are

studied.

4.1 Fabry-Perot Cavity as a Device to Fold the Op-
tical Path

As described in the preceding chapter, the optimum baseline of a Michelson interfe-
rometer is the order of 100km for the gravitational radiations from the astronomical
sources. However, it is unrealistic to build such a large detector on the ground. There-
fore, to obtain the optimum optical path length in the interferometer which can be
built on the ground, the optical paths of the interferometer are folded by using delay-
lines (DL) or Fabry-Perot (FP) cavities (Fig. 4.1). We will call the interferometer
which has folded optical path in each of its arms as the delay-line-Michelson (DLM)
or Fabry-Perot-Michelson (FPM) interferometer, depending on the device used to fold
the paths.

A delay-line comprises two mirrors, and one of them has a small hole to inject the
laser beam in it. The injected light is multiply bounced on the different point of the
mirrors, then ejected through the hole (in the figure, the light is reflected three times in
the delay-line, therefore the optical path length is 4L where L is the distance between
the mirrors). A delay-line functions as a simple folded optical path, thus the frequency
response of a DLM interferometer to the gravitational wave is just the same as the
simple Michelson interferometer.

A Fabry-Perot cavity is a pair of the mirrors, but there is no hole on the mirrors. A

fraction of the input light is transmitted by the front mirror, reflected many times inside
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N

Figure 4.1: Conceptual view of the Michelson interferometers whose optical paths
are folded. A delay-line type interferometer (left) has an optical delay-line in each
of its arms. A Fabry-Perot-Michelson interferometer (right) has optical resonators

(Fabry-Perot cavities) instead of the delay-lines.

the cavity (on the same point of the mirrors), and then transmitted again by the front
mirror. When the direct reflection from the front mirror and the transmission from
the inside interfere destructively, the effective optical path-length is much larger than
the length of the cavity. Because an FP cavity is an interferometric device itself, the
frequency response of a FPM interferometer is different from that of a simple Michelson
interferometer.

Among the several medium-to-large scale detectors which are now being developed,
the interferometers of the LIGO project, the VIRGO project, and the TAMA project
will employ the FPM configuration. Though both DLM and FPM interferometer have
their own advantages and disadvantages, to discuss their difference is beyond the scope
of this paper. Rather, we will try only to discuss the optical properties of the FPM

interferometers in the following discussion.

4.2 Frequency Response of a Fabry-Perot Cavity

In this section, the response of a Fabry-Perot cavity to the incident field of light and

the gravitational radiation is briefly described.
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4.2.1 Response to Light

The simplest case is considered here. T'wo mirrors are placed parallel to each other at
a distance of L (Fig. 4.2). A plane wave of light which is traveling in the z direction
is illuminating the mirrors. Let us call the mirror which is illuminated directly by the
input beam the “front mirror”, and the other mirror the “end mirror” *. The field of
light is expressed as

Ei(t,z) = Eyexp [@(Qt - Kz)} (4.1)
where ) is the angular frequency of the light and K = Q/c is the wave number. This
input field which has the single frequency is sometimes called the “carrier”. The prop-
agating direction of the wave is perpendicular to the mirrors. The reflection coefficient
and the transmission coefficient of the mirrors are represented by (¢, tr) and (7, te).
The signs of the reflection coefficient of both of the mirrors are chosen to be plus inside
the cavity. We define the capitalized symbols R; = r?, T; = t? (i = f,e), Rt = r7e,
and Ty, = t¢t,. The fields of the reflected and transmitted light outside the cavity are
given by

o0
E. = E, l—rf + r Tre e Z (Tfree_i‘b‘))n] exp [z(Qt + Kz)}

n=0
exp(—i®,)
1 — R exp(—i®,)

= E, [—Tf + 1T} ] exp [Z(Qt + Kz)} (4.2)

E. = Eytst, i (rfree*@o)n exp [Z(Qt — Kz)}
n=0
= Boy—po Z;ip oy P [i(Qt — K2)] (4.3)

where &, = 2QL/c is a round-trip phase of light inside the cavity. Note that the
Mirror 1 in Fig. 4.2 is placed at z = 0 in these expressions. If the field of reflection
and that of transmission are measured at z = 0 and z = L, respectively, the reflection
coefficient and the transmission coefficient of the cavity are defined from Eqs. 4.1, 4.2,
and 4.3 as

exp(—i®,)
1 — Rye exp(—i®,)

IThe terms “front mirror” and “end mirror” will often be used throughout this paper, although

re(®y) = —rp+rd; (4.4)

they are not well-recognized technical terms.
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Figure 4.2: A simple Fabry-Perot cavity. Two mirrors are placed parallel to each
other at a distance of L. We will call Mirror 1, which is illuminated directly by the

input light, the “front mirror”, and Mirror 2 the “end mirror”.

T D,
—i—). 4.
1 — Ry exp(—i®,) exp(—i7) (45)

te(®,) = 5

These coefficients represent the frequency response of a Fabry-Perot cavity to light.
Sometimes we will write 7.(®,) and t.(P,) as 7.(2) and t.(Q2), or r.(L) and t.(L),
when either L or () is considered as a constant.

A plot of the amplitude and the phase shift of the reflected and the transmitted
light from the FP cavity versus round-trip phase is shown in Fig. 4.3. There are a
resonance peak of the absolute value when the round-trip phase is 2nw, where n is an
integer. The phase curve is very steep around the peak. Thus, around the resonance,
only the phase of the field changes to the first order approximation. The finesse of
the cavity F is defined by the ratio of the spacing of the two near-by peaks and the
full-width of half-maximum (FWHM) of the intensity of transmission,

2

FWHM
m Rfe

= . 4.6
I R (4.6)

f

The reflection and the transmission coefficient of the cavity are simplified when

b, < 1land F > 1;

(4.7)
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Figure 4.3: The response of a Fabry-Perot cavity to the round-trip phase ¢g. The
reflectance of the mirrors are chosen to be 82.64% for the front mirror and 98% for

the end, thus the finesse is about 30.
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Quantity Symbol  Definition
: v Rie
Finesse F 1—73;
Free Spectral Range (FSR)  vpsr 2ts
Cut-Off Frequency fe T = T
Cut-Off Angular Frequency We 2 f..
Storage Time Te 2PLa — 1

Table 4.1: Table of some quantities related to FP cavities.

Foo1
“r1+iZa,
Fo1

fe™ R
7T1+zw—c

te(Py) ~

(4.8)

Table 4.1 shows the definition of w. (the inverse of the storage time 7;) in the above
equation, together with the definitions of other quantities about FP cavities. We will
not try to discuss the physical implications of such quantities, because there are many

good textbooks such as Ref. 22.

4.2.2 Response to Gravitational Waves

An incident gravitational wave is propagating in the z direction. We choose the coor-
dinate system in which the metric is given by Eq. 3.29. One mirror of a Fabry-Perot
cavity is placed at x = 0 and the other is placed at x = L. The optical axis of the cavity
and that of the illuminating laser beam lie exactly on the x axis. We assume that the
mirrors are free masses, therefore they will not move in this coordinate system even
though there is an incident gravitational wave. However, the incident gravitational
wave affects the proper-length of the cavity, thus affects the round trip phase of light.
The reflected field at the input mirror is represented by

E, = Epe™™ | —r¢ + r.T; Z(rfre)”_l exp(—iQAL,) |, (4.9)

n=1
where At,, is a delay for the wave front which arrived at x = 0 after n-round trip inside

the cavity. By using the same approximations as used in Eqs. 2.39-2.43, we can obtain
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4.2. Frequency Response of a Fabry-Perot Cavity

the expression for At,:
_2Ln 1 gt

At, —
c 2 Jt—2Ln/c

h(t")dt" . (4.10)

After some calculation using Eqs. 4.4, 4.9, and 4.10, we obtain the field of the reflected

light written as
E, = Eywr(Q) {1 - i/ﬁ(w)Hgﬁ(w,Q)emdw}
= Epe'™re(Q) [1 - isWEE (¢, Q)] . (4.11)

The complex function HSR(w, ) represents the frequency response of a FP cavity to

the gravitational radiation, which is defined as follows;

. Q () = re(w+ Q)
HERw, Q) = 5 Q) : (4.12)

This is apparently the function of the angular frequency w and the round-trip phase

of the carrier inside the cavity ®,, therefore we will sometimes write HSR(w, Q) and
SUSR(t, Q) as HEMw, ®,) and dUER (¢, ®,) when it is convenient. We can see that
there are the carrier (the first term in Eq. 4.11) and the additional field (the integral
term). The additional field is sometimes called the ‘sidebands’ which is produced by
the gravitational radiation.

When the frequency of light is tuned to the resonance of the cavity (i. e. QL/c = nr),
it is easy to show that the term SWUEE(£,Q) in Eq. 4.11 is a real number. Therefore
SUER(t,Q) is interpreted as a phase shift of the carrier which is produced by the
gravitational wave. In this case, the expression for Eq. 4.12 is simplified. we will write

SUER(, Q) as GUER(2) in this paper, in order to denote that this is in this special case;

OUER() = OV,

- / () HERX (W) e duw (4.13)
where

Hig'w) = Hig'w.),,

& 1 FIy 1
2were(0) ™ 1+iZ

(4.14)

The last approximation comes from Eq. 4.7. Figure 4.4 shows the response function

pr(w).
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Figure 4.4: The absolute value of the response function HI%{ of a FP cavity to the
gravitational radiation versus frequency. In this plot, the finesse and the length are

chosen to be 50 and 3 km, respectively.

4.2.3 Response to the Motion of the Mirrors

The phase of the reflected light from the FP cavity can be disturbed by the motion
of the mirrors along the optical axis (also the frequency of the light is changed by the
Doppler-shift caused by the motion of the mirror, but we will ignore this effect). Let us
assume that the front mirror is fixed at the origin while the end mirror is moving along
the optical axis with a small amplitude 0L (). The length of the cavity is represented
by

L(t) = Lo + 0L(t), (4.15)

where Lg is the mean length of the cavity. After a n-round trip inside the cavity, a

part of the input field gets out of the cavity at the time ¢ with a time delay of T}, which

is given by
2 2 1
T, = “nLy+>Y 6L [t _Z@n—1)L,
C & =1 &
2 2 ~ of 1— efQik:nLg

to the first order of the fluctuation, where 0L(w) is the Fourier transform of 6L(t) and
k is defined by k = w/c. When the input field is defined by Eq. 4.1, the expression for
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4.2. Frequency Response of a Fabry-Perot Cavity

the reflected field is obtained by using Eq. 4.16 after some calculation as

E(t) = Eoemt l_rf + relt Z(’r’fre)"lemT"}

n=1

Te(¢0) — re(Po + @)

icsin ‘”—fo re(¢o)

dw

= Eye™r.(¢) [1 - i/gz(w)ei‘“t
= Eye™r.(¢o) [1 - i/cﬁ(w)HﬁP(W,Q)eiwtdw} : (4.17)
where ¢y = 2Kl is the mean round-trip phase inside the cavity. In the above equation,

the complex function Hip(w, §2), which represents the frequency response of a FP cavity

to the length-fluctuation, is defined as
Q re(¢0) — re(9 + ¢o)

HE Q) =
rp(w, ) icsin Lo 7e(%0)
Q () —r(w+ Q)
= . 4.1
icsin —“’50 r.(Q) (4.18)

The delay of the phase WL, which is caused by the motion of the mirror is defined in
the same way as Eq. 4.13 by

SUL (1) = / SL(w) Hp(w, )] o, o d. (4.19)

By comparing Eqs. 4.12 and 4.18, it is apparent that the gravitational radiation
of the amplitude h has the same effect as the length fluctuation of the amplitude %LO
(this value is equal to the change of the proper distance between the mirrors), when the

frequency of the motion is small compared to the free spectral range. In other words,
GR Lo .
Hgp (w, ) =~ 7HFP(W79> (4.20)

when

wlhp/c << 1. (4.21)

When the cavity is tuned to the resonance, the frequency response is approximated as

H%P("‘)) H%P(W» 0)
20 FT; 1 (4.92)
cre(0) 7 1+i2 '
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4.2.4 Response to the Fluctuation of the Phase of Light

In the discussion presented above, it is assumed that the phase of light has no fluc-
tuation. However, in a more realistic situation, the phase of light ¢(¢) has a small

fluctuation term d¢(t),

o(t) = Qf +66(t)
— O+ / Sp(w)e“tdw, (4.23)

where d¢(w) is a Fourier transform of d¢(t). Assuming that |5¢(¢)| << 1, the incident
field is expanded in terms of d¢ to the first order as

Ei(t) = Eyexp[i (Qt+56(1)) ]
~ Eoe'™ |1+ i0g(t)]

= Eoet [1 +i / g;b(w)emdw} . (4.24)

Let us assume that the length of the cavity is not fluctuating, L = L. Now the

reflected field is related with the reflection coefficient of the cavity as

E.(t) = By {rC(Q) + i/TC(Q + w)(%(w)emdw}

re(Q) — re(w + Q)
r.(Q)

= Eue'tr (Q) [1 +idp(t) — i / Sp(w)e™tdw| . (4.25)

We introduce the frequency fluctuation (%(w) which is defined by

= - 69(w)
0 = ) 4.2
v(w) = iw o (4.26)
Using this frequency fluctuation, the reflected field is expressed as
Eu(t) = Eye'r () [1 +i0p(t) — i [ Hplw, Qv |, (427)

where HI?P, which represents the frequency response of a FP cavity to the frequency

fluctuation, is defined as

Hip(w,Q) = 2;?7;({2) —re(w+ Q)

iw 7.(9) (4.28)
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4.2. Frequency Response of a Fabry-Perot Cavity

By comparing Eqs. 4.12, 4.18, and 4.28, one can see that the frequency response of a
FP cavity to the gravitational radiation, the motion of the mirror, and the frequency

fluctuation is related to each other;

2

Hip(@,Q) = o Hip" (w,9) (4.29)
L

= 7OHFLP(W79)J (430)

where v, = Q/27.

When the center frequency of light is tuned to the cavity, the third term in Eq. 4.27
is interpreted as an additional phase shift which is caused by the FP cavity. This phase
shift is defined by

SULL(1) = / HEo(w,0)30(w)e™ duw, (4.31)

just in the same way as Eq. 4.13. Equation 4.28 is then simplified as

2 Fl; 1
ng(w,O) =

= . 4.32
were(0) 1 +i2 (432)

4.2.5 Pound-Drever-Hall Technique

We have seen that the gravitational radiation, the motion of the mirror, and the phase
fluctuation of the light produce the shift in the phase of the reflected light from a FP
cavity. Such phase-shifts can be sensed by the Pound-Drever-Hall (P-D-H) technique
[28]. Though there are many papers in which the P-D-H technique is discussed, it
is still useful to present some ideas and calculations here. The basic concept of the
technique is to use the radio-frequency sidebands as the reference of the phase which
are not affected by the FP cavity.

Suppose that the field is phase-modulated so it is written in the form
E; = Eyexp [i(QU + msinwyt)], (4.33)

where m is the modulation index and wy, is the angular frequency of the modulation.
Such a field is generated by using an Electro-Optical-Modulator (EOM). Assuming
that the modulation index is much smaller than 1, the field is expanded to the first
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4. Fabry-Perot Cavities

order of the modulation index as

E, = Epexp (iQt) (1 + imsinwyt)

= Eyexp (i) {1 + %(eiwmt — e temty | (4.34)
(There is a mathematical formula [31]
+o0
exp(imsinwmt) = > Ju(m)e™™", (4.35)

where J,, is the set of Bessel functions. Therefore we can expand the input field to
the n-th order of m, though this is not essential to the calculation presented below.)
Now the field comprises a carrier and two sidebands. The frequency of the sidebands
is equally shifted from the carrier, in the opposite sign.

Next, suppose that the input field has a phase fluctuation which is represented by
Eq. 4.24. We modulate the phase of this field, therefore the field is written as

B, = Eye™ [1 +i / (%(w)e"”tdw} {1 + %(e’“mt — e emty | (4.36)

This input field is reflected from a FP cavity which is resonant with the carrier. The
cavity is interacting with the gravitational radiation and the mirror of this cavity is
moving with a small amplitude. The frequency of the phase-modulation is assumed to
be in the radio-frequency range, therefore the modulation sidebands are off the reso-
nance and approximately all of them are reflected. Combining the above assumption
with Eqs. 4.11,4.13, 4.17,4.19, 4.27, and 4.31, we obtain the following expression of the
reflected field to the first order of the perturbation;

B = Eoc™{re(0) [1+3 (50(t) — W) - oWh(t) — 505 ()]
— [+ i00(8)] T et e—iwmt>}. (4.37)

The intensity of the field is measured by a photo-detector and only the terms that are
proportional to exp(ziwyt) are lock-in detected by mixing the intensity signal with
the local oscillator which is used for the phase modulation (Fig. 4.5). Thus, the output
of the mixer is proportional to the phase shift caused by the gravitational radiation,
motion of the mirror, and the phase fluctuation;

enly

+ mre(0) [UER(t) + 0k (1) + 00 e(1)] (4.38)

Umix = R
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4.2. Frequency Response of a Fabry-Perot Cavity

Figure 4.5: A FP cavity is illuminated by phase-modulated light. The intensity of
the light is sensed by a photo-detector. The signal of the photo-detector is mixed
with a local oscillator signal which is used for the phase modulation. Because only
the carrier (“c” in the figure) is resonant with the cavity, any change of the cavity
length will cause a rotation of the carrier in the phase diagram while sidebands
(“SB” in the figure) are not affected. The inner product of the carrier vector and

the sideband vector is proportional to the motion of the cavity.
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4. Fabry-Perot Cavities

where R, e, n, Iy, and h are the effective resistance of the photo-detector plus the
mixer, the elementary electronic charge, the quantum efficiency of the photo-detector,

the power of the light, and Planck’s constant divided by 27, respectively.
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5. Modal Analysis

So far, the laser beams and the field inside the interferometer were treated as the
plane wave. However, if we want to make a quantitative discussion about the coupling
between the beam and the cavity, we have to take account of the fact that the wavefront
of the beam is curved. Here we will study how the misalignment of the mirrors couple

to the deformation of the mode of the input light.

5.1 Hermite-Gaussian Field

The field of the laser beams and the eigenmodes of the optical resonators are well
approximated by a set of the Hermite-Gaussian fields [22,32], which are represented
by

Epmi(x,y,2,t) = Uy (2,9, 2) exp(i€dt) (5.1)
U (z,y,2) = Upp(x,2)Upa(y, 2) expi[—Kz +(+m+ 1)77(2)} (5.2)

B 2 VA, 1 \V2 (2 x? - Ka?
Un(z,2) = <7ru)2(z)> <Z'QZ> Hl(w(z)>eXpl_w2(z) _ZQR(Z)]’ (5:3)

where K represents the wavenumber of the field. In the above equations, the beam

radius w(z), the radius of curvature of the wavefront R(z), the Gouy phase 7(z), and

the Hermite-polynomial H; are defined as follows:

woy/ 1+ (2/2) (5.4)

g
—
I\
~—
Il

R(z) = (z2 + 28) /z (5.5)

n(z) = arctanzzo (5.6)
Kw?

= (5.7)
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2@6 2. (58)

The point at which the beam radius takes its minimum is called the waist of the beam,

Hyx) = (-1)'e

and the minimum value wy is called the waist radius. From Egs. 5.4 and 5.7, one can

see that the far-field divergence angle oy is written as

ag = (K;UO)I. (5.9)

A set of the Hermite-Gaussian fields of a single frequency is completely characterized

by the propagation axis (the z axis in Eq. 5.2), the position of the waist (z = 0 in
Eq. 5.2), and the waist radius wy. Each field in the set is numbered by the two positive
integer [ and m. The sum of these integers [ + m is sometimes called the order of the
field. Two fields of the same order have the same Gouy phase shift (I +m + 1)n(2).
Inverting the sign of the K-vector (and other related parameters such as zj), the
expression for the Hermite-Gaussian mode which is inversely propagating along the z

axis is written as

Elm— (IE, Y, =, t) = Ulm— ([L‘, Y, Z) exp<ZQt> (510)
Ulmf - U;;n+ (511)
U. = U, (5.12)

A set of the Hermite-Gaussian modes is ortho-normal, i.e.,

+oo  ptoo
/_ 3 Uimz(,y, 2)U,,o (2, y, 2)drdy = 81p0mq- (5.13)
Also, a set of {U1} is ortho-normal;
+o0
Uis (2, 2)U (2, 2)dx = Oy (5.14)

5.2 Eigenmodes of a Fabry-Perot Cavity

A Fabry-Perot cavity has a set of Hermite-Gaussian fields {U;,,,} as its eigenmodes!.

The propagation axis of the eigenmodes is the one which is perpendicular to both of

n a Fabry-Perot cavity, the field is reflected many times by the two mirrors. Only the fields with
the wavefronts that are not deformed by the reflection can remain stable in the cavity, thus we call a

set of the stable fields in the cavity the eigenmodes of the cavity.
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center of curvature flat spherical
z -~
-« -~ " R™™ Y
¥ >
k axis of the cavity
i
<+—d—>

waist position
Figure 5.1: An axis of the eigenmodes of a Fabry-Perot cavity which comprises a
flat mirror and a spherical mirror. The axis is perpendicular to both of the mirrors

and intersects the center of curvature of the spherical mirror.

the two mirrors. When the cavity comprises a flat mirror and a spherical mirror, the
axis intersects the center of curvature of the spherical mirror. The waist of the cavity

is located at the flat mirror (Fig.5.1). The waist radius of the cavity is determined by

wh = A d(R — d), (5.15)

T

where d is the distance between the two mirrors and R is the radius of curvature of the
concave mirror. Due to the Gouy phase shift, the modes of the different order have the
different resonant frequencies. The resonant condition for the (I + m)th order mode is
written as
1
vo = vesa{n+ L+ m+1)—[n(x) — ()]}

= nuvpsg + ([ +m+ 1)vg (5.16)

where n, z; and 2, are a positive integer and the positions of the mirrors, respectively.

Especially, the Gouy phase contribution v is expressed as

d
vg = VFWSR arccos /1 — = (5.17)

when the mirrors of the cavity are flat and concave (radius of curvature R), or

d
vg = Vl;ﬂ arccos (1 - R) (5.18)

when the cavity comprises the mirrors with the same radius of curvature R.
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5.3 The Vector Representation of the Paraxial Field

Any paraxial field which is written as E(x,y, z) exp(i§2t) can be expanded by a set of
Hermite-Gaussian modes (Refs. 22). If the field is paraxial around the z axis in the

positive direction, it is expanded as

E(z,y,2) = Y <Im|E> Upi(z,y,2) (5.19)

Ilm

+oo  ptoo
<Im|E > = / Upoi(z,y,2)E(x,y, 2) dz dy. (5.20)

It is natural to look at the coefficients {< Im|FE >} as the components of the vector

that represent the field:

< 00|E >
< 01l|E >
< 10|E >
[E] = (5.21)
< 20|E >

< 11|1E >

Any operation that affects the modes of the field (beam transformation by a lens, for

example) is represented by a matrix.

5.4 Matrix Representation of the Transmission and

Reflection Coefficient

An optical component is characterized by its transmission and reflection coefficient,
which are defined as the ratio of the amplitude of the transmitted and reflected field
to the input. However, not only the amplitude, but also the beam characteristics are
changed by the optical components. The concept of the beam characteristics and the
transmission and reflection coefficient can be combined by using the modal expansion.

The input, the reflection, and the transmission field are expanded in terms of the

modes defined on a reference axis (the z axis in this case?)(Fig. 5.2). The fields are

2We can choose an arbitrary coordinate system, so far as the beams can be considered as paraxial.
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Figure 5.2: A beam is illuminating the optical component (left). The fields can

be expanded on a reference axis (right), thus the reflection and the transmission

coefficient are matrices in this case.

written as the vectors,

[En] = [<Im+|Ey >] (5.22)
[E] = [<Im—|E; >] (5.23)
[E] = [<Im+|E;>]. (5.24)

The fields are related to each other by the linear transformations:
<ij—|Ey> = > rujm < kl+ |Eyn > (5.25)
Kl
<17+ ’Et > = Zt[ij,kl] < kl+ ‘Ein > . (526)
kl
The coefficients rj; ) and #; ) are interpreted as the components of the matrices
which have {Im} and {pg} as their row- and column-indices. Thus the coefficients

of the optical components are represented as matrices [33]. These transmission and

reflection matrices depend on the alignment and the matching.

5.5 Misalignment and Mismatching

As we have seen, a set of Hermite-Gaussian modes is characterized by a certain set
of parameters, namely the propagation axis, the position of the waist, and the waist
diameter. The difference of these parameters between the two modes is classified in

two categories: the misalignment and the mismatching.
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Lyz—plane

Figure 5.3: Four parameters which characterize the misalignment. Two are defined
as the distance of the waists and the angle between the axes which are projected on

the xz plane. The other two are defined similarly in the yz plane.

Alignment is related to the off-axis difference between the two Gaussian fields.

When the propagation axis of one of the fields has a parallel displacement (perpen-

dicular to the propagation direction) or an angular tilt to the axis of the other, the

two fields are misaligned. There are four parameters that represent the misalignment.

Suppose that the fields are paraxial along the z axis. Consider the projection of the

two axes on the xz plane (Fig. 5.3). The first parameter is the distance between the

waists of the projected axes, and the second is their angle. The other two parameters

are defined similarly in the yz plane.

Mode-matching is related to the on-axis difference between the two Gaussian fields.

When the two fields have different waist radii or different waist positions along the

axis, they are mismatched®. The difference of the waist radius dw, and the difference

3Even if they are aligned completely.
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difference of the waist radius

difference of the waist position

Figure 5.4: T'wo parameters which characterize the mismatching. One is the differ-
ence of the waist radius dw, and the other is the difference of the position of the

waist along the axis.

of the waist position along the axis dz, are the parameters which describe the matching
(Fig. 5.4). In a more general expression than Eqs. 5.2 and 5.3, it is possible that the
projections of the mode profile on the zz and the yz planes have different waist positions
and beam radii. Therefore the number of parameters that describe the matching are

four.

In this paper, only the misalignment will be taken into account.
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5. Modal Analysis
5.6 Modal Expansion of the Misaligned Beam

Any paraxial field is expanded by a set of Hermite-Gaussian modes. Therefore an
Hermite-Gaussian field can be expanded by another set of modes with different param-
eters [35-38]. Especially, a misaligned Gaussian beam is expanded by a set which is
completely mode-matched to the misaligned field. We will discuss how the misaligned
beam couples to the higher-order modes by means of the modal-expansion. We follow
the calculation by Anderson [36] and Vinet [33], but in our case the second-order ex-
pansion is required. This will give the basis to evaluate the coupling between the laser
beam and the cavity, or the two beams which are recombined in the Michelson type
interferometer. Only the results are shown in this section to avoid overburdening the
text with derivations of complicated equations. The detailed calculations are shown in

Appendix A.

5.6.1 Lateral Displacement

Consider the two coordinate systems, (z,vy, z) and (2',/, 2), which are related to each

other by a small parallel displacement a,:
(@', y, ) = (v — ag, vy, 2). (5.27)

A set of Hermite-Gaussian fields in (x,y, z) coordinate system are defined by Eqs. 5.2
and 5.3. Let us consider an Hermite-Gaussian beam on the 2’ axis, which is represented
by {U},,+} (Fig. 5.5). The prime symbol will always be used to specify the coordinate
system in this paper:

Ul/er = Ulm+<x/7 y/7 Z/)' (528)

If the displacement a, is much smaller than the waist radius wy, we can expand the

beam U] by the set {Up,} to the second order of the displacement as

Ut (', 2") = Uy (z — ag,y, 2)
d 1 & 2
=~ Uler(xa Y, Z) - %Ulm%*(;m Y, Z)G,w + iﬁUler(x? Y, Z)a:t
= ) <pg+ [Im+" > Upgy (5.29)

Pq
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f\ >z’
axf —

Figure 5.5: Parallel displacement of the beam.

where the expansion coefficient < pg + |lm+" > is defined by

<pq+ |lm+/ > = / U;qu(ZE,y,Z)Ulm+($l,yl,2/)dIdy

d 1 @ g
/ / [Um o Umsa + 525Uy | Upypdady - (5.30)

12

On the assumption that 1 >> a,/wy and the input beam is the fundamental Gauss-
ian beam in an arbitrary coordinate system, we can neglect the power translation to
the modes higher than first off-axis mode (see Appendix A). After carrying out the

above expansion, we obtain the expression for the laterally misaligned modes as

1 /a;\? y
P.(ay) * U Y, ~ [1—=(—) |U —U 5.31
(az) * Ugoy (2,9, 2) [ 5 <w0) ] 00+ T w10+ (5.31)

3 /a,\2 Qyp
Px(ax) * U10+(.CC, Y, Z) >~ 1-— 5 </w0) U10+ — wioUOOJF (532)

From the above expressions, we can see that (a,/wp)? is the order of the optical power

that is transferred from one mode to others by the parallel transport.

5.6.2 Angular Tilt

Suppose that there is an angular tilt a, between the beam and the z axis (Fig. 5.6).
In this case, the two coordinate systems are related to each other as
T cosay, —sinoyg T

= (5.33)

z sino, cosay z

y =y (5.34)
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5. Modal Analysis

Figure 5.6: Angular tilt of the beam.

In the same way as the parallel displacement, we can neglect the modes higher than
the first off-axis mode on condition that the inequality 1 >> a, /oy >> ay is satisfied.
The misaligned beams are expanded by the Hermite-Gaussian modes of the tilted

coordinates to the second order of the perturbation as

1 (67 2 Oy

Rr(am) * U00+(«77; Yy, Z) >~ 1-— 5 () UOO+ - Z*Ulo_;_ (535)
Qg Qo
3 [\ 2 Ol

R.(ag) * Uy (z,y,2) ~ |1— 3 () Uyor — i—Upo+ (5.36)
Qg Qo

For the angular tilt, (. /ag)? is the order of the optical power which is transferred

from one mode to others.

5.6.3 Parallel Displacement Along the Optical Axis

The parallel displacement along the optical axis has the first-order coupling to the
n = 2 or higher order modes (Refs. 36, 39, and 40):

PZ((SZ) * U00+($,y,2) = U00+ T,Y,~ )
= U x,y,z)exsz&z—I—O(CS ) X (I +m = 2 terms)
<0

(
(
+0( © > (5.37)
(
(
(-

=2
N

P,(02) x Uypy(x,y,2) = Ups(z,y,2 — 02)
0z
= Uy (z,y,2)expiKdz+ O ( ) X (I+m = 3 terms)
<0

(o2
N

+o & ) (5.38)

OM‘
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5.7. Matrices of the Misaligned Optical Components

Here we do not take the mismatching effect into account. In such cases, the displace-
ment 0z is the second-order term of a, and «,. Therefore we do not have to make the

second-order perturbation calculation.

5.6.4 Matrix Representation of a Misalignment-Operator

We have seen that the field which propagates the forward direction can be considered
as the linear combination of only Uy, and Ujp, modes, so far as we do not take the
mismatching effect into account. Thus any paraxial field is represented as the two-rows

vector as

<00+ |[E+ >
[E,] = : (5.39)
<10+ |E+ >

The operators we have calculated are written in the matrix form as:

(r-s(E) m
[Px(ax)]+ - ZTQS 1_ % (%)2 (540)
_1(ax _jox
[Ra(0m)] 4 = ! _ié‘Y) - ;sz (5.41)
[P.(62)], = %% Lo (5.42)
01

From Eqs 5.10, 5.11, and 5.12, it is apparent that the matrices for the back-propagating
fields are defined as

[Polaz)] . = [Pulas)]} (5.43)
[Re(ag)] . = [Rulow)]) (5.44)
[P.(6:)]_ = [Pz(éz)]j— (5.45)

5.7 Matrices of the Misaligned Optical Components

We will calculate the expression for the matrices of the misaligned optical components

to the second order of the perturbation. We confine ourselves to the two-dimensional
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5. Modal Analysis

2da

\m
v
a N _—

Figure 5.7: A mirror is reflecting the incoming beam. Because the radius of cur-
vature of the mirror is completely matched to the wavefront, the waist radius is

conserved.

case for simplicity. In such a situation, it is possible to take into account only the
fundamental and first off-axis mode (see Appendix A for the details). The transmission
and reflection coefficient are the 2 x 2 matrices, and the field is expressed as the vector

which has two rows.

5.7.1 Modal Expansion

To calculate the transmission and the reflection coefficient of the optical components,
it is necessary to expand the misaligned beam by a set of the Hermite-Gaussian modes.
Here only the results of the expansions are shown. For the detailed calculations, see

Appendix A.

5.7.2 Misalignment of the Mirror

Suppose that a mirror is reflecting an incoming laser beam whose field is the (I +m)th
order Hermite-Gaussian field, Ej, = Uj,,o.. We will neglect the mismatching effect, i.e.,
the radius of curvature of the mirror and the wavefront are equal to each other at the

reflection point (Fig. 5.7). Thus the reflected beam is the (I + m)th order Hermite-
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5.7. Matrices of the Misaligned Optical Components

Gaussian field on another axis with the same waist radius as the input, which is written

as U;,,_. When the mirror has an angular rotation «, the reflected field is expressed as

E. = rU],_exp2i[-Kd+ (Il+m+ 1)n(d)]
= r{P,[d(1 — cos2a)] x P,(—dsin2a) * R,(2a) * Uy, }
x exp 2i[—Kd+ (I +m+ 1)n(d)] (5.46)

where r is the reflection coefficient of the mirror, d is the distance between the waist
and the mirror, and P, is a parallel displacement operator along the z axis. Since the
phase of the field must be continuous?, the phase factor exp 2i[—Kd + (I +m + 1)n(d)]
appears in the above expression.

By using Eqs. 5.43, 5.44, 5.45, and 5.46, the following equation is obtained:

1 0

[B] = reXRemd] i [P.(20°d)]-[P.(—2da)] - [R.(20)] - [Ey]
0 e2n(d)
— 7,62i[7Kd+17(d)72da2/20a3} 1 0
0 e2in(d)
_9a? & _9;d o (1 -4
|l w0 e e
22 (1+i4) 1-2% (3+3% +2i2)

The imaginary part in the diagonal terms can be neglected, because it does not affect
the power of the field I, = |E.|*> to the second order of perturbation. The reflection

coefficient is thus approximated as

1 0

[T] _ TeQi[—Kd+n(d)—2da2/zoag]
0 eQiW(d)

1—23% (1+%) 2%0(1—2'%)

. 2i 2 (1+z%) 1—23—2 (3+3§)

(5.48)

The transmitted beam is not affected by the mirror (we neglect the lens effect of

the mirror), therefore the transmission coefficient of the mirror is represented as the

4All of the phase discontinuity between the input and the reflected field must be from the reflection
coeflicient of the amplitude of the field.
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5. Modal Analysis

unit matrix times the conventional transmission coefficient:
[t] =t . (5.49)

Sometimes it is convenient to neglect the Gouy phase shift for the fundamental

mode, therefore we will write Eq. 5.47 as

o 2 2
[7,.] = re 2id[K+2a” /zof]

(5.50)

5.7.3 Misalignment of the Fabry-Perot Cavity

It is possible to get the reflection coefficient matrix of the Fabry-Perot cavity by using
Eq. 5.47 or Eq. 5.50 directly. However, it is simpler to use the reflection coefficients for
the respective modes to build the matrix. The reflection coefficient for the fundamental
mode of the cavity is

re0(2) = (), (5.51)

where € is the frequency of the field and r. is defined by Eq. 4.4. For the first off-axis

mode, the reflection coefficient is
re1(Q) = ro(Q — 27vg), (5.52)

where v is represented by Eq. 5.17. Therefore, in the coordinate system where the
cavity axis lies on the z axis, the reflection matrix is written as
T'co 0

[rc]aligned = . (5.53)
0 Tel

To obtain the reflection coefficient matrix in a general coordinate system, first we have
to expand the input beam in terms of the cavity modes. Equation 5.53 is used to
get the reflection field in the cavity’s coordinate system. Finally the reflected field is
expanded in terms of the modes on the desired coordinate system. By comparing the

input and the reflected field, we will get the elements of the matrix.
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5.7. Matrices of the Misaligned Optical Components

Figure 5.8: Misalignment of the cavity. The angle between the cavity axis and the

z axis is ou.

Suppose that the angle between the cavity axis and the reference is a,, and the
waist of the cavity is on (a,,0) in the zz-coordinate. The cavity axis is on the 2’ axis
in the 2’2’ coordinate. If the cavity comprises the flat mirror and the concave mirror,
the axis of the cavity is perpendicular to the flat mirror, and it lies on the center
of curvature of the concave mirror. The radius of curvature of the mirrors are well
matched to the wavefront, thus the reflected beam has the same waist radius as the

input (Fig. 5.8). The input field Ej, is expressed in the 2’2'-coordinate as
[Ein] = [y (—0) |4 [Pr(—a2) )+ [Ein] (5.54)

where [E;,] and [Fy,]" are the vector representation of the field in the zz- and 2’2’
coordinate, and R/, and P, are the rotation and the displacement operator in the z’'z'-
coordinate system, respectively. The reflection field is then written by using Eq. 5.53

as

[Er]/ = [rc]aligned[Ein]/
= [relatignea[ By (— )]+ [Pr(—a0)]+ [E]. (5.55)

In the zz coordinate system, this is represented as

[E:] = [Pe(ar)]-[Re(0n)]-[EL)
= [Pa(az)]-[Ra(0)]-[re]aigneal Ry (=) |4 [Pr(—aa) |+ [Ei]. - (5.56)

The reflection matrix in the xz coordinate is defined as

[re(@)] = [Pe(as)]-[Re(0)]-[re(w)]aigneal 12y (—0)] 1 [Pr(—aa)]+
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5. Modal Analysis

My, M,
= o (5.57)
MlO Mll
with
u © o) = % (1) — 25 (g ) (5.59)
= Teo— 5 TFeco = Tc1) — —5 (Tc Tel) — 20— — (T¢ Tec .
00 0 w% 0 1 04(2) 0 1 wo 0 1
(2% o
My = —(reo — 1 — (7e c 5.59
01 wo(ro r1)+z&0(ro+r1) ( )
M % ( )+ (reo + 7er) (5.60)
= —(reg—Te 1— (Te Te .
10 wo 0 1 a0 0 1
(1526 05926 Qg Oy
My = 71— wig (3TC1 - TCO) - 078 (3Tc1 + TCO) + QZUTOOTO (’I"C() + Tcl) . (561)

The imaginary part in the diagonal terms (2ia,c, /woag term) can be neglected, be-
cause it does not affect the power of the field | E;|* to the second order of perturbation.

Thus, the reflection matrix is simplified as

2

2 .
[ ( )] Teo — uT% (TCO - Tcl) - %7(2; (TCO + rcl) ZTHS (TCO - Tcl) + Z% (TCO + Tcl)
relW)| = . 2 2
e (reo = ra) +igs (reo +7ra)  ra — g (3ra — 1) — G (3ra + 7o)

(5.62)

Note that the matrix has the different dependence on the angle- and the displacement-
misalignment. For example, if the length of the cavity is tuned to the fundamental mode
of the field, r.o(w) is the positive real number. In this case, the first off-axis mode is out
of resonance, thus r.; (w) is approximately equal to —1. The cavity is more sensitive to
the misalignment of the lateral displacement which is proportional to 7. + 1 than the

angular misalignment which is proportional to r,y — 1.

On the other hand, if neither the fundamental nor the off-axis mode is resonant
with the cavity, both r,y and r.; are approximately equal to —1. Therefore the cavity
is sensitive to the angular misalignment, and insensitive to the misalignment of the

lateral displacement.
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5.8. The Frequency Noise and the Misalignment of the Cavity
5.8 The Frequency Noise and the Misalignment of
the Cavity

Suppose that the input field has a frequency fluctuation. The field is expressed by the

sum of the carrier and the sidebands of the frequency noise with a vector form as

[Eu(t)] = €% [1+ip(t)] [E(j]
= [1 + i / Wei“tdwl [Eo) (5.63)

iw
where [Ey] is a constant vector. The reflected field is written by using Eq. 5.62 as

2100 (w)

w

5] = e {r@)+i [ 20 @ o)) (5]

= MMA®D)] [Eo) (5.64)
where [A] is a matrix which represents the effects of the misalignment and the frequency

noise. Suppose that only the fundamental mode is resonant with the cavity, thus the

reflection coefficient for the off-axis mode is approximated as a constant:
re(w) = re(—2mvg) ~ —1 (5.65)

Under this assumption, each of the elements of the matrix [A] is calculated as follows:

2 2
Qg Ay

Aut) = ) (1= 2% = ) [Lio() - 00)] - (- 22) [+ )

a
2
0
a? a?
— ] N
reo(0 l wh ( +TC00> a%( r¢0(0)
) —

{1 Lib(t) — iUl (t) [ - 01(0) (Z% _ Z‘g)” (5.66)
A(n(lf) = Alo(t)

—_
S~—
N —

Anlt) = = 1= B ral0) - 2 - ral0)]
[1 Fig() + 1V ()reof0) (w - j)] (5.69)
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5. Modal Analysis

where W05 (t) is the additional phase shift caused by the cavity which is defined by
Eq. 4.31. Comparing Eqs. 4.27 and 4.31 with Eqs. 5.64 and 5.66, one can see that not
only the amplitude but also the phase of the fundamental mode in the reflected field is
changed by the misalignment. This is because the cavity have the different responses
to the fundamental and off-axis mode when it is tuned to the fundamental mode.

On the other hand, when both the fundamental and first off-axis mode are off-
resonant with the cavity, the reflection coefficient of the cavity for the two modes are

considered as constant;

T‘Co(W) off —resonant = Tel (Ld) off —resonant ~ -1 (569)
The matrix A(t) is written as
2
, 1-29% 2%
1 [ 71001 e B (5.70)
off —resonan QZ% 1 — 2w7g§ _ 407%5

Because the response of the cavity for the two modes are the same, only the amplitude

of the reflected field is changed by the misalignment.
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6. Fabry-Perot-Michelson

Interferometer

We will study a Fabry-Perot-Michelson interferometer as an example of the realistic

detector.

6.1 Fabry-Perot-Michelson Interferometer Used as

a Gravitational Wave Detector

A Fabry-Perot-Michelson (FPM) interferometer is a Michelson interferometer which
has a Fabry-Perot cavity in each of its arms to fold the optical path (Fig. 6.1). We will
call the FP cavity which is placed along the input beam as the parallel cavity, and the
cavity which is set perpendicular to the input beam as the perpendicular cavity. To
distinguish the physical quantities of the parallel and the perpendicular cavity, we will
attach the index “1” to the former and “2” to the latter (rp represents the reflection
coefficient of the front mirror of the perpendicular cavity, for example) *. The sign of
the reflection coefficients of the mirrors of the cavity are chosen to be plus inside the
cavity. The reflection coefficient of the beamsplitter is plus on the side which faces the
parallel cavity.

When the gravitational radiation passes the interferometer, it produces the phase
shifts in the fields in the two optical paths, which have the same amplitude and the
opposite sign. In general, the reflected field from the parallel and the perpendicular

'Most of the symbols used here have been defined in the preceding sections; t;, represents the
transmission coefficient of the beamsplitter, etc. We will not write down their definition again. Only

the definition of the newly introduced symbols will be presented.
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6. Fabry-Perot-Michelson Interferometer
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Figure 6.1: A conceptual view of a Fabry-Perot-Michelson interferometer. BS,
beamsplitter; FM, front mirror; EM, end mirror. The signs of the transmission

coefficient of the mirrors and the beamsplitter are defined in this figure.
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6.2. Extraction of the Signal

arm are written as

E(t) = Eotyre(Q) expiQt — 0o + 06(t — 211 /c) — d0ara (t) — 001 (t)
—OWER (t = L /c) = 0Wkpy (t — 1y /c) — 6Wgp, (t — l/c)]
= Egtyrer () expi(Qf — 01 — 86, (1) — 0, (1)) (6.1)
Ex(t) = Eororea(Q) expi|Qt — Oop + 06(t — 2lp/c) — 60ara(t) — 001a(t)
—OUERy(t = 1a/c) — SWkpa(t — o) — 0Wipy(t — Io/c)]
Eorpres(Q) expi(Q — 0y — 665(t) — 5Ws(t)) (6.2)

in front of the beamsplitter, where 6,; (i = 1,2) are the static phase delay, §6; are the
phase fluctuations which are produced in the paths between the beamsplitter and the
front mirrors, and dW¥; represent the fluctuations which are produced in the cavities.
Other symbols in the above equation are defined in the preceding sections. It is possible
to detect the effect of the gravitational radiation by measuring the phase of the two

field precisely.

6.2 Extraction of the Signal

To extract the signal from the interferometer, various kind of techniques have been
developed. Let us assume that we want to measure the phase of the field which has the
fluctuation of the amplitude and the phase at the same time. When the fluctuation is

small enough, the field is written as

Eas(t) = [1+0a(t)] expi [0 + 36(1)

~ [1+da(t) +idp(t)] exp it (6.3)
to the first order of the fluctuations, where da(t) and d¢(t) represent the small fluctua-
tion in the amplitude and the phase, respectively. We call this field as the 'target field’
tentatively, because the aim of the measurement is to detect the phase of this field.

The phase of the target field is measured by using another oscillator as the phase-

reference. Without losing generality, the field of the reference oscillator is written as

Breg(t) = buer() exp i [QF + dres(£)] (6.4)
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6. Fabry-Perot-Michelson Interferometer

where bef(t) and ¢.(t) are the arbitrary real functions.
The idea of the phase detection is to 'mix’ the target field and the reference field
to correct the cross-terms of these fields. For this purpose, the field of the target and

the reference are added to give the intensity;

I(t) = |Bgg(t) + Beer(t)]”
= |Esig(t)|2 + |Eref(t)|2 + [Buig(t) Ers (t) + c.c] . (6.5)

By using some techniques which will be described later, only the cross-terms are selected

as the signal;

Icross(t) = Esig(t) :ef(t)—i-C.C.
= er(t){ [1 4 0a(t)] cOS et (t) + I(t) sin e (t) }. (6.6)

When the relative phase of the reference and the signal field are quadrature, 7.e.

Dref (1) = (n + ;) ™ (6.7)

where n is an integer, it is apparent that only the term which is proportional to the

phase of the signal field is detected;
Tross(t) = (—1)"2bye(1)00(1). (6.8)

Since we know the waveform of the reference, it is possible to reconstruct the waveform
of the phase d¢(t) from the above expression in principle.

To summarize, for the phase measurement of the target field, we have to introduce
a reference which have the quadrature phase to the target. The field of the target
and the reference are added and detected as the intensity. Only the cross-terms of the
target and the reference are selected as the signal which is proportional to the phase
of the target field. Even if the target has the amplitude fluctuation, it will not be
detected.

If the frequency of the target and the reference are the same (i.e. bu(t) is a
constant), the detection procedure is called the homodyne detection. If we use a
frequency-shifted field as the reference (for example, byef(t) o sinwyet), it is called the
heterodyne detection. First we will study the pre-modulation as an example of the

heterodyne detection.
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EOM

O out

Figure 6.2: A simple Michelson interferometer using the pre-modulation technique.
There is a difference in two optical lengths which is large enough for the sidebands to
be transmitted to the anti-symmetric port. The optical power in the anti-symmetric
port is detected and mixed with the local oscillator to produce the signal which is
proportional to the fluctuation of the phase-difference in two paths. Most of the

optical power is reflected from the interferometer.

6.2.1 Signal Extraction by Pre-Modulation

It is possible to sense the phase-difference between two optical paths by monitoring
the anti-symmetric output of the interferometer using RF modulation technique, in
the same way as Pound-Drever technique (see Sec. 4.2). The RF sidebands are used as
the reference to measure the phase of the carrier. Several scheme have been developed
(Refs. 41, 42) for this purpose, but we will study only the pre-modulation scheme.
Phase modulation is applied to the input field of the interferometer. However, as one
can see from Eq. 3.23, there will be no modulation sidebands as well as the carrier in
the anti-symmetric port if the length between the beamsplitter and the front mirrors
are equal to each other. In the pre-modulation configuration, the difference of the
length between the two optical paths is large enough for the modulation sidebands
to be transmitted to the anti-symmetric port of the interferometer even if there is no
carrier transmitted (Fig. 6.2).

The phase-modulated input field is expressed in Eq. 4.34. The modulation frequency

is chosen so that the sidebands are far from the resonance. The field of the anti-

67



6. Fabry-Perot-Michelson Interferometer

symmetric output is written in the form

C

Eowi = Eotbrbemt{e‘i[9°1+591(t)] [T‘d (0)e™¥1® 4 imySB sin (wpt — le)}

C

— e il0c2+002(t)] [TCQ (O)e_iw?(t) + imrSBsin (wWmt — ng)} }, (6.9)

where 6,,; (i = 1,2) are the difference between the phase shift of the carrier and the
sidebands which are produced between the beamsplitter and the near mirrors and r58
is the reflection coefficient of the cavity for the sidebands, respectively. The sidebands
are out of resonance, therefore r58 is almost equal to unity and no phase fluctuation is
added by the cavity:

B~ 1. (6.10)

The phase shift 0,,; comprises the static term 2k, l; and the fluctuation. However,
|0mi /wm| is about the same order of |6;/€2|. This means that the fluctuation in 6,,; has
the same order of amplitude as 0wy, /2 ~ 10776;, assuming that the optical frequency
and the modulation frequency are the order of several hundreds terahertz and several

tens megahertz, respectively. Therefore we will neglect the fluctuation in 6,,;;
Omi >~ 2knl; (i = 1,2). (6.11)

When we define the mean and the difference of the static part of the phase delay as

g _ 901 + 002

o - 612
: (612)
A‘go = 901 — 002 (613)

and the common- and the differential-fluctuation of the phase as
00, = 601+ 60 (6.14)
00 = 060, — 66,, (6.15)

equation 6.9 is re-written as
. — . Abo+66_ .
Eoaii = Folyrpe'$t00=30+/2) {e’ H [%1(0)615‘1’1 + imr3B sin (Wt — Oy
. AbOo+66 _ .

s {7"02(0)6_“5‘1’2 + imrdB sin (Wt — ng)} } (6.16)
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6.2. Extraction of the Signal

The difference of the optical path lengths is controlled in such a way that the static

part of the difference of the phase is an integer times 27;

AHO - 2K(ll—l2>
= onm (6.17)

where n is an integer. The antisymmetric port is dark for the carrier, but a part of
the sidebands still appears in the anti-symmetric port, even if there is no fluctuation

(i. e. 60— = 0). In this case, the intensity of the field is calculated from Eq. 6.16 as

Ianti - |-Eanti|2

— IOTbRb{ SB

. 2
ree 0% 4 imr?.” sin(wpt — Gml)’

+ [rege 02 4 imrfB sin(wpt — ng)‘

_ st {Tde—l‘s‘l’l + imrd sin(wpt — 9m1)}

Wy . SB .
X |:7”C2€ 2 —imr” sin(wpyt — ng)}

+c. c.}. (6.18)

If the modulation frequency is much larger than the characteristic frequency of the

fluctuations, i.e. _
oo (80P) (1 — By
T {100]7) ([ Wy — Wal?)

the power spectral density of the intensity has the peaks at w ~ 0, wy,, and 2w,,. In

(6.19)

this case, it is possible to extract the terms which have the angular frequency w ~ wy,
by using the band pass filter (Fig. 6.3). The terms which is proportional to exp(diwpy,t)

are the cross terms of the carriers and the sidebands, which is represented by

I, = mIOTbRbr§B{—2rC1 sin Wy sin(wmt — Om1) — 27reo sin § Wy sin(wyt — o)
— 190~ [z sin(wpt — le)rcgei‘s% — i sin(wpt — Oma)Tc1 e‘iwl]

— 00~ [—i sin(wpyt — le)rcge_“s% + i sin(wpyt — ng)rcle"wl} }

12

— 2m[0TbRbrCSB

X { {5\1117"01(0) — (5\1/27@2(0)} {sin(wmt — Om1) — sin(wpt — ng)}
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Figure 6.3: Power spectral density of the amplitude (left) and the intensity (right)
of the field in the anti-symmetric port with the modulation. If the modulation
frequency is much larger than the characteristic frequency of the fluctuations, the
spectrum of the intensity has peaks at w ~ 0, wn, 2wy. Only the peak at w ~ wy, is

extracted.

+06_ {sin(wmt — Om1)72(0) — sin(wyt — 9m2)7“c1(0)] }
= 21Ty Ry x {[5\1117"C1(0) U (0)] sin(want + )

m

+46_

sin(emt — O)7e2(0) = sin(aint — uz)ra (0)] |, (6.20)

Mefr

where

Mef = m\/2 1 —cos2kn(ly —12)], (6.21)

sin 0,1 — sin O,
tand, = —

(6.22)

cos 1 — cos B

These terms are lock-in detected by mixing the intensity signal with the local oscillator.
The phase of the local oscillator must be tuned to keep the amplitude of the signal at
its maximum, 7.e.,

vLo(t) o< sin(wpt + Om)- (6.23)

The mixed signal is proportional to the fluctuation of the phase-difference of the carriers

in two paths;

VUmix Regéo TbRbT?Bmeﬁ‘ lé‘lllrcl(()) — 0WUyre(0) + re1(0) ;rcz(o)&?]
enly B 7.1(0) Te2(0)
_ Rt -(0) |sw — 65U ) 24
R 70 TbRbTC TMegT (O) lé 1 FC(O) ) 2 FC(O) + 06 (6 )

where 7¢(w) is the mean reflection coefficient of the cavities, R is the constant which

have the dimension of the resistance, e is the elementary electric charge, n is the
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Isolator

PD PD
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difference

Figure 6.4: A Fabry-Perot-Michelson interferometer in the homodyne operation.
The difference in two optical length is controlled in such a way that the optical
power in symmetric and anti-symmetric output is equal to each other. In such a
situation, the fluctuation of the difference of the two optical power can be used to

sense the fluctuation of the phase-difference.

quantum efficiency of the photo-detector, and h is the Planck’s constant divided by

27, respectively. If r., (0) = r2(0), the above equation is simplified as

I
Vpnixe 2 R%TbRbrfBri(O)meﬁ(é\Iﬂ — oWy +56_). (6.25)

The effective modulation index meg is proportional to the length-difference between
the beamsplitter and the front mirrors (when ky,(l; — l2) << 1), therefore the length-
difference must be large enough to obtain a considerable amplitude of effective modu-

lation index.

6.2.2 Homodyne Detection of the Signal

In the homodyne detection, each of the carrier field itself is used as the reference to
measure the phase of the carrier from another cavity. Figure 6.4 shows the concept of
how the homodyne detection is achieved. Compared with the heterodyne detection,

there is no modulation sideband in the field. Therefore, by using Eq. 6.9, the field of
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6. Fabry-Perot-Michelson Interferometer

anti-symmetric and symmetric port are written as

Eanti _ Eotbrbeigt{€_i[001+6el (t)+5\If1(t)]7,,C1 (O) . e—i[902+592(t)+5\112(t)],r,c2(O)} (626)

Esym _ Eoeiﬂt{Tbe_i[001+601(t)+6\yl(t)}rc1(0)+Rbe_i[002+502(t)+6\1l2(t)]rc2<0)}.(6.27)

Suppose we control the optical length between the beamsplitter and the mirror in

such a way that static part of the difference of the phase of the beams is written as

0 —0, = 7 <n + ;) (6.28)

where n is an integer. From Eqs. 6.26, 6.27, and 6.28, the intensity of the antisymmetric

and symmetric port are calculated as

]anti = I()TbRb [Rcl —|— RCQ —|— 27“617“(:2 sin(5\111 — 5\1/2 + 50_)] (629)
Loi = Io[T2Rer + RERe — 2T, Ryrearea sin(00y — 0%, +660_)] . (6.30)

We can electronically subtract the constant term in the above expressions in order to

obtain a signal which is proportional to the term sin 0¥, — W, + d0_ as

Ty Ry (R + Re2)
TgRCl + R%ch sy
= 2l Ty Rprare(l 4+ a)sin(0W, — 6Wy 4 660_). (6.31)

[e = anti —

In the above equation, a = Ty, Ry, (Re1+ Re2) /(T Re1 + RER2) is an electronic gain factor
which is nearly equal to unity in a well-balanced interferometer (it is equal to unity
when the transmittance and the reflectance of the beamsplitter are equal to each other,
even if rey # 7). Thus we can use the signal I, to sense any small phase-difference
between two paths which is represented as 6¥; — dWy + d6_ [8] (Fig. 6.4). Note that
the optical power in the symmetric and anti-symmetric output is nearly equal to each
other in this homodyne operation.

We have directly obtained the product of the carriers from the different paths in
the above calculation. Thus it can be said that the DC technique is the technique to

measure the difference of the phase from the two cavities directly.
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6.3. Frequency Response of the Interferometer
6.3 Frequency Response of the Interferometer

The frequency response of the interferometer to the gravitational radiation, the fre-

quency fluctuation, and the motion of the mirrors will be shown here?.

Again, we
assume that the detector is optimally placed for the propagation direction and the po-
larization of the incoming gravitational wave. Since all of the equations needed for the
derivation of the frequency responses have been presented in the preceding chapters,

only the results of the calculations are shown here.

6.3.1 Frequency Response to Gravitational Radiation

When gravitational wave passes the detector, the output of the FPM interferometer is
extracted by pre-modulation as

Tc1 (0)
7c(0)

SUSE (1 — 1, Je) — 2D suen 1,0

AG(t) = d0cri(t) — d0cra(t) + 7(0)

= 00y (t) + 0UEpy (1)
[ h@) SR @) + [ Rw) HER (w)e"d, (6.32)

where H\R(w) is defined by Eq. 3.35 and HER(w) is defined as

re1(0 ) re(0 .
HFPM( ) = rl((o))HFPl( )eXP(_Wll/C) TQ((O))HFPQ( )exp(—zwl2/c)
. wly cwlo
Q 1 T Y Q 1 T e '
N Filn e n Folp e (6.33)

2w Tc(0) ™ 1+ in= 2we 7o(0) 7™ 1+i2

c2
By using Eqgs. 3.35 and 6.33, one can calculate the ratio of HG&, and HR as

| Hyjit (w)

H%?M(W)

(6.34)

[
Ty
7c(0) w2

In the most of the interferometric gravitational wave detectors, this ratio is the order

of 107° or less, thus HiR can be neglected?®.

2We will calculate the response of the signal extracted by the pre-modulation technique. However,
for the symmetric case, the frequency responses of the two scheme are identical. The difference between

these two schemes in asymmetric case will be discussed in Chap. 7
3The product of the finesse and the cavity-length is on the order of 10°m, while the mean distance

between the beamsplitter and the near mirrors is on the order of 1 ~ 10 meters. The product of
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6. Fabry-Perot-Michelson Interferometer

Symmetric case

It is important to note the two special cases. If the parameters of the cavities are
the same (F; = Fy = F, reg = T2 = 7 ete.), the frequency response of the FPM
interferometer to the gravitational radiation is written as

Q 1 FL 1
were(0) T 1+

HER (W) ~ e~ e cos(wAl/2c) (6.35)
where [ and Al are the mean and the difference of the distance between the beamsplitter

and the front mirrors.

No-loss case

Another important case is when there is no optical loss and the reflectance of the end
mirror is equal to unity. In such a situation, the finesse of the cavity is determined by

the transmission coefficient of the front mirror as

2
Tii = (1 — i) (1 + 74) =~ % (i=1,2). (6.36)

Also, the reflection coefficient of the cavity is equal to unity. Equation 6.33 is simplified
as

il 1 1 , 1 1 .
HGR ~ Qetwl/e [ 2 T —iwAl/2e L LiwAl2e 6.37
rpu(w) ~ fe waltiz" el iz (6.57)

6.3.2 Frequency Response to Fluctuations of the Light Phase

Suppose that the input field has frequency fluctuations as expressed in Eq. 4.24. The

signal which is obtained in pre-modulation technique is calculated as

AO(t) = —[0p(t —2l1/c) — dp(t — 21y /)]
Cra0) cow o, N re2(0) coty o, .
= _591?/11(75) - 5qj$PM(t)' (6.38)

the finesse and the transmission coefficient of the front mirror is about 27 when there are no optical
losses in the mirrors and the reflection coefficients of the end mirrors are equal to unity. The reflection

coeflicient of the cavity is on the order of 1.
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6.3. Frequency Response of the Interferometer

We define the frequency response which is represented by Hﬁl and HI?PM as

2 - ~
H¢ _ 27 (2wl /e _ —2iwlz/c
i (w) i (6 € )
—4 » Al
= Tt /e gy Y20 (6.39)
iw c
T'c1 (O) f —2iwly /c TCQ(O) f —2iwla/c
Hip(w) = gy Hima(@)e 0/ — 2208 Hpp(w)e™™
— 72 |“F1Tf1 1 — e—2iwl1/c . fQTfQ 1 — 6—2iwl2/c ] (640)
7e(0) | wa 14ig% wer 1+i 2%
By using these response function, the terms 065}, and 6¥pp, are written as
508, (1) = / HE 4 (0)0i(w) et du (6.41)
W) = [ Hipa(@)on(w)e™". (6.42)
When the parameters of the two cavities are the same, H‘FﬁPM is simplified to
—4i FTy 1 i
Hiop(w) = P e~ 2leginwAl /e (6.43)

7(0) we 1+i2

The expression of the function Hpy, is similar to HGX,;. However, the phase noise of the
laser is a common fluctuation to both of the cavities, while the gravitational radiation
is the differential one. Thus, when the parameters of the cavities are the same, Hipy,

is proportional to O(wAl/c) while HER is proportional to 1 + O(w?Al%/c?).

6.3.3 Frequency Response to the Motion of the Mirrors

Let us consider the motion of the mirrors. The distance between the beamsplitter and
the near mirrors are defined as [; + dl;(t) (i = 1,2), where [; is a static term and 6l; is
a fluctuation. In the same way, the lengths of the cavities are defined as L; + dL;(t)
(i=1,2).

The signal that is extracted by pre-modulation is written as

AO(t) = 30n(t) — 59l2(t)7;f01((00))5\1f§1>1(t —1/e) — 7;;2(%'))5\1/%1)2(15 —1,/c)
= 00 (t) + 0O (1) + O Wipn (1) + SV (1), (6.44)
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6. Fabry-Perot-Michelson Interferometer

where the definition of 564y and 664, are given by Eqs. 3.47, 3.48, and 3.49. The

definition of §WEE,, is given by

Whpn(t) = [ 6L () Hip(w)e™ dv (6.45)
OUkE(t) = [ OLs(w) Hfh(w)e dw, (6.46)

where the difference and the sum of the motion 6L, are defined by
0L+ (w) = 0L (w) + 0Ly (w), (6.47)

and the frequency frequency response of a FPM interferometer to the common motion

and the differential motion are written as

_ 1 T’Cl(O) ,wll TCQ(O) ,QJZQ
HEEPM(W) = ) [wHéPl(w) eXp(—Zj) + wﬂépz(w) eXP(—Zj)
Q f12Tf1 1 —iwly/ fQZsz 1 —iwla/
— wli/c wlo/c 648
T0) | w2 1= 14 (6.48)
1 Tcl(o) ,wll T’CQ(O) _CUZQ
HBE};FM(W) = B) [7}(0) HI«EPl(W) exp(—z7) - 7(0) HPI‘JPZ(W)GXP(_ZT)
— Q ffﬂl 1 —iwly/c _ fgﬂQ 1 e—iwlg/c (6 49)
cre(0) | 72 1402 e '
(1 €2

6.4 Optical Recombination of the Light Beams

A term “recombination” is used associated with Michelson-type interferometers if the
beams divided into two paths are combined again on the beamsplitter. This term is of-
ten used in contrast with the “locked FP” type interferometers, in which the beams are
independently detected by using optical isolators (Figure 6.5). In locked-FP interfer-
ometers, the phase for each of the beams is detected separately. The recombined FPM
configuration is indispensable for the interferometric gravitational wave detectors, be-
cause of two outstanding advantages. The first is that a power-recycling technique [23]
can be applied to the interferometer in order to improve the strain sensitivity limited
by the shot noise. The second is that the effect of the common-mode frequency noise
of the laser on the strain sensitivity can be reduced in the recombination configuration,

which will be described in the next chapter.
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6.4. Optical Recombination of the Light Beams

Figure 6.5: The locked Fabry-Perot interferometer. The beams reflected by the

cavities are detected independently by using optical isolators.
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7. Asymmetry of the interferometer

We have seen that the gravitational radiation and the differential motion of the
mirrors produce the differential phase shift in the two arms of the FPM interferome-
ter, while the common motion of the mirrors and the frequency fluctuation produce
the common phase shift. We will call the frequency noise and the common motion of
the mirrors the common-mode noise. From Eqgs. 6.33, 6.40, 6.48, and 6.49, it is ap-
parent that the common-mode noise disappears when the interferometer is completely
symmetrict. However, when there is any asymmetry, a small fraction of the common
mode phase shift is detected and distorts the gravitational radiation signal. Therefore
it is useful to study the frequency response of the interferometer to the common-mode

phase shifts from the point of view of asymmetry.

7.1 Non-Geometrical Asymmetry

7.1.1 Asymmetry of the Optics for the Carrier

We represent the mean value of the constant parameters of the interferometer by the

bar-symbol, and the difference by A:

- L+

= 1
[ = (1)
F= Tl (73)

'Both the differential- and common-mode terms disappear when the interferometer is symmetric.
However, the differential-mode signal is proportional to meg, while the common-mode noise is propor-
tional to meg X O(wAl/c). Thus the common-mode noise goes to zero faster than the differential-mode

signal.
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7. Asymmetry of the interferometer

AF = f1—f27 (7‘4)

for example. The A-terms are the parameters which characterize the asymmetry of the
interferometer. The frequency response of the interferometer in Eqs. 6.33, 6.40, 6.48,

and 6.49 are expanded in terms of the asymmetry-parameters as

Hipy(w) ~ 2HH (w)e Ve

weTc(0) ™ 1412
672iwl_/c
H?PMO’U) - r—(o)
X § et Hppr (W) — TC2HFP2<W)] - [TclHFm(W) + T02HFP2(W>}
2 FTie2ele (9AF 1+is% AT AL 1 2iwAl
7(0) e 14+iZ \ F 1+iZ T; L 1+iz c
eil/e INF 1+is- AT} AL 1 2iwAl
= HER — e | — + = — 7.6
e FPM(w)< 7 1""%%4_ T Ll—i—iw% p )( )
20 FTr 1
HL— ~ —iwl/c
Fon () c7e(0) w2 1—1—2’%6
1
efzwf/c
{rdHFPl w) — r02HFP2<w)] T o [TclHFm(W) + TC2HFP2(W)}

O FTp e e (2AF 1+ iz AT AL g iwAl

ce(0) 7 1+iZ \ F 1+i2 T L 1+i2 ¢

1 o OAF L+izs AT, AL iZ  iwAl

_ — e OF 7.8
oL FPM(W)( F ol+iz T L1+iZ ¢ (7.8)

to the first order of the asymmetry parameters, where HGX(w) is the mean response
function of the cavities. In the above expression, the parameters AF, ATy, and AL
are the parameters which describe the asymmetry of the cavities, while Al describes

the asymmetry of the length between the beam splitter and the front mirrors.
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7.1. Non-Geometrical Asymmetry

Correction for Homodyne Scheme

All of the above presented calculations are for the P-D-H detection scheme. In the
homodyne scheme, since only the difference of the phase between the carriers rather

than the amplitude is detected, correction terms are needed for the asymmetry analysis:

e—iwi/c ATC
—THﬁBM(W) X = (0) (7.9)
has to be added to Eq. 7.6, and
1 Ar,
——HSR — 1
9T Fpu (W) X (0] (7.10)

to Eq. 7.8, where Ar. is the difference between the DC reflection coefficients of the

cavities for the carrier.

7.1.2 Asymmetry of the Optics for the Sidebands

So far we have ignored the asymmetry of the sidebands because the reflectance of FP
for the sidebands is considered to be almost equal to unity. However, there may be
some asymmetry if there are apparent loss factors in the interferometer?. It is easily
shown that the asymmetry for the sidebands is interpreted as a shift of the optimal
demodulation phase and a change in the effective modulation index. If we introduce
the reflection coefficients for the sidebands for each of the cavities represented by 752
(n = 1,2), the reflectance for the sidebands in Eq. 6.24 has to be replaced by the mean

reflectance,

SB SB
pSB = el T2 ;rc? . (7.11)

The new definition of the effective modulation index and the optimal demodulation

phase are:

me = m (1)) + ()2 — 20 PrP (1 — cos 2k (b — )] (712)

SB SB .
tans. = _ Top Sin Oy — 1725 sin G0 (7.13)
A Om = rSB cos O — 5P cos O '

cl m1l T COS Um2

These have to be taken into account for the sideband-asymmetry.

2For example, the anti-reflection (AR) coating of the back side of the mirror has finite reflectance
which produce an apparent loss in the interferometer. Any asymmetry in such AR coatings will lead

to an asymmetry not only for the carrier but also for the sidebands.

81



7. Asymmetry of the interferometer
7.2 Geometrical Asymmetry

Even if the optics have ideal quality, any misalignment produce an asymmetry in
the interferometer. This is because the phase of the reflected light is shifted by the
misalignment according to Eqgs. 5.66—-5.68. For convenience, let us assume that the
optics are completely symmetric except for the alignment. Also, let us consider only
the frequency noise for simplicity. Suppose that the input beam is matched to the
cavities of the interferometer, but there are small misalignments in the orientation
of the mirrors. Again for simplicity, only the misalignments in one dimension are
discussed. After some calculations using Eqs. 5.66—-5.68 and 5.70, the amplitude of
the common mode noise in the differential phase measurement which is represented by

Ue (t) is obtained?®:

comm

1 a2, —a? o, —a?
\I/(b t) ~ _\I[(Z) t zl 2 Tzl x2 714
Sanl8) ~ ~plt) s (S - (7.14

where a,,, and ay, (n = 1,2) are the misalignment parameters of the cavities. There-

fore, in this case, the frequency response of the interferometer is written as

—iwl/c 1 2 2 2 2
@ € GR Ay (o) o oo
Hipy(w) ~ —7% Hgpyp(w) % reo(0) ( 2 — o2 ) ) (7.15)

7.3 Rejection of the Common-Mode Noise

From Eqs. 7.5-7.8, we can see that the disturbance that acts in-phase on the two
cavities “leaks” to the anti-symmetric port if there is any asymmetry, and distorts
the gravitational wave signal. The common-mode-noise-rejection-ratio (CMRR) of the
interferometer is defined as the ratio of the difference of the phase delays of the field
from the perpendicular cavity and the parallel cavity to the mean phase delay of the
cavities. For the frequency fluctuation, CMRR is defined to

Hyy(w) + Hipy (@)

d) w = —
) Hp ()

HI?PM(W)
e (7.16)

3This expression can be used both for P-D-H scheme and homodyne scheme, except for some factor

which is close to unity.
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7.3. Rejection of the Common-Mode Noise

where Hgp(w) is the mean response function of the cavities to the frequency fluctuation.

Using Eqgs. 7.6 and 7.16, the expression of CMR to the phase noise is obtained as

2AF 1+i5=— ATy AL 1 2iwAl T
1) ~ — 2w, — — . —2iwl/c 717
) (]-" 1+iz T L 1+iZ o )6 (7.17)
for the asymmetry of the optics, and
1 a?, —a%, o —a? . 7
) ~ zl x2 ol x2 —2iwl/c 718
o (U 72 T

for the asymmetry of the alignment. The amplitude of the equivalent noise which is

caused by the phase noise is written as

h(w) = 7% (w) x UACOPE (7.19)

Vo

in the unit of the dimension-less strain A, and

5L (w) =~1%(w) x ZMGMW (7.20)

Vo

in the unit of the differential motion 6L _.

No-Loss case

When there is no optical loss in the mirrors and the reflectances of the end mirrors
are equal to unity, AF and AT; are not independent. From Eq. 6.36, we obtain the

following equation:

AT; A
jf = —i, (7.21)
1% F
In this case, the expression for CMRR is simplified as
AF AL 1 2iwAl T
¢ ~ d - . —2zwl/c' 29
T [<f+L>1+z':jC ¢ € (7:22)

When L1 F; = LyF, (or, in other words we; = wez), the asymmetry term of the cavity

disappears.
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8. 3-meter Fabry-Perot-Michelson

Interferometer

The recombined Fabry-Perot-Michelson (FPM) configuration is indispensable for
the interferometric gravitational wave detectors, because of two outstanding advan-
tages. The first is that a power-recycling technique [23] can be applied to the inter-
ferometer in order to improve the sensitivity, which is limited by the shot noise. The
second is that the common-mode noise due to frequency fluctuation of the laser can be
reduced in the recombination configuration. The common-mode-noise-rejection ratio
of the interferometer is quite important, because the requirement on the frequency sta-

bility of the laser can be considerably relaxed if the interferometer has a good CMRR.

Since all of the optical components must be suspended independently as pendulums
for GW detection, it is quite significant to test the properties of the optical system and
to develop a technique to control the interferometer in a more realistic situation. There-
fore an optically recombined FPM interferometer with the 3 m baseline has been built
in the campus of the University of Tokyo. The mirrors and the beamsplitter of the
interferometer are suspended independently by wires. The aim of the construction of
this interferometer was to experimentally investigate the optical recombination, espe-
cially the common-mode noise rejection under the all-suspended configuration. This
was the first example of the optically recombined, all-suspended interferometer with
the Fabry-Perot cavities in the arms[16]'. The experimental setup of the 3m-FPM

interferometer is shown in Fig. 8.1. There are three important points about this setup.

!Before the 3m-FPM experiment, the recombined FPM configuration was experimentally investi-
gated with only table-top interferometers having rigidly mounted mirrors and beamsplitter [24, 25],
while the all-suspended configuration of the FPM was studied with the locked-Fabry-Perot configura-
tion [26].
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Figure 8.1: The schematic diagram of the 3m FPM interferometer which was built
in the campus of the University of Tokyo. As a light source, a laser-diode-pumped
Nd:YAG laser (LIGHTWAVE, MISER model 124) was used. FM, front mirror; EM,
end mirror; BS, beamsplitter; FI, Faraday isolator; PM, partial mirror for pick-off
purpose; PD, photo-detector; EOM, electro-optical modulator; Osc, local oscillator;
DBM, double-balanced modulator. L, spherical lens; CL, cylindrical lens.
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8.1. Layout of the Optics

e The laser beams reflected by the two FP cavities were recombined again on the
beamsplitter. The relative phase difference between the two beams was detected

by using the recombined beam.

e For convenience, the operation point of the interferometer was chosen at the
steepest slope of the fringe. In other words, the signal was extracted by using

homodyne detection?.
e All of the optical components were suspended independently by wires.

In this chapter, the experimental apparatus of the 3-meter interferometer is de-
scribed. Calibration procedures that were the basis of the displacement sensitivity

analysis are also be shown.

8.1 Layout of the Optics

Figure 8.2 shows the optical layout of the interferometer. The input optics were set on
a small optical bench. As a light source we used a laser-diode-pumped Nd:YAG laser
(LiGHTWAVE, MISER model 124). It has a linearly polarized, single mode beam with
a power of 54mW. Also it has an elliptical beam profile, because the laser resonator of
MISER is a non-planar ring cavity. Two cylindrical lenses were used to transform the
beam to the axisymmetric one. A lens was used to match the beam to the fundamental
mode of the 3-m cavity. An electro-optical modulator (EOM, Newfocus model 4003)
was used to apply a phase modulation at 15 MHz. The modulation index of the EOM
was measured to be m &~ 0.67. After EOM, two Faraday isolators (FI) were used

to prevent optical feedback to the laser. The beam was introduced into the vacuum

2Because of this feature, i.e. the homodyne scheme, the interferometer was not directly compatible
with power-recycling. However, the demonstration of the recombination technique in this experiment
led to the power-recycling demonstration. As soon as this experiment had been finished, the optical
configuration of the interferometer has been changed to the pre-modulation topology to lock the
operation point to the dark-fringe [43]. After the reconfiguration of the optical and servo topology
to pre-modulation scheme [44], the power-recycling has been demonstrated successfully with the all-

suspended FPM interferometer [45, 46].
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Figure 8.2: Layout of the optics. The laser and the input optics were set on a 1 m
by 1m optical bench. The mirrors and the beamsplitter of the interferometer were
housed in a vacuum enclosure. FM, front mirror; EM, end mirror; BS, beamsplitter;
FI, Faraday isolator; PM, partial mirror for pick-off purpose; PD, photo-detector;
EOM, electro-optical modulator; L, spherical lens; CL, cylindrical lens.
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8.2. Vacuum

chamber through an anti-reflecting coated glass window. Several mirrors were used for
the coarse alignment of the beam. Though the output power of the laser was about
54mW, the optical power which was led into the interferometer was about 29 mW, due
to the optical loss of the optics placed between the laser and the interferometer.

In the vacuum chamber, a beamsplitter and two Fabry-Perot cavities formed a
Fabry-Perot-Michelson type interferometer. The beam was led to the beamsplitter and
was injected to the arm Fabry-Perot cavities. The reflected beams from the cavities
were optically recombined on the beamsplitter. A part of the optical power of the
recombined beam was led to the photo detector in the center chamber (PD1 in Fig. 8.2),
while the rest of the power was reflected back to the optical bench, reflected by the
Faraday isolator and detected by another photo-detector (PD2 in Fig. 8.2). The outputs
of the photo-detectors were used for the signal extraction of the interferometer (see also
8.4.3). A small part of the optical power reflected from the arm cavities was picked off
by two partially reflecting mirrors (PO in Fig. 8.2). The picked-off beams were also

used for the signal extraction of the arm cavities (see 8.4.2).

8.2 Vacuum

The main part of the interferometer is housed in a vacuum system (Fig 8.3) to protect
the interferometer against any acoustic noise. The whole system comprises three iden-
tical chambers with an inner diameter of one meter. The center chamber and the end
chambers are connected by 15-cm-diameter vacuum tubes. The distance between the
center and the end chamber is 3m, from center to center. The whole system is evacu-
ated by using a scroll pump connected to the center chamber. All of the measurements

were made under a pressure of less than 10 Pa.

8.3 Mirror Suspension

The beamsplitter and the mirrors of the Fabry-Perot cavities were suspended by the
suspension system shown in Fig.8.4. Seismic vibration was isolated horizontally by a

double pendulum [27] and vertically by the coil springs. The intermediate mass of the
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Figure 8.3: The vacuum system of the interferometer comprises three identical
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chambers. The inner diameter of each chamber is one meter. The distance between

the center and the end chamber is three meters, from center to center.
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8.3. Mirror Suspension
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Figure 8.4: The suspension system of the mirrors. Horizontal vibration was isolated

N
N

by a double pendulum. The vertical isolation was mainly provided by the coil-

springs. The leaf springs were used for the fine adjustment of the alignment by

using the actuators.
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Figure 8.5: A mirror and four magnets were glued to each of the test masses which
are made of aluminum. The diameter and the thickness of the mirror is 3cm and
S5mm. The diameter and the thickness of the test mass are 7cm and 5cm. The

diameter of the hole drilled at the center of the cylinder is 2cm.

pendulum was made of copper and was suspended by two coil springs. The bottom
mass (the test mass) was a cylinder made of aluminum and was suspended by two loops
of wire from the intermediate mass. Each mirror with the diameter of 3cm and the
thickness of 5 mm was glued to the test mass (Fig. 8.5). The diameter and the thickness
of the test mass was 7cm and 5cm, respectively. Four small permanent magnets for

the control purpose were glued on the opposite side of the test mass to the mirror.

The beamsplitter was also suspended by the same suspension mechanism as the
mirrors. The diameter and the thickness of the beamsplitter > was 10cm and 3 cm.
Figure 8.6 shows the physical dimensions of the beamsplitter. Both sides of the half-
mirror coating are covered with anti-reflection coated glass. Four magnets were glued
directly on one side of the beamsplitter. The translation of the mirrors and the beam-

splitter was controlled by using two coil-and-magnet-type actuators which were verti-

3This beamsplitter is identical to the one used in the 20-m FPM interferometer built in the campus

of National Astronomical Observatory, Japan.
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Figure 8.6: Physical dimensions of the beamsplitter. The diameter is 10 cm and the

thickness is 3cm. Four magnets were glued to the beamsplitter.
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Figure 8.7: A force, proportional to the current in the coil, was applied to the test

mass.

cally aligned on the test mass. The other two horizontally-aligned actuators on the test
mass were used for the fine adjustment of the yaw-alignment. The suspension point of
the coil springs were supported by the leaf springs. The two actuators set on the leaf
springs were used for the fine pitch-alignment. No active feedback servo was used for
the alignment.

Strong permanent magnets were used to damp by eddy currents the large motion
of the intermediate mass due to the resonance of the pendulum [27]. The permanent

magnets were also isolated from external vibrations by a leaf spring.

8.3.1 Actuator

The actuators used for the translational and rotational control of the test masses were
of the coil-and-magnet type (Fig.8.7). Magnets were glued to the masses and the coils
were fixed to the optical table in the vacuum chamber. The coils were driven by a
simple buffer amplifier which had the finite output impedance R. The force applied
on the test masses were proportional to the current in the coil. The internal resistance
and the inductance of the coils of the actuators were measured as being 13.4(2 and
1.53mH for the mirror control, and 7.35¢2 and 0.793mH for the beamsplitter control.
In a voltage-driven coil circuit, a pole is generated by the output impedance and

the inductance as
1

. L
L+ ZWR+7”

(8.1)

where r and L are the internal resistance and the inductance of the coil. However,

the measured frequency of the pole was 50.3kHz for the mirror and 39.2kHz for the
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Figure 8.8: The suspension is well approximated by a two-mode oscillator.

beamsplitter (see AppendixB for the circuits of the drivers), therefore the poles can be

ignored.

8.3.2 Model of the Suspension

The suspension is well approximated by a two-mode oscillator illustrated in Fig. 8.8.
In the figure, y, m;, x;, and k; (i = 1,2) are the displacement of the suspension point,
the masses, the displacements, and the spring constants. Also, w; and ) are the
resonant angular frequency and the Q-factor of the first stage pendulum without the
second stage (ke = 0), and wy and @)y are those of the second stage pendulum with the
intermediate mass fixed (z; = 0). The equations of motions for the masses are written
as

Wi, = l—:ﬁ <w§ + z‘é‘f) (F1 — &) — (w% + z%‘?) (71— g)} (8.2)

9. 9  Wwa\ . - 1 -

—WTy = —(ws+i1— 9 —T1)+ —F 8.3

(3 +i52) -0+ o 53

where F is the force applied on the test mass. Solving theses equations, the transfer
function of the actuator system defined as the transfer function from the force of the

actuator to the position of the test mass is written as follows;

1 wi + aws — w? +iw (w1 /Q1 + awy/Qs)
Hylw) = My (W3 — w? + iwws / Q) (wW? — w? + iww; /Q1) — aw? (Wi + iwws/Qs) (8-4)

where o« = mgy/my is the ratio of the masses. In a similar way, the isolation ratio

defined as the transfer function from the vibration of the suspension point to the
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Figure 8.9: Measurement of the transfer function from the voltage applied to the
actuator to the displacement of the mirror. The motion of the mirror is measured

by using reflection type photo sensor(see Appendix B).

mirror-displacement is calculated as

(WF 4 iww /Q1) (W + twws/Qs)
(W3 — w? 4+ iwws /Q2) (W — wW? + dwwy / Q1) — aw? (W5 + twws/Q2)

Higol(w) = (8.5)

To identify the parameters of the suspension system, the transfer function of the
actuator system was measured (Fig. 8.9) by using a reflection type photo-sensor?.
Figure 8.10 shows the measured and fitted transfer function from the input voltage
of the coil driver to the motion of the test mass. In the calculation of the transfer
function, it is a good approximation that the loss in the wire of the last stage was

negligible in the measurement frequency band. Therefore, in the least-squares fit, the

4see Appendix B for the detail of the reflection type photo sensor)
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8.3. Mirror Suspension

fitting parameters were the frequencies (w; and ws), the quality factor of the first
stage (@1), and the ratio of the masses (mg/my). The least-squares fit resulted in
fi = wi/27 = 1.53Hz, Q1 = 0.59, fo = wy/2m = 1.23Hz, and my/m; = 0.58. From
these parameters, the isolation ratio of the suspension system was calculated. Figure
8.11 shows the calculated plot of the isolation ratio. The Q-value of the final pendulum
(Q2) was not measured, but it is quite reasonable to assume that the Q-value was more
than 1000. There are two curves plotted in the figure, one with Q2 = co and the other
with ()2 = 1000. As the plot shows, there is almost no difference between the two
curves in the frequency range lower than 1kHz, therefore the model with Qs =!oc will
be adopted as the isolation ratio model in the low-frequency range. Note that all of the
mechanical resonances except the pendulum peak are ignored in this model, therefore
the real isolation ratio is believed to have been much poorer than this, especially in

the frequency range higher than 100Hz.

8.3.3 Beamsplitter

The beamsplitter has a polarizing property. Its transmittance and reflectance were
measured with various polarizations of the input beam by using a half-wave plate that
is mounted on a rotating holder (Fig. 8.12). Figure 8.13 shows the measured dependence
of the beamsplitter to the polarization. When the input beam has the S-polarization,
the reflectance is about 51 % and the transmittance about 49 %.

As shown in Fig. 8.6, each side of the beamsplitter coating is covered with the
anti-reflection (AR) coated glass with a thickness of 15 mm. The reflectance of the AR
coat was measured to be 0.5£0.1%. Though the reflectance of the AR was small, the
beams generated by the reflection at the AR coats interfered with the main beams.
Therefore baffles having small apertures were inserted to shut out the spurious paths

(Fig. 8.14).

8.3.4 Mirrors

The optical paths of the arms of the interferometer are folded by using FP cavities.

Each FP cavity comprises a flat front mirror (reflectance 97.5%) and a concave end
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Figure 8.10: The measured and the fitted transfer function from the input voltage

of the coil driver to the motion of the test mass.

98



8.3. Mirror Suspension
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Figure 8.11: Theoretical isolation ratio of the suspension system with the parameters
obtained by the least-squares fit in Fig. 8.10. One plot is for Q2 = oo and the other
is for Q2 = 1000. Since there is almost no difference in the low frequency range, the
model with Q= o0 will be used as the isolation-ratio of the system in the frequency
range lower than 100Hz. Note that the real isolation ratio is believed to have been
much poorer than this plot, especially in the frequency range higher than 100Hz,

because there were many mechanical resonances.

MISER A2

Figure 8.12: The measurement of the polarization characteristic of the beamsplitter.
The polarization of the input beam was rotated by rotating the half-wave plate which

is indicated by \/2 in the figure.
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Figure 8.13: The polarizing property of the beamsplitter. The angle of the plane of
polarization of the input beam is expressed as a relative value to the angle of the
S-polarization plane. Dots are the measured data and the solid lines are the fitted
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Figure 8.14: The beams generated by the AR coats interfered with the main beams
(left). Therefore baffles having small apertures were inserted to shut out the spurious

paths (right).
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8.3. Mirror Suspension

mirror (radius of curvature, 4.5 m; reflectance, 99.9 %). The diameter and the thickness
of the mirrors are 3cm and 5 mm, respectively.

In order to measure the finesse of each FP cavity, a sinusoidal force was applied
to the test-mass to change the length of the cavity with a frequency of 2Hz and
an amplitude of typically a few micro-meters. The transmission of the cavity was
monitored by a photo-diode and stored by a computer with 40 us of sampling interval.
Each large peak of the carrier appeared with two small peaks of the sidebands which
originated from phase modulation at 15 MHz (Fig. 8.15). The intervals of time between
a carrier peak and two sideband peaks represented as dt; and dt5 in Fig. 8.15 correspond
to the phase difference of 47v,,l/c, where v,,, [, and ¢ are the modulation frequency,
the length of the cavity, and the speed of light, respectively. Because of the external
disturbances, the phase change was not always proportional to the time change in fact.
Therefore we selected the data which satisfied the condition that d¢; — dts must be
less than 2.5 per cent of dt; + dty, and assumed that the time was proportional to the
phase in the selected data (a more strict condition would considerably decrease the
number of available data). After the selection of the data, the finesse of the cavity
was calculated by applying least-squares fitting to the transmission of the carrier peak

(Fig. 8.16). The finesse of the cavities under the pressure of less than 10 Pa were

Fi o= 21+11 (8.6)
Fy = 235+19 (8.7)

where the errors are expressed as the square root of the variance (18 and 12 data of
the carrier peaks were used to obtain F; and JF;, respectively). From these values, one
of the parameters which represent the symmetry of the interferometer was calculated

as
Fi— Fo

Fi1+F
The length of the cavity was 2.95m, therefore the cut-off frequency of the cavity was

~(3.1+6.8—3.1) %. (8.8)

calculated as

fo= 1 fCLo ~ 100kHz (8.9)

We observed that the finesse decreased under the atmospheric pressure,

Fatm1 = 206 £ 4
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Figure 8.15: The transmission of one of the Fabry-Perot cavities. A large peak of

the carrier and two small peaks of the sidebands can be observed.

Fatme =219+ 9

The transmittance of the cavity was measured as being 14 % which was in good

agreement with the reflectance of each individual mirror.

8.4 Servo Topology

There were three important servo loops to control the interferometer; the frequency
stabilization loop, the cavity locking loop, and the Michelson fringe control loop. Fig-
ure 8.17 shows the basic idea of the servo loops. If the interferometer is completely
symmetric, the frequency noise of the laser doesn’t appear in the phase difference be-
tween the two beams reflected from the cavities. However, in fact, there was a small
asymmetry, therefore the laser frequency was stabilized using one of the cavities (par-

allel cavity). We call this cavity as the reference cavity. Only the DC part of the error
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Figure 8.16: A closer view of the peak of the carrier. Dots show the measured data

and the solid line shows the fitted curve (the fitted value of the finesse was 225 in

this case).
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Figure 8.17: Basic idea of the servo loops. One of the cavities was used as the phase
reference of the frequency stabilization loop. The other cavity was loosely locked
to the resonance. Thus the recombined beams had the phase proportional to the
difference of the cavity lengths. The fringe of the recombined beams was fed back

to the beamsplitter.
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signal was fed back to the reference mechanically. The other cavity which is denoted
as “free cavity” in Fig.8.17 was loosely locked to the resonance by the mechanical feed-
back. Thus the phase difference between the two reflected beams from the cavities
was proportional to the difference of the length fluctuation of the cavities. This phase
difference was extracted from the recombined beams. For convenience, the homodyne
technique was used. In other words, the operation point of the interferometer was cho-
sen to the steepest slope of the fringe. To lock the Michelson fringe to the operation
point, the error signal was fed back to the position of the beamsplitter.

In this section, the servo loops are studied in detail.

8.4.1 Frequency Stabilization Loop

One of the cavities was used as the reference for the frequency stabilization. Pound-
Drever-Hall (P-D-H) technique [28] was used to extract the deviation of the frequency
(or the cavity length) from the resonance by using the 15 MHz phase modulation. For
this purpose, a small fraction (10 %) of the optical power reflected from the cavity was
sent to a photo-detector. The demodulated signal was used as the error signal, and
was fed back to the laser tightly. Only the DC signal was fed back mechanically to the
end mirror of the cavity by using the magnet-coil actuator; the front mirror was not
controlled at all.

Figure 8.18 shows the characteristic frequencies of the frequency stabilization loop.
The PZT to control the frequency of the laser had a resonance at 366 kHz. To maximize
the bandwidth of the PZT control loop, a notch filter with a Q of 4 was used to eliminate
the large resonance peak.

The equations which governs this servo system are described as

v = Sun— Grpyr ((51/ 4 Z‘)éLl) (8.10)
0
5Ly = SLun — Giomass <6L1 4 f%u) (8.11)

where dv, ovy, 0Ly, 0L1,, Lo, and vy are the fluctuation of the frequency with and
without the stabilization, the fluctuation of the length of the reference with and without

the stabilization, mean length of the cavity, and the center frequency of the laser,
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Figure 8.18: Characteristic frequencies used in the frequency-stabilizing servo.
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respectively. Also, Gi_pzr, and Gi_n.es are the open-loop transfer function of the

PZT- and the mass-control loop, respectively. These equations are solved as

1 + Gf—mass Gf—PZT Vo
ov = ovy, — —0Lq,
1+ Gi—pzr + Gi—mass 1+ Ge—pzr + Gi—mass Lo
Gi_pzr Vo
= OVsap — —0Lq, 8.12
tab 1 + foPZT + fornass LO ! ( )
Gf—mass @ 1 + C"Yf—PZT

oL, =

0L, (8.13)

- Oy
1 + Gi_pzr + Gi—mass Vo 1 4+ Gi—pzr + Gi—mass

where dv,p, represents the reduced frequency-noise level. The phase fluctuation of the

reflected beam from the reference cavity (which is denoted here as W) is written as

Lo 1
U, o 2k {6L D2 } . 8.14
e ! Vo 8 1 + foPZT + fomass ( )

The open-loop transfer function of the whole system is written as Gy_pzt + G¢_mass,
but this is not the frequency stabilization gain itself. Equation 8.12 shows that the

frequency of the laser is reduced by the factor of

14+ Gip 1
1+G . f+ G T (8:.15)
f—PZT f—mass + 1 T Cres
The equivalent noise-stabilization gain Gy, is defined as
Gi_pzr
Gstah = —————. 8.16
tab 1 + fomass ( )

When the mass-loop gain is much larger than unity, Gg.p is approximately equal to
Gi_pzr/Gi_mass- Therefore, to maximize the frequency-stabilization gain, the loop
gain of the mass-loop (Gf_mass) had to be made as small as possible. On the other
hand, since the frequency control range by using PZT was limited, it was impossible
to completely remove the mass-loop because the seismic disturbance was too large to
be compensated by only using frequency control. In such kind of system in general, it
is practically important to make the cross-over frequency, at which the absolute value
of the two loops are equal to each other, as small as possible.

In this experiment, the cross-over frequency of the PZT- and mass-control loop was
designed to be 7Hz. For this purpose, special care had to be taken for the design of

the feedback filter. In the frequency range larger than the first resonance at around
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Figure 8.19: When the feedback transfer function of PZT- and mass-loop have

approximately the opposite phase at the cross-over frequency, a deep notch appears.

1Hz, the phase delay of the transfer function of the pendulum Hpenq is almost 180°.
On the other hand, the response of PZT represented by Hpyr is almost flat at around
several tens kHz and less. Suppose that the open-loop gain of PZT- and mass-loop is

proportional to Hpyzr and Hpenqd:

foPZT = aHpZT (817)
Gt_mass = bHpend. (8.18)

If the cross-over is at several Hz while a and b in the above equations are real, the
open-loop transfer function of the whole system will have a deep notch at the cross-
over frequency, because the phase of Hpyr is close to zero, while the phase of Heng
is almost close to —180° (see Fig. 8.19). This will lead to a serious instability of the
system.

To avoid this instability, a negative phase shift (delay) has to be added to the PZT-
loop, or a positive shift has to be added to the mass-loop. Phase adjustment in the
opposite sign (i.e. positive phase shift to the PZT-loop or delay in mass-loop) never
works because the whole system does not meet the Nyquist criteria of stability in such
a case. Since the mass-loop gain had to be minimized, we added a phase delay to the
PZT-loop by adding two poles and one zero.

Figure 8.20 shows the measured open-loop transfer function of the whole stabiliza-

tion system together with the calculated gain of the PZT-loop, mass-loop and the whole
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loop. The calculated curve for the mass-loop (dashed line in the Figure) was derived
from the transfer function of the pendulum shown in Fig. 8.10 and the poles and zeros
of the servo circuits. Only the DC gain factor was least-squares fitted. The calculated
curve for PZT-loop was least-squares fitted to the measured transfer function of the
whole system (dots in the figure) in the frequency range higher than 1kHz where the
mass-loop was negligible. Again, the only one fitting parameter was the gain factor,
and all of the poles and zeros were taken from those of the electrical circuits. The
mechanical resonance of PZT was ignored here for convenience. The calculated curve
for the whole system is the simple sum of the mass- and the PZT-loop. As the figure
shows, the theory and the experiment agrees quite well. There still was a notch in the
absolute value plot, because there were more poles in this feedback system than in the
simple single pendulum system illustrated in Fig.8.19. However, due to a careful servo
design, the bottom of the notch is at least more than 60dB and didn’t lead to instability.
The bandwidth of this servo system was about 55kHz in this plot and the phase mar-
gin was about 25°. Also a calculated plot of the equivalent frequency-noise reduction
factor Gy_pzr/1 + Gf_mass, Wwhich has been obtained from the fitted transfer functions
Gi_pzr and Gi_ass, is shown in the figure. The equivalent reduction factor reached its
maximum of 76dB at around 440Hz, and crossed the unity-gain line at about 7Hz (the
cross over frequency of the two loops). A narrower mass-loop would have made the
frequency-noise reduction factor larger between several tens Hz and 440Hz. However,
since the frequency stability was well below the other noise levels in the interferometer
(see 9.1), the mass-loop was not optimized further. A wider bandwidth was possible

but was not necessary for our experiment for the same reason.

While the frequency stabilization system reduced the frequency noise, the length
fluctuation of the reference cavity was also corrected by the frequency tuning. This
may cause a doubt that the frequency stabilization made some problem with the length
measurement which was the aim of this experiment. However, in fact this was not a
problem at all. To understand the system behavior, let us consider the ideal case, i.e.,
|G¢_pzr| = 00 and |Gi_pmass| = 0. In this case, the phase fluctuation of the reflected
beam caused by the length fluctuation of the reference cavity is completely compensated

by the laser frequency tuning, i.e. W; = 0. The laser frequency fluctuation is equal to
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Figure 8.20: The open-loop transfer function of the frequency stabilization system.
The dots show the measured transfer function for the whole loop. The dotted line is
the calculated one for the PZ'T-loop, with the AC gain factor least-squares fitted to
the dots. The dashed line shows the calculated transfer function for the pendulum-
loop. For this curve, only the DC gain factor was least-squares fitted. The thick
solid line is the sum of the calculated values for pendulum- and PZT-loop, which
agrees well with the measured values. The thin solid line is the equivalent frequency

noise reduction factor of this servo system.
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—0Lyvy /Ly. The phase fluctuation of the reflected beam from the loosely locked cavity
is always the sum of the length-originated and frequency-originated fluctuations. Since
the frequency-originated one is proportional to —(57}1, W, is proportional to —0Ly1+06Lo.
The purpose of the experiment is to measure the phase difference ¥; — Wy, therefore
one can see that the length signal is not affected at all by the frequency stabilization.

More realistic and quantitative discussions are shown in the following contexts.

8.4.2 Cavity Length Control Loop

The length of the perpendicular cavity was loosely locked to the resonance. The same
signal extraction system used for the frequency stabilization was used to extract the
deviation of the cavity length from the resonance. The demodulated signal was me-
chanically fed back to the end mirror of the cavity. Figure 8.21 shows the characteristic
frequencies used in the servo. As Eq. 8.4 and Fig. 8.10 show, the phase delay of the
pendulum was slightly larger than or nearly equal to 2w, therefore the control filter
was basically designed as a lead-lag filter that had a positive phase shift to compensate
the phase delay. The frequency of poles were 658 Hz and 2 kHz, and that of the zero
was 87 Hz. Also, the coil driver for the actuator had a pole at 1026 Hz. Figure 8.22
shows the measured and the calculated open-loop transfer function of the cavity length
control loop. In the 'calculated’ plot, all of the poles and the zero were determined from
the electronic circuit, and the only free parameter was the DC gain which was obtained
from the least-squares fitting. The typical servo bandwidth of the cavity-locking loop
was between 200 and 400 Hz.

The phase of the reflected light from the perpendicular cavity was corrected by the

control loop as

ov(f) 1
IZ0) 1 -+ GFp(f)

Uy (f) o 2k |6 Lon(f) + Lo (8.19)

where 0Ly, and Gpp denotes the fluctuation of the cavity length without the servo

system and the open-loop transfer function, respectively.

When the frequency stabilization loop was turned on, the error signal of the cavity
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Figure 8.21: Characteristic frequencies used in the cavity locking servo. A filter

having a zero at 87 Hz was used to compensate the phase delay of the double-

pendulum.
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Figure 8.22: Open-Loop transfer function of the cavity locking servo. The dots show
the measured points and the line represents the calculated value. The typical servo
bandwidth of the cavity-locking loop was between 200 and 400 Hz ( 390 Hz in this
plot).
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locking system was calculated by using Eqgs. 8.12 and 8.19 as

TP 5L — Gi_pzr0 L1y — (1 + Gi_mass) Loovn Vo 1
1+ Gi—pzr + Gi—mass 1+ Grp
ST ST 1 5\I;statb 1
- 5Ln—5Ln<1—)—L . 8.20
[ ’ ' 1+ Gstab 0 17 ] 1+ GFP ( )

One can see that the error signal is proportional to the difference of the length of the

cavities if the equivalent frequency stabilization gain (Ggap) is much larger than unity.

8.4.3 Michelson Interferometer Fringe Control

The fringe of the Michelson interferometer was detected by using two DC-photo-
detectors, one to detect the transmission of the interferometer (referred to as PD1
in Fig. 8.1) and one to detect the reflection (PD2 in Fig. 8.1). The transmission de-
tector was placed inside the center chamber, while the reflection detector was put on
the table for the input beam optics. A feedback system was used to keep the fringe
at its operation-point where the optical power is equally divided to the two output
ports. There was an amplifier to provide the electronic gain factor o which is defined
in Eq. 6.31, even though the interferometer itself had a good symmetry. This was
because the reflected beam from the interferometer was reflected three times by the
aluminum plated mirrors after the recombination (see Fig. 8.2), while the transmission
beam was directly detected by the photo-detector. After the correction by the elec-
tronic gain «, the difference of the two detectors were used as the error signal which was
proportional to the deviation of the fringe. The error signal was filtered appropriately
and fed back mechanically to the position of the beamsplitter by using coil-magnet
actuator. The feedback was done tightly and the feedback signal was read-out by mon-
itoring the current in the feedback coils: In tight-lock system one can able to reduce
the noise contribution of the driver circuit, in general (see 9.1). The feedback filter
was the same type as the one used for the cavity-locking, but the control bandwidth
was rather large, typically from 400Hz to 1kHz. Figure 8.23 illustrates the character-
istic frequencies in the feedback servo. There were two large mechanical resonance at

15kHz and 24kHz, which were identified as the resonances of the BS. Though notch
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notch
14.3kHz, Q=10
& 20.6kHz, Q=5.6

difference Filter
1zeros
3poles

'332Hz  15.9kHz
& 23.4kHz

Figure 8.23: The servo system to control the Michelson fringe.

filters were used to suppress these peaks, these resonances still prevented the control
bandwidth from being larger than about 2kHz.

Figure 8.24 is the typical open-loop transfer function of the fringe control loop.
Dots are the measured data and the lines are the fitted curve. In the fitting, the only
one free parameter was the DC gain. All of the poles and zeros were calculated from
the electronics constants, except for the pendulum’s poles which were not important
here because the frequency range of interest was far above the pendulum’s poles. The
fitted curve and the measured data agrees quite well.

With the servo system, the measured signal is written as follows:

N )

X —
err 1 + GFPM

00_ +o0v_
= — 8.21
1+ Grpum ( )

where Grpy is the open-loop transfer function of the Michelson fringe locking servo,

0V_ = WUy — W, is the cavity-originated phase difference, and 66_ is the phase difference
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Figure 8.24: A typical open-loop transfer function of the Michelson-fringe locking
servo. Dots are the measured data and the lines are the fitted curve. In the fitting,
only one free parameter was the DC gain, and the theoretical values were used for

all of the poles and zeros.
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caused by the fluctuation of the length between the beamsplitter and the near mirrors.
When the interferometer was operated in simple Michelson configuration comprising
only the beamsplitter and the near mirrors, 0¥_ was considered to be zero. For the
Fabry-Perot-Michelson configuration, one could ignore the 46_ term, because the finesse
of the cavity was large enough (about 230). In this case, the error signal was calculated
by using Eqgs. 8.19, 8.12, and 8.14, together with Eq. 8.21 as

o | 1+ Gi—pzr + Gi—mass 1+ Grp 1+ Grpum

[~ N (systab 1
6L (1= 242) — 8L — 7L

I (1= 27) T, ](1+GFPM)(1+GFP)
ﬁstab 1

2 ] (1 + Gppm) (1 + Grp)

where 73 (f) and ~§(f) are the asymmetry factors for the motion of the mirror and

= |0L_ (1 —73) = 7a0Ly — ;Lo (8:22)

for the frequency noise which were introduced into the system by the feedback. The

definition of these factors are as follows:

s _ fomaSS(f) - GFP(f)
Pym(f) - 2 [1 + fomass(f) + foPZT<f)] (823)

Gf—mass(f) - GFP(f)

Figure 8.25 shows the typical absolute value of these asymmetry factors, which were

derived from the fitted transfer functions in Figs. 8.22 and 8.20.

8.5 Calibration of the Signal-Extraction and the
Feedback System

To evaluate the displacement sensitivity of the interferometer, it was necessary to
calibrate both the signal-extraction system and the feedback actuators. The calibration
process was done step by step, beginning from the simplest configuration to the more
complex ones. The interferometer was calibrated whenever the displacement sensitivity
spectrum was measured, even though the interferometer was fairly stable and the
voltage-displacement conversion factor obtained by the calibration didn’t significantly

change for a long period.
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Figure 8.25: The asymmetry factor for the motion of the mass (v ) and for the
frequency noise (v;) introduced by the feedback system.
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8.5. Calibration of the Signal-Extraction and the Feedback System

8.5.1 Calibration of the Near Mirror Actuators by Using the

Simple Michelson Configuration

First, the optical paths for the Fabry-Perot cavity were shut by using the gate-valve
at the joint of the tube and the tank. The interferometer was operated in a simple
Michelson configuration. The feedback circuit for the Michelson fringe-locking was
turned off, and the beamsplitter was driven by the slowly changing (typically 3Hz or
smaller) signal with relatively large amplitude (typically several fringes peak-to-peak).
The maximum and the minimum voltage of the error signal, denoted as VI and VA"
were recorded. The absolute values of these were almost the same, VM = /M,

Then the feedback circuit was turned on to lock the fringe to its operation point. In

this condition, the error signal was approximated by

o = VML gin 2k61_ (8.25)
~ VM s (8.26)

where k£ and §l_ are the wave number of the laser and the fluctuation of the Michel-
son path difference. Thus the displacement-to-voltage conversion ratio of the simple

Michelson interferometer was

d MI
%L — oYMk (8.27)

The open-loop transfer function of the fringe locking servo was measured in this config-
uration. A small sinusoidal calibration signal with the frequency of 3kHz was added to
one of the front mirrors®, and the amplitude of the error signal v} at the calibration
frequency was measured by using a spectrum analyzer (Fig. 8.26). From this value, we

could know the displacement amplitude of the calibration signal by using the equation

MI

Uca
5'750&1 == 2VMII k) |1 + GMI|f:3kHZ . (828)

max

Both of the front mirrors were calibrated by the same method.

5The calibration frequency, 3kHz, was carefully chosen to avoid any mechanical resonances while

minimizing the effect of the mechanical feedback.
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calibration
3kHz

difference

Figure 8.26: For the calibration of the interferometer, the simple Michelson config-
uration was used at first. A small calibration voltage was used to drive one of the

front mirrors at 3kHz.

8.5.2 Calibration of the Displacement Sensitivity of the Single
Fabry-Perot Cavity

After the calibration of the near-mirror actuators, the optical paths of the FPs were
opened. The frequency stabilization loop and FP loose locking loop were closed in this
order, while the Michelson locking loop was opened®. The open-loop transfer function
of the cavity-locking servo was measured. The same calibration signal as used in the

simple Michelson configuration was applied to the near mirror of the loosely-locked

FP
cal

cavity (Fig. 8.27). The Fabry-Perot locking error signal v, at 3kHz was measured by
using servo analyzer. The amplitude of the mirror motion caused by the calibration
signal was thought to be the same as that in the simple Michelson configuration.
Therefore, by comparing the calibration displacement dx., with the error signal, the

displacement-to-voltage conversion factor for the Fabry-Perot signal extraction system

6The frequency stabilization was not essential for the calibration purpose. Nevertheless it was

useful to maximize the SNR of the measurement by suppressing the frequency noise.
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Figure 8.27: The same calibration voltage as used in the simple Michelson config-

uration was used for the calibration of the single Fabry-Perot cavity. The typical

value for this was 101%volt/m.

was obtained:

dvew _ Vcal

where 0L and Gpp is the length of the cavity and the open-loop transfer function of
the loose-locking servo of the cavity. Both of the cavities were calibrated by the same

procedure.

8.5.3 Calibration of the Displacement Sensitivity of the Fabry-

Perot-Michelson Interferometer

The frequency stabilization loop and FP loose locking loop were closed in this order,
while the Michelson locking loop was opened. Just in the same way as the simple
Michelson configuration, the maximum and the minimum voltage of the error signal,
Vimax and V@ | were measured while BS was driven with a large amplitude”. After the

Michelson fringe locking servo was closed, the open-loop transfer function of the three

"The measurement of VX and Vil wasn’t directly related with the calibration, but by using
this value we could check the consistency of the fringe voltage with the reflectance of the cavity and

the open-loop transfer function.
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8. 3-meter Fabry-Perot-Michelson Interferometer

loops (frequency control, FP loose lock, and Michelson lock) were measured. Because
the reflectance of the FP was smaller than that of the front mirror, the open-loop
transfer function of the Michelson fringe control loop was smaller in this configuration
than in the simple Michelson configuration. The same calibration voltage as used in

simple Michelson configuration was applied to one of the front mirrors (Fig. 8.28).

FPM

el at the calibration frequency was

The Michelson error signal voltage denoted as v
measured by using the spectrum analyzer (Advantest, R9211). From this value, one

could obtain the displacement-to-voltage conversion factor as expressed in the following

equation:
Qen™ _ Ve ) Gk 8.30
i Gre |(1+ Grem) (1 + Grp)| p_sin, (8.30)
where (51}55 M 6L_, Grpm, and Gpp are the error signal of the Michelson fringe of FPM,

the differential fluctuation of the length of the arm cavities, the open-loop transfer func-
tion of the Michelson fringe locking loop of FPM, and the open-loop transfer function
of loose FP locking loop. For our experiment, this factor was typically 101V /m. In
the above equation the frequency stabilization loop was ignored, because the gain of
the PZT-control was much larger than that of the mass-control in the frequency stabi-
lization loop at the calibration frequency, thus there was almost no phase modification

by this loop.
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Figure 8.28: In the full FPM configuration, the same calibration voltage as used

in the simple Michelson configuration was used to drive one of the front mirrors at
3kHz. The amplitude of the error signal of the Michelson fringe of the FPM was
compared with that of the simple Michelson configuration. Taking into account the
effects of the open-loop transfer function, the displacement-to-voltage factor of the

interferometer was obtained. The typical value for this was 1010V /m.
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9. Displacement Sensitivity and the

Noise Analysis

In this chapter, the noise level in the displacement sensitivity of the interferometer
is studied. The measured noise level and the identification of the noise sources are

shown.

9.1 Displacement Sensitivity of the Interferometer

To evaluate the displacement sensitivity of the Fabry-Perot-Michelson interferometer,
the noise-spectrum of the feedback signal of the Michelson fringe locking servo was
measured as the current in the feedback actuator by using the spectrum analyzer, while
the interferometer was in operation. All of the calibration measurement described in
the preceding section were done. The feedback signal vfi™ was measured using the
spectrum analyzer. Combining this signal with Eq.8.22, putting zero to all of the

terms except for the differential fluctuation dL_, the displacement spectrum of 6L _

was obtained as

§T(f) = (dM) 1+ Gron ()] [1+ Gre()] e 0.1)
dL- |Gl - [1 =]

where Gy is the transfer function of the feedback filter from the error point to the
feedback point of the Michelson fringe locking servo. In the calculation above, the
measured value of the transfer functions were used whenever it was possible. “Fit-
ted” transfer functions were used only in the frequency range where it was difficult to
measure the correct transfer functions (i.e. below 10Hz). For the asymmetry factor
originating from the servo system represented by 7%, the calculated value shown in

Fig.8.25 was used, since it was impossible to directly measure it.
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Figure 9.1: The displacement noise spectrum for 6L_ of the 3m Fabry-Perot-

Michelson interferometer.

Figure 9.1 shows the obtained displacement noise for 0 L_. There are three major
noise sources in 3-meter interferometer; the seismic-induced displacement of the mirror,
frequency noise of the laser, and the photon shot noise. There are also many noise
sources related to the signal extraction and control system. All of these noise sources

are described in detail in the following sections.

9.2 Seismic-Induced Noise

The mirrors of the interferometer are driven by the seismic motion, even though they

are isolated from such disturbances by suspension system. The seismic motion of the
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9.2. Seismic-Induced Noise

campus of the University of Tokyo approximately follows the “standard” formula [29]

g(f) = <1sz> x 1077 m/vHz (9.2)

in the frequency range between 107! and 1kHz [30], where ¢ is the power-spectral
density of the seismic motion. The seismic-induced displacement of the mirrors is

related to the seismic motion as
fseism = isolg (93)

where Hiy, is the isolation ratio of the suspension system. Putting the theoretical values
of Eq.8.5 and Eq. 9.2 into the above equation, we can obtain the expected amplitude of
the seismic-induced noise for one mirror. If we assume that the motion of the mirrors
were independent from each other, the seismic-induced noise of the interferometer was
calculated to be factor two larger than Tgegm.

On the other hand, the seismic-induced noise was able to evaluate by measuring

the displacement noise spectra of the interferometer in two configurations.

Noise spectra of a simple Michelson interferometer.

In the simple Michelson interferometer comprising BS and the two front mirrors, the

MI

o (f) of the fringe-locking servo was measured by using spectrum ana-

error signal v
lyzer. The error signal was corrected by the open-loop transfer function of the fringe
locking servo Gy1. The displacement-to-voltage conversion factor for a simple Michel-
son configuration given by Eq. 8.27 was used to obtain the displacement noise of the

simple Michelson interferometer as

50 = 20 (%42) I+ Gunl). 04)

Noise spectrum of the Fabry-Perot locking system.

When the frequency control loop was turned on, the error signal of the perpendicular
cavity was written by Eq. 8.20. Assuming that the seismic fluctuation for the two

cavities were of the same amplitude and were independent from each other, one can
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9. Displacement Sensitivity and the Noise Analysis

calculate the seismically-induced noise for the differential motion using Eq. 8.20:

2
L+ G (NI

All of the above mentioned three power-spectra were plotted together with the

OL(f) = 5 (f) (ddL) \1+GFP<f>|¢ T (9.5)

displacement noise of Fabry-Perot-Michelson interferometer in Fig. 9.2. The FPM
signal agreed well with the FP locking signal from 10 to several hundreds hertz. For
the simple Michelson configuration, it was possible to evaluate the seismic-induced
noise level only below 100 Hz because the sensitivity was poor, but the spectrum also
agreed with the FPM signal from 10 to several tens hertz. From the fact that the
signals obtained by the different phase sensing system agreed well with each other, the
noise of the FPM interferometer between ten and hundred hertz range was identified as
seismic-induced noise. In this range, the spectrum didn’t agree with the “theoretical”
noise, because of the resonances of the suspension (mainly vertical) which appears as
the large peaks at around 18 and 28 Hz in Fig. 9.2%.

On the other hand, the “theoretical”, the MI, and the FP signals agreed well below
10Hz, while FPM signal was much larger. However, this does not mean that the FPM
was much noisier than MI or FP in the lower frequency region. This was because the
length between the beamsplitter and the near mirrors were ignored when the FPM was
calculated. In calculating FEqs. 8.22 and 9.1, the 6_ term in Eq. 8.21 was ignored on the
assumption that the phase change caused by cavity-length fluctuation was much larger
than that by the Michelson path fluctuation. Since the phase change caused by the
cavity was corrected by the FP locking servo, this assumption is not true if the control
gain of the FP locking loop was larger than or comparable to the finesse of the cavity.
Though the FP loose-locking servo was designed to be as low-gain as possible, it was
not possible to ignore this effect in the low frequency range. Figure 9.3 shows the raw
feedback voltage of the beamsplitter in MI and FPM configuration in the low frequency
range. The plot shows that the spectrum for the two configuration were at the same
level. Because the fringe control gain was much larger than unity, the same voltage
in this plot means that the phase fluctuation which had to be compensated by the

beamsplitter control for MI and FPM configuration were at the same level. Therefore

IThese peaks were difficult to measure with photo-sensor measurement (Fig. 8.10).
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Figure 9.2: Displacement noise spectra of the FPM (thick solid line), the MI (thin
dotted), and the FP (thin solid) configuration. The thin dashed line is the “the-
oretical” line calculated from the seismic vibration formula and the ideal isolation
ratio of the system. From the fact that the signals obtained by the different phase
sensing system agreed well with each other, the noise of the FPM interferometer
between 10 and 100 hertz range was identified as seismic-induced noise. There were
resonances of the suspension system (mainly vertical) which appears as the large
peaks at around 18 and 28 Hz in this plot. (The difference between the FPM signal

and others in the frequency range below 10Hz will be discussed in the next plot.)
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Figure 9.3: Raw feedback voltage of the Michelson fringe locking servo, i.e. the volt-
age applied to the actuator of the beamsplitter, for MI (thin line) and FPM (thick)
configuration. The same voltage in this plot means that the phase fluctuation which
had to be compensated by the beamsplitter control for MI and FPM configuration
were at the same level. This strongly indicates that the FPM signal was dominated

by the Michelson path fluctuation (§l_) in the frequency range lower than 10Hz.

one can conclude that the spectrum of the FPM configuration was actually dominated
by the fluctuation of the Michelson path in the frequency range lower than 10Hz; the
vibration of the mirrors of FPM was at the same level as MI, FP, and “theoretical”
level, but the finite servo gain of the FP loose locking system suppressed the cavity-
originated signal, which added the relative weight to the Michelson-originated signal.
This was not a problem at all in this experiment because the frequency where this

effect had to be counted was rather low.

To summarize the above discussions, the noise spectrum of the FPM interferometer
was dominated by seismic-induced motion of the mirrors in the frequency range below
100 Hz. Because of the finite control gain of the FP loose locking system, the seismic-
induced fluctuation of the Michelson path length (6/_) dominated the spectrum, but

this was in the lowest frequency band of the measurement (i.e. below 10Hz).
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9.3 Frequency Noise and Common-Mode-Rejection

If the interferometer was completely symmetric, the frequency fluctuation of the laser
would not be the noise source to the differential phase measurement. However, since
there were optical asymmetry as well as the servo asymmetry, the frequency noise ap-
peared in the displacement spectrum of the FPM interferometer, in the high frequency

range. Here, the frequency noise and the CMRR of the interferometer are studied.

9.3.1 Frequency Noise Spectra Obtained by Using Two Cav-
ities
Frequency noise of the laser was evaluated from the error signal of the frequency sta-
bilization servo as well as that of the FP loose locking servo. The error signals were
measured with and without the frequency stabilization, thus the noise corresponding
to the free-running and frequency-stabilized laser were obtained. First, the reference
cavity was locked to the resonance loosely by only using mechanical feedback using the
same feedback filter as used in the FP loose locking servo. The spectrum was corrected

by the measured open-loop transfer function to give the frequency fluctuation of the

free-running laser as

-~ v
5Vfree(f) =1 free dL

() (et
Lo

-1
) 11+ Grpi(f)] (9.6)
With this free-running noise and the measured open-loop transfer function of the fre-

quency stabilizing loop, the expected error signal of the frequency-stabilized system

would be calculated as

— cale - S;free(f)
5Verrfstab(f> - |]_ + Gf_mass(f) + Gf—PZT(f)| .

When the frequency stabilization loop was turned on, the error signal of the stabiliza-

(9.7)

tion loop as well as that of the free cavity was measured:

< FP1 Ugrljis al (f) dvglrj !
6Verr—stab<f) = I Ifob dar (98)
< FP2 Ugrl;)gs a f dvgf -
5Verrfstab(f) = Ijob( ) ( dr ) |1 + GFP(f)| (99)
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Figure 9.4 shows the typical power-spectrum of the above mentioned four signals.

) and the measured (5!

v —stab) €LTOI signal for

One can see that the expected (v,
the stabilization loop agreed well with each other, which indicates that the servo loop
worked quite correctly. It is apparent that the measured signals were dominated by
the seismic-induced noise in the lower frequency range (see the previous section about
the seismic-induced noise). For the free-running laser, the data in the frequency range
higher than 100Hz was least-squares fitted by the power-law to give the model of the

frequency noise below 100Hz:

—~model 1Hz\ "%
Voo (f) =2.21 x 10% x (f) : (9.10)

There were also the shot-noise of the P-D-H sensing system for the two cavities,

which will be calculated in the followings.

9.3.2 Shot Noise Level of the Pound-Drever-Hall Sensing Sys-

tem

Even though one took the effect of the seismic-induced noise into account, there still
remained the difference between the measured error signal of the stabilization loop
(6vEPL 1) and that of the loosely locked cavity (dvEF2...) in the frequency range
between 200 and 2kHz. In the loosely-locked cavity’s spectrum, which is the measure
of the “real” frequency stability, there was a noise floor originating from the shot noise
of P-D-H sensing system. To confirm this, the shot noise level of the P-D-H system
was measured as follows.

As mentioned earlier in Sec. 8.4, a small fraction of the reflected beams from the
cavities were picked off and demodulated at 15 MHz to give the P-D-H error signal.
The noise level of the demodulation system was the sum of the shot noise of the real
photo-current and the electronics noise. The electronics noise of the demodulating

system was expressed as the corresponding photo-current in the photo diode. The

noise level of the demodulated signal was then represented by

/17dem0dn = 26 (I + IDn)Requivn (n = 1, 2) (911)
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Figure 9.4: The frequency noise of the laser with and without the frequency sta-
bilization of the typical servo setting. The thin solid line is the noise level of the
free-running laser. The fitted line for the free-running laser is also shown. The the
thin dotted and the thick broken lines are the calculated and the measured error
signal of the closed stabilization loop. The thick solid line shows the frequency noise
level of the stabilized laser measured by using loosely-locked cavity as another ref-
erence. Below 100Hz, frequency noise was masked by the seismic-induced vibration
of the mirrors. The dot-dashed line is the shot-noise level of the P-D-H systems for

the two cavities.
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Figure 9.5: Calibration of the shot-noise level, the dark current, and the equivalent

gain of the RF P-D-H circuits. Incoherent light from the bulb was used as the
standard of the shot-noise level. The DC photo-current in the photodiode and the

spectrum of the demodulated signal were measured with several input power levels.

where Vgemodn, I, Ipn, and Requivn are the demodulated signal, the DC photo-current in
the diode, the equivalent photo-current (the dark current) of the electronics, and the
equivalent gain of the system with the dimension of the resistance,

The shot noise level corresponding to the demodulated signals are written by

—~ _ vo [dvEPm\
5V5hotn(]Dc) = Udemodnf(; (d[/> (n = 1, 2) (912)

The dark current and the equivalent gain of both of the P-D-H circuits were cali-
brated by using incoherent light from an electric bulb (Fig. 9.5). The DC current in
the photodiode and the power-spectral density of the demodulated signal were mea-
sured with various input power. Since it is reasonable to assume that the intensity
noise of the incoherent source from the bulb reached the shot-noise level at 15MHz,
this measurement can be thought as a calibration of the shot-noise level. Figure 9.6
shows the measured data. The data were least-squares fitted to give the dark current

and the equivalent gain of the circuits as

(Ipt, Requivi) = (91.5pA,16.1kQ) (9.13)
(I, Requiva) = (1691A, 22.4k0). (9.14)

The data showed the saturation of the RF gain in Ipc > 2 mA range, so the data in
this range were not used for the fitting.

Combining these values with Eqgs. 9.11 and 9.12 and the DC current in the photo-
diodes in the operation (0.48 mA for FP1 and 0.38 mA for FP2), the shot-noise level
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Figure 9.6: Measured and fitted plot of the shot-noise level of the P-D-H circuits for
both of the arms. The data showed the saturation of the RF gain in Ipc > 2 mA

range, so the data in this range were not used for the fitting.
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for the P-D-H circuits were obtained as

SVsnot1 = 6.9mHz/vHz (9.15)
Vot = 11mHz/vVHz. (9.16)

The two shot-noise levels are uncorrelated, so the root of the square sum of these levels
(13mHz/+/Hz) should have appeared in the measured spectrum of the loosely locked
cavity, though this is not the shot-noise level of the real frequency noise of the stabilized
laser. From Fig. 9.4 one can see that the floor noise of the loosely locked cavity agreed

with the shot-noise level.

9.3.3 Estimation of the Frequency Noise of the Stabilized Laser

It is a good assumption that the spectrum of the error signal of the loosely-locked cavity
with the frequency stabilization agreed well with the real frequency noise of the laser
at several kilohertz and above. At 100Hz and below, the seismic-induced noise masked
the frequency noise. Also, in the frequency range between several hundred and several
kilohertz, there was the shot-noise of the P-D-H sensing system of FP2 (dvgnet2) which
had nothing to do with the stabilization system. Though it was impossible to directly
measure only the frequency noise separately from the displacement of the mirrors and
the shot noise of the sensing system in the low frequency range, one could calculate

the frequency noise of the stabilized laser:

2

g;n(f)

‘(%stab(f)‘ = $ ‘(%Sh"tl 1+ Gstab

+ ‘

(9.17)

where 57/11( f) is the frequency noise of the free running laser. Therefore the following

values are used as the frequency noise of the stabilized laser in this paper:

e The calculated spectrum by using the combination of Eq. 9.17 and the model

spectrum of the free-running laser for f < 100Hz.

e The calculated spectrum by using the combination of Eq. 9.17 and the measured

spectrum of the free-running laser between 100 and 5 kHz.
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Figure 9.7: Estimated frequency noise of the stabilized laser. In the frequency
range lower than 100 Hz, the spectrum was obtained by using the model spectrum
of the free-running laser and the stabilization gain. Between 100 and 5 kHz, it
was calculated from the measured spectrum of the free-running laser, the shot-noise
level, and the stabilization gain. At 5 kHz and above, the measured spectrum of
the stabilized laser was used. The broken line shows the shot-noise level of the

stabilizing system.

e The measured error spectrum of the loosely-locked cavity corrected by the open-

loop transfer function of the FP locking servo for 5 kHz and above.

Figure 9.7 shows the estimated frequency noise level of the stabilized laser.

9.3.4 Measurement of the Optical Common-Mode-Rejection

After the measurement of the frequency noise of the laser, the optical CMRR of the
FPM interferometer was measured by intentionally applying the frequency noise to the
laser. Figure 9.8 shows the setup of the measurement. The laser frequency stabilization
was not used in this measurement, and both of the cavities were loosely locked to the
resonance by means of mechanical feedback. The Michelson path was also locked,

therefore the whole configuration was the FPM interferometer without the frequency
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Figure 9.8: Measurement of the CMRR of the FPM interferometer. A sinusoidal
signal with the frequency fsa was applied to the tuning PZT of the laser. Both of
the cavities were locked loosely to the resonance without the frequency stabilization.
The transfer function from the error of the FP locking to that of the FPM fringe

locking was measured by using a spectrum analyzer.

stabilization. A sinusoidal voltage was applied to the tuning PZT of the laser to
generate the intentional frequency fluctuation. The transfer function from the error
signal of one of the FPs to that of the FPM fringe locking was measured by using a
spectrum analyzer. In this measurement, the error signals were approximated by

_ Sv(f) (duER! 1
FP1 — err 1
Verr (f) 0 Yo ( dL 1 T GFpl (9 8)

~FPM ‘%(ﬁ dvi ™ 1 1+ Yopt (f)
Uerr (f) = LO —
2 dL_ 1+ Grp1 1+ Grp2 ) 1+ Grpum

(9.19)

thus the measured transfer function is represented by

_ ()
B = )
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dyFPM duFPL -1 14 Gppy 1
_ err err 1 — 1 o — (9.20
( dL_ ) ( dL ) { 1+GFP2[ +7pt(f)]}1—i-GFPl\/1 ( )

where H is the measured transfer function and v,y is the optical CMRR. One can see

that the measured transfer function can be simply translated to the CMRR when all of
the control gains Ggpy, Grpi, and Ggps are much smaller than unity (i.e. f > 10kHz)

as

douFPM\ 1 7 q,FPL
) = 1O (=) (%) (9.21)

The above equation is also true if the open-loop transfer function of the servo for
the two cavities were identical. Figure 9.9 shows the measured optical CMRR of the
interferometer. The optical CMRR had no significant frequency dependence, which
agreed with the fact that the cut-off frequencies of the cavities were about 100 kHz.
Though there seemed to be the frequency dependence in f < 10 kHz range, this was
because of the difference between Grp; and Gprps. Even though it was theoretically
possible to correct the measured transfer function to CMRR, it was very difficult to
do the correction in fact, because the small CMRR value had to be calculated as the
difference of the large numbers which was the same order of or much larger than CMRR

itself in this frequency range. The value of CMRR was measured as

Yoot = 2 ~ 3 x 1073, 9.22
P

The optical CMRR of 1 % level was almost always realizable without any difficulties.
However, the best value on the order of 0.1 % was possible only when the mirrors of
the interferometer were aligned very carefully?. Though the dependence of the CMRR
on alignment was not measured quantitatively, we have observed the degradation of
the CMRR when the mirrors were poorly aligned (Fig. 9.10). Also we have observed
that the CMR was degraded after several hours of operation, which could be recovered
by aligning the mirrors again.

The measurement of the optical parameters such as the finesse and the reflection

coefficient of the cavities were not as accurate as 0.1 % level, therefore it was difficult

2The mirrors were aligned to maximize the contrast of the FPM interferometer.
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Figure 9.9: The optical CMRR of the FPM interferometer was measured to be
2 ~ 3 x 1073, One can see that there was no significant frequency dependence in
f > 10 kHz range. The frequency dependence in the lower frequency range came
from the asymmetry of the cavity-locking servos when the measurement was done,

and this had nothing to do with the optical CMRR.
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Figure 9.10: The displacement sensitivity of the FPM interferometer. When the
interferometer was aligned carefully (solid line), the CMRR of 10~3 order was
obtained. With a small misalignment, the CMRR was degraded and thus the

frequency-noise contribution in the spectrum increased (broken line).
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9.4. Shot Noise of the Michelson Fringe Detection System

to conclude if the best value was limited by the asymmetries in the optics. However,
it is quite reasonable to assume that the asymmetries in the optics were within 1%,
considering the fact that the CMRR of 1 % was relatively easy to realize. From Egs. 7.6
and 7.15, there still remains the possibility that the asymmetries in the optics was
compensated by the alignment. This possibility was not studied further, because the
alignment sensors that directly measure the coupling of the cavities to the fields would

have been required for such purpose.

9.3.5 Total CMRR and the Projection of the Frequency Noise

on the Displacement Sensitivity

As shown in Eq. 8.22, not only the optical CMRR but the control asymmetry factor
also determined the interferometer’s response to the frequency noise in this experiment.
Therefore both of these two factors have to be taken into account to project the fre-

quency noise of the laser onto the displacement sensitivity of the FPM interferometer:

v(£) = Vol + ()P (9.23)

where v represents the total CMRR of the interferometer. By combining Eqs. 8.22
and 9.23, the frequency noise of the stabilized laser was projected on the displacement

sensitivity of the FPM,

v Vel R Svaan(f)
PDET I

In Fig. 9.11, both of the optical CMRR and the servo symmetry are projected on the

(9.24)

displacement sensitivity. Due to the servo asymmetry, the frequency noise level was

the dominant noise source between 400 and 1 kHz.

9.4 Shot Noise of the Michelson Fringe Detection
System

The Michelson fringe detection system also had its own shot-noise level. The analysis of

this was rather simple and straightforward compared with that of the P-D-H system,
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Figure 9.11: The projection of the frequency noise of the stabilized laser on the
displacement sensitivity of the FPM interferometer. The solid line shows the FPM
sensitivity, the dashed line is the projection of the frequency noise that coupled

to the optical CMRR, and the dotted line is the projection of the frequency noise

coupled to the asymmetry factor of the servo system.
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9.5. Other Noise Sources

because there was no RF circuits used in the system. During the operation of the
interferometer, the DC voltage of the photo detectors were measured, from which the
current in the photodiodes were calculated. The shot-noise voltage of the detectors are
written by

EDn — 261’%}" xR (n=12) (9.25)

where vpc, is the DC voltage of the photo-detector for PDn (n = 1,2) and R is the

feedback resistance of the detector circuit (see Fig. B.7 for the circuit of the detectors).
Though the shot-noise voltage itself should have flat spectrum, it had to be corrected
by the cavity pole (100kHz) in the higher frequency range. Also, since the shot noise in
the DC detectors were added to the system after the recombination of the beam, it had
to be corrected by the servo asymmetry factor and the open-loop transfer function of
the FP locking servo, but not by that of the Michelson fringe servo. Thus the shot-noise

level of the displacement sensitivity was obtained from the following equation:

L+ Grp(N][L+if]f]
1 —75(f)

where « is the electronic gain factor (Eq. 6.31) and f. is the cut-off frequency of the

—~—shot dUFPM

ST () = ( ) S a2

(9.26)

cavities. Putting the measured values into the above equation, the shot-noise level of

the displacement sensitivity was calculated as

shot

ST (F) = 6.6 x 1018 v/ x |t Grr(DI L+ if/f

=) (6-27)

)

which is plotted in Figure 9.12.

9.5 Other Noise Sources

In this section, other two noise sources (i.e. the electronics noise and the intensity

noise) and their levels which are plotted in Fig. 9.13 are described briefly.

9.5.1 Electronics Noise

Among the many electronics circuits, the largest noise source was the coil driver for the

actuator of the FP loose-locking servo. The end mirror of the FP cavity was driven by
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Figure 9.12: Shot-noise level of the Michelson fringe detection system (broken line)
and the displacement noise level of the FPM interferometer (solid). The floor level
was 6.6 x 10718 m/v/Hz. The spectrum was corrected by the cavity pole (100 kHz)
and the feedback servo of the FP locking.
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Figure 9.13: The equivalent displacement noise level of the electronics noise (thin
solid line) and the intensity noise of the input light (broken line). The thick solid

line is the displacement noise level of the FPM interferometer.
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Figure 9.14: Transfer function from the feedback current to the displacement of the
mirror. This plot is the calculated value which was obtained from the open-loop
transfer function of the FP locking servo, the transfer function of the control circuit
from the error signal to the feedback signal, the impedance of the current read-out

resistance, and the displacement-to-voltage conversion factor of the FP.

the electronics noise in the feedback circuit, thus the phase fluctuation was generated
in the reflected beam from the cavity. The input of the driver was grounded and the
voltage noise of the feedback signal represented by wvg,, was measured. During the
measurement, the output of the driver was connected to the coil-and magnet just in
the same way as in the operation of the interferometer®. On the other hand, the open-
loop transfer function of the FP locking servo (Ggp) and the transfer function from
the error signal to the feedback voltage which is represented by H,. were measured.
The ratio of Ggp to Hge was used as the transfer function from the feedback voltage
to the error signal, which is shown in Fig. 9.14. The plot showed that the actuator’s

transfer function agreed well with the f~2 formula:

1Hz

1.8 x 1072 x (
/

)2 m/A. (9.28)

The equivalent displacement noise by the electronics of the coil driver was then

written by

G doFP\ 7
drv __ P err
SLYY = Hcircvd”< o ) (9.29)

30therwise the load-impedance to the driver would have changed the noise property.
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As Fig. 9.13 shows, though the driver noise was not the dominant source, it was

close to the noise level of the FPM interferometer between 100 and 1kHz.

9.5.2 Intensity Noise

In general, though the interferometer is tightly locked to its operation point by servo
systems, there still remains some residual deviation in the phase-extraction point of
the signal. The intensity noise of the laser couples to this residual deviation and is
converted to the displacement signal:

o1
SLL = (6L )puis . (9.30)

where L', (0L_) g5, and 01/ I, are the equivalent displacement noise originating from
the intensity noise, the RMS residual fluctuation, and the relative intensity noise of
the laser, respectively. To evaluate this noise level, the intensity noise of the input
light and the residual fluctuation of the Michelson fringe were measured (Fig. 9.15).
Because the input optics were in the open air, the intensity noise of the input light
was thought to be larger than the intensity noise of the laser itself. Especially, the
spectrum was not stationary in the lower frequency range, which indicates that the
noise came from the dust or the air flow. On the other hand, the residual fluctuation
of the Michelson fringe was typically several millivolts, which corresponded to 10~ m
of the displacement. Because of this small residual fluctuation, the intensity noise was
not a problem at all in this experiment: Multiplying the intensity noise in Fig. 9.15 by
10—13m, the displacement noise level of 10~'® m/v/Hz was obtained at 100 Hz.

9.6 Summary of the Noise Analysis

We have identified noise sources which limited the strain sensitivity in almost all of
the frequency range of our interest. Figure 9.16 shows the measured displacement
noise of the FPM interferometer, together with the noise level of the various sources.
The displacement noise level of the interferometer reached 2 x 10*17m/ VHz at 1kHz
and 1 x 10~'"m/+/Hz at the noise floor between 2kHz and 10kHz. The floor noise

was identified as the shot noise of the light in the Michelson fringe detection system.
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Figure 9.15: Measured relative intensity noise of the input light to the interferom-
eter. Since the input optics were placed in the open air, this plot is thought to be
larger than the intensity noise of the laser itself. Especially, the spectrum was not
stationary in the lower frequency range, which indicates that the noise came from

the dust or the air flow.
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Figure 9.16: Displacement noise level of the 3-m FPM interferometer, plotted to-
gether with the noise sources. 0v7,, the frequency noise coupled to the optical
CMRR (2 ~ 3 x 1073); 6v7s, the frequency noise coupled to the servo asymmetry;
drv, the electronic noise of the driver of the coil-magnet actuator used for the FP
control; shot, the shot noise of the Michelson fringe detection; seismic, the seismic-
induced vibration of the mirrors. The noise floor between 2kHz and 10kHz was

dominated by the shot-noise level, which was 6.6 x 10~¥m/v/Hz.
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Below 100Hz, the seismic noise was dominant. At 20kHz and above, the spectrum
was dominated by the the frequency noise of the laser. The frequency stabilization
and the good optical CMRR of 2 ~ 3 x 107® suppressed the frequency noise level
smaller than the shot-noise limited sensitivity of the Michelson fringe detection in the
kilohertz range. The servo asymmetry factor degraded the CMRR below 1 kHz, thus
the frequency noise was also the dominant noise source between 400 and 1kHz. This
was because of the asymmetric design of the servo system used in this experiment.
Though the noise of the driver circuit of the actuators was the dominant source, it was
close to the noise level of the FPM interferometer between 100 Hz and 1 kHz.
Though the dependence of CMRR on the alignment was not measured quantita-

tively, the dependence itself was observed during the operation of the interferometer.
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10. Discussions

10.1 Asymmetry of the Optics

In this experiment, the CMRR on the order of 1072 was obtained. It was difficult to
conclude if this was limited by the asymmetries in the optics, because the measurement
of the optical parameters such as the finesse and the reflection coefficients of the cavities
were not as accurate as 0.1 % level. However, from the measured finesse (Eq. 8.8), it is
quite reasonable to assume that the asymmetries in the optics were about or within 1 %.
The CMRR of 1% was relatively easy to realize, which also supports this assumption.
The finesse of each of the cavity was about 230, which should be on the same order as,
or smaller than, the finesse of the cavities used in the full-scale interferometers. Also
the optics for the full-scale detectors will have higher optical quality than those used in
this experiment. Thus it seems that one can expect to have the optical CMRR around
1% in full-scale interferometer. On the other hand, further experimental study for the
large optics for the full-scale detectors has to be made, since the results were obtained
only in the small optics with the beam size only less than 1 mm; any non-uniformity

in the mirror coating for large area would change the result in a large detector.

10.2 Geometrical Asymmetry

For the geometrical asymmetries due to the misalignment of the mirrors to the laser
beam, we could not make the quantitative measurement. However, on the assumption
that the modal analysis presented in this paper is correct, the requirement for the
alignment of the mirrors which would be put by the degradation of CMRR will not be

as severe as the one put by the power-recycling requirements.
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For example, if we require that the CMRR limited by the geometrical asymme-
tries should be 1072, the same order as the optical CMRR, the requirements for the

misalignment parameters are:

a 2
() < 1072 (10.1)
Wo

2
(O“”) < 1072, (10.2)
Qo

where wq, g, a,, and «, are the waist size of the cavity, the divergence angle, and
the misalignment parameters corresponding to the lateral displacement and the angu-
lar rotation of the modes. For example, in the TAMA300 interferometer, the beam
parameters are wy =8.5mm and ap=40 ym. From Eqs. 10.1 and 10.2, the allowable
misalignment angle of each of the mirrors is on the order of several prad. This require-
ment is not as severe as the one coming from the power-recycling factor requirements
[40,47], thus an interferometer with the automatic alignment control system will realize
this requirement.

However, the analyses presented here are the simplest ones. A more detailed anal-
yses are required to discuss the geometrical asymmetries such as the mismatching and

the roughness of the surface of the mirrors.

10.3 Servo Asymmetry

In the full-scale detectors, any asymmetries in the servo system have to be carefully
avoided, because such asymmetries will potentially degrade the CMRR even though
the interferometer is optically symmetric. The servo asymmetry factor is proportional
to the difference of the control gains for the two arms; for example, Equation 8.24 is
the representation specific to this experiment. Even though the optics and the servo
design of the interferometer are symmetric, some asymmetry may exist in the physical
implementation of the servo system, 7.e. the imbalance in the actuators of the mirrors.
Let us see the simplest case (Fig.10.1). To simplify the problem, only the two degrees
of freedom, i.e. 0L_ and 0L, are considered here. As the noise source, only the

frequency noise is taken into account. Suppose that the signal extraction is completely
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Figure 10.1: The simplest system with the servo asymmetry.

symmetric. In such system, the error signals are written by:

V. o OL_ (10.3)

L
0

where 6 L1 represents the differential and common variation of the cavity lengths. There

are control asymmetries, so the feedback signals have the contamination terms:

G_0L_ + €1G+ (5L+ + 2(5VLO/V0) (105)
G+ <5L+ + 2(5VLO/Z/0) —+ EQG,é‘L,, (106)

where G are the mechanical control gain for the common and the differential displace-
ment and €, (n = 1,2) represent the imbalances in the servo system. Assuming that
the imbalances are much smaller than unity, the above equations are solved as

Lo Gy
v 1+ G(1+Go)

V_ o —€0v (10.7)

to the first order of €,. One can see that the imbalance in the servo actuator directly
couples to the frequency noise to contaminate the signal of the differential displacement.
It would be possible to match the coupling of the actuators in 1% accuracy, thus
the CMRR of 1072 is a reasonable assumption for the servo asymmetry [48] if the
control system is well-designed. Moreover, it is apparent that the servo asymmetry is

minimized by minimizing the control gain for the common-mode motion: The common
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mode motion should be compensated by the frequency of the laser as long as it is

possible .

10.4 Frequency Noise and CMRR

As shown in the preceding discussions, one can expect to have a total CMRR on the
order of or less than 1% even in a full-scale detector. This will relax the requirement
for the frequency noise of the laser used in the detector. For example, in the TAMA300
detector, the noise level of the interferometer must be less than 3 x 1072 in strain with
a 300 Hz bandwidth, which corresponds to 5 x 10~2°m/+/Hz displacement sensitivity.
Considering the length of the cavity (300 m) and the frequency of Nd:YAG laser (about
300 THz), the requirement for the frequency noise of the laser used in the TAMA
detector is

SVstap < 5 x 107 Hz/vHz, (10.8)

if the CMRR is 1 %. This requirement is thought to be feasible.

10.5 Electronics

In this experiment the noise of the driver circuit for the actuators was close to the
FPM noise level between 100 and 1kHz. A more careful design of the actuator system,
i.e. the optimal coupling and the minimum noise current, are needed for the actuator
of the full-scale detectors.

In the experiment, the measured noise level of the driver was roughly -140 dBv/ VvHz,
which corresponded to the order of 100pA/ VHz. From the technological point of
view, the smallest noise possible would be the order of 10pA/ VHz which is limited
by the thermal noise of the resistors. Also, the coupling of the actuator represented
by Eq. 9.28 was larger than required. From the resonant frequencies of the suspension

(1.2 and 1.5 Hz) and the maximum current which the driver was able to supply (about

IThis is the basis of the design of the common-mode control of the TAMA300 interferometer. The
mechanical gain of the common-mode control should be minimized to avoid the potential contamina-

tion of the common mode signal to the gravitational wave signal due to the mechanical imbalances.
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40mA,_,), Eq. 9.28 indicates that the actuator could make the testmass move as
large as 600 ym,_,. Since the motion of the mirrors which had to be compensated
were several tens microns at their maximum, it is apparent that the coupling of the
actuator was at least 10 times larger than required, which made the effect of the
current noise larger. In the large-scale interferometers, the coupling of the actuators
for the mechanical control has to be optimized so that the amplitude of the motions of
the mirrors can just be compensated by the actuators. Only the electronics with the
minimum current noise and the minimum coupling will satisfy the crucial requirement

for the noise and the dynamic range of the actuator for the full-scale interferometers

[49]2.

2 After this study has been finished, actuator system for the TAMA300 interferometer was carefully
designed. The noise level of the actuator was measured to be 30 pA/ VHz for each coil, with the
dynamic range of 50 umy_, for the differential displacement. The displacement noise level is still
about factor three larger than the full sensitivity of the TAMA interferometer (5 x 1072 m/v/Hz),
therefore the compensation of the displacement by other means in the low frequency range is being

studied.
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11. Summary and Conclusion

We have developed a 3-m Fabry-Perot-Michelson interferometer in the campus of

The University of Tokyo to experimentally investigate the optical recombination.

Optical recombination of the reflected beams from the two cavities on the beamsplit-
ter was successfully demonstrated. The optical CMRR of 2 ~ 3 x 1072 was observed,
which showed that it is possible to optically reduce the effect of the common-mode
noise even in the all-suspended interferometer. This was the first example of the op-
tically recombined, all-suspended interferometer with the Fabry-Perot cavities in the
arms[16].

As the result of the detailed analysis of the interferometer, noise sources which
limited the strain sensitivity were identified in almost all of the frequency range of our
interest. The displacement noise level of the interferometer reached 2 x 10*17m/ VHz
at 1kHz and 1 x 10~'"m/+/Hz at the noise floor between 2kHz and 10kHz, which was
limited by the shot noise of the light in the Michelson fringe detection system. The
frequency stabilization and the good optical CMRR of 2 ~ 3 x 1073 suppressed the
frequency noise level smaller than the shot-noise limited sensitivity of the Michelson
fringe detection in the kilohertz range.

We have observed that the servo asymmetry degraded the optical CMRR between
400 and 1kHz. However, an appropriate design of the servo system would make the
servo asymmetry smaller than the optical one.

Though the dependence of CMRR on the alignment was not measured quantita-
tively, the dependence itself was observed during the operation of the interferometer.
The requirements for the alignment of the mirrors put by geometrical asymmetry effect

is not as severe as the ones put by other effects, so this will not a problem.

The results obtained in this paper became the bases of many of the research and
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development work on all-suspended FPM interferometer in Japan. Also, the analyses
and the considerations for the servo system, modal approach, and the electronics were
fed back to and are being applied to the design and fabrication works for the TAMA300

interferometer.
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A. Modal Expansion of the
Misaligned Beam

The detailed calculations about the modal expansion of the misaligned beam are
shown here. For clarity, some of the equations which are presented in Chap. 5 appear

again in this chapter.

A.1 Lateral Displacement

The two coordinate systems, (z,y,z) and (2,1, 2’), are related to each other by a

small parallel displacement a,:
(@', 2") = (x — ag,y, 2). (A1)

A set of Hermite-Gaussian fields in (z,y, z) coordinate system are defined by Eqs. 5.2
and 5.3. Let us consider an Hermite-Gaussian beam on the 2’ axis, which is represented
by {U;,.} (Fig. 5.5). We can expand the beam Uj,, by the set {U,} to the second

order of the displacement as

U+ (2", 2") = Uy (z — ag,y, 2)
1 d?

T + 5@U1m+(x7 Y, Z)(Zi

d
= Uler(xay?Z) - %Ulm%»(xvya Z)Cl

> < pg+ Im+ > Uy
pq

/I

After carrying out the above expansion, we obtain the expression for the laterally

d 1 d? ol s
Uy + %Ulrm-% + §ﬁUlm+% Upgt

12

dxdy (A.2)

misaligned fundamental mode as
Px(am> * UOOJr(‘rJ Y, Z) = U00+(x — Qg, Y, Z)
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, 2
= Upo+(,y,2) [1—6”7(2) <—2 i (%) )
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= [1—() ] Uoot + —Uio+ + —= < ) Uso+
w wo w

2 \wy V2 \wy
+0 (ai/wg) (A.3)

where P, denotes the parallel transport operator. In the same way the expression for

the first off-axis mode is obtained as

Pa:<ax) * U10+(I7 Y, Z) = U10+(«T — ax, Y, Z)
3 /az\? Ay ay
= |} - = () ] U10+ - 7U00+ + \/§7U20+
Wo Wo

2 Wo

A.2 Angular Tilt

The two coordinate systems are related to each other as

T cos(, —Ssino T
= ! ! (A.5)

z sino,  cosay z

y = v (A.6)

In the same way as the parallel displacement, we can expand the beam by the Hermite-
Gaussian modes of the tilted coordinates to the second order of the perturbation. For

the fundamental mode, we obtain

R.(ay) * Ugoy(z,y,2) = Upos (T cosa, — zsinag, y, 2 oS ay, + T sin ay,)

21 1 a? z z
e e
{ 9 [Oz% 9 3 +ZZO +3Zz0 U00+
1 ) 2
—i0l ( + WOZ) Uror + £040 (1 — iZ) (\/§U30+ + U12+)
Qp 2 20 8 20

+0 (Ozi/ag) X (I +m > 2 off—axis terms), (A.7)
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A.2. Angular Tilt

where R, is the rotation operator and «y is the far-field divergence angle of the beam.

For the first off-axis mode, we obtain

R.(ay) * Uroy(z,y,2) = Ujps(xzcosa, — zsina,,y, 2 cos a, + xsina;,,)

3 3z : 3z
_ 1— 2_1_~22m7(z)<1_') U
{ o [204% 420" 2% 10+
1
_i%{{ =2 (1402 )] Ui
(7)) 2 20

2 2 2
S e
0

[67)) 8 20
+% (1 — ZZ> Uy + LBO[O (1 — iZ) Usos
4 20 4 20
+0 (ai/a%) X (I +m > 2 off—axis terms). (A.8)

(For the exact expansion coefficients of the second order perturbation, see Ref. 40.)
Equations A.3, A.4, A.7, and A.8 are simplified under some approximations which we

will discuss later.

A.2.1 Simplification of the Expressions

To simplify the expressions for the misaligned beam, we will make some assumptions.
Under these assumptions, it is possible to neglect the second or higher-order off-axis

modes.

Small-Divergence-Angle Approximation

In the most of the laser beams and the resonators, the divergence angle is very small
. Therefore o2 /ad terms are the leading terms of the second order perturbation in
Egs. A.7 and A.8. We can neglect other terms such as a2ag and o?.

The divergence angle is so small that we can neglect some of the first order pertur-

bation terms. When the following condition is satisfied,

2
(%) >> Qy, A0, (A.9)

(&%)

'For example, the divergence angle of the arm cavity of the 3-m FPM interferometer we have

developed is about 4 x 10~%rad. In TAMA-300 interferometer, ayq is equal to 4 x 10 5rad.
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A. Modal Expansion of the Misaligned Beam

we can neglect such terms as o, and «,. Thus we obtain the equations

) ) o
Ro(o) * Uy (2,y,2) ~ [1—< () Ugo4+ — Z'OTOUm+

+0 ( 2/a2) x (I4+m > 2 off—axisterms), (A.10)

2]
Rx(Oéx) * U10+(513>y, Z) ~ |1—2 < ) Uroy — Z* [U00+ + \/_U20+]
) (I4+m > 3 off—axisterms), (A.11)

for the angular tilt.
We have to clarify the extent of the condition expressed in Eq. A.9. It is deformed

into the following form:

<%)2 >>al. (A.12)

Qo
As an example, we use the beam parameters of TAMA-300 interferometer. Since the

waist radius of the arm cavity of TAMA-300 interferometer is 4 x 1075, the right
side of the above inequality is 1.6 x 107°. We have seen (Eqgs. A.7 and A.8) that
(az/ap)? is the order of the power which is transferred from one mode to others. Thus,
Eq. A.9 says that the power which is “lost” from one mode by the misalignment is
much larger than 1.6ppb. The loss of 1.6ppb can be neglected compared with the
loss of the optics (absorption and the diffraction), therefore practically we can always

assume that Eq. A.9 is satisfied.

Assumption About the Input Beam

We assume that the input beam which illuminates the interferometer is the funda-
mental Gaussian beam. From Eqs. A.3 and A.10, one can see that the misaligned
fundamental mode has the first order coupling to the first off-axis mode and the sec-
ond order couplings to the second or higher off-axis modes. Therefore the field in the
interferometer has a 0-th order coupling to the fundamental mode, the first order to

the first off-axis mode, and the second order to the second or higher off-axis modes:
E = O0(1)Uy + O(a/wy, a/ag)Upym=1 + O(a®/wi, a® /2 Uy m>o. (A.13)

The optical power of the field in the interferometer is second order for the first off-axis

mode and the fourth order for the second or higher modes. Thus, for the optical power
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A.3. Misalignments and the Mode Structure

calculation, we can neglect the second and higher order modes. To the second order
perturbation, all of the optical power is carried by the fundamental and the first off-axis
mode.

To summarize, for the optical power calculation, as far as the input beam is the
fundamental mode and the conditions 1 >> = and 1 >> oF >> o are satisfied, we

can simplify Eqs. A.3, A4, A.10, and A.11 to the following form:

[ 1 fa,\2] ay
Py(az) * Ugo+(2,y, 2) =~ _1 5 <wo) | Uoo+ + EOU10+ (A.14)
P.(ay) * Uy (z,y,2) ~ -1—3<%)2U ~ ey, (A.15)
z\Uz 10+\T, Y, — i 92 wo/ | 10+ wo 00+ .
[ 1 S\ ?] a,
R.(ay) * Ugoy (z,y,2) ~ |1 — B () Ugor — i—Uro+ (A.16)
L Qo /| Qp
[ 3 /o \?] Ol
R, (o) * Uy (z,y,2) ~ |1— 2 () Uyor — i—Upo+ (A.17)
L 0/ | Qo

We can neglect the higher order modes than Uy.

A.3 Misalignments and the Mode Structure

Generally, the mode structure of the laser beam is not conserved when the beam prop-
agates through the optical components. For example, when the optical components are
misaligned, the off-axis modes appear in the optical system. The mode transformation
is described by the ABCD matrix (Refs. 22, Ref. 32, etc.). In this section, the relation

between the ABCD matrix formulation and the modal expansion will be shown.

A paraxial Hermite-Gaussian field is completely characterized by the waist radius w,
the waist position (z, z), the angle between the the z axis and the optical axis «, and the
order number n in the zz coordinate system. An Hermite-Gaussian field is transformed
to another beam with another set of parameters by a system described by an ABCD
matrix (Fig. A.1). The parameters are transformed from (wg, * = a0, 2 = dgy, tp = Qz0)
to (wy, a1, dy, ag1). The order of the mode is not changed. It is well known (Refs. 22,

Ref. 32, etc.) that the relations between the two set of parameters are written as
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A. Modal Expansion of the Misaligned Beam

Figure A.1: Beam transformation by a system described by a ABCD matrix

follows:
R fla0 (A.18)
(6751 C D (67
Kw? AKw2 /2 + B
o iAKw/2+ (A.19)
2 iICKwi/2+ D

We can see the description of this system from another point of view. For conve-
nience, we define here the two modes with the parameters (wy,z = 0,z = dy, a, = 0)
and (wy,z = 0,z = dy,a, = 0) (no deviation from the z axis) as Up,(z,y,2) and
wim (z,y, 2), respectively. Equations 5.31~ 5.36 indicates that the input field and the
output field are the linear combinations of the fields {U;,,} and {uy,}. For the funda-

mental mode, we obtain

L faz0\? 1 [ag0)? 20 .0y
By = [1—(‘”) —(O‘°>]Uoo++(“—zo‘°)Uw+ (A.20)

2 Wo 2 (67} Wo (%))
L ran\? 1 /g2 o1 Qg

Eout = 1_(& 1> —<a l> U00++<al—za 0>U10+ (A.21)
2 \wy 2\ o w1 Qg

where o and «; are the divergence angle of the input and output beam, respectively.
The cross term which is proportional to ia.,a.,(n = 0,1) was neglected. We can
say that Uyys and Ujgy are transformed into ugpy and ujgy respectively, because the
order-number is not changed by the ABCD system.

When the following equation is satisfied,

A B
det =1 (A.22)
C D
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A.3. Misalignments and the Mode Structure

it is shown by using Eqs. A.18 and A.19 that the ratio of the power of the fundamental

and first off-axis mode is conserved before and after the matrix:

O R

For the system which comprises the thin lenses, thin mirrors and the free space prop-

agators, it is easily shown that the determinant of the ABCD matrix is equal to the
unity.

The Gouy-phase shift is related to the transformation of the factor of the off-axis
modes. When the difference of the phase between the fundamental and first off-axis
mode due to the Gouy-phase shift is 7y in the ABCD system, the amplitude of the first

off-axis modes are related to each other as

(o) =) =[G = () (A2

It is difficult to show that this relation is true in the arbitrary ABCD system in which

the determinant of the matrix is equal to unity, because the ABCD matrix is a kind of
black box and it has no information about the phase. However, again for the system
with the thin lenses, thin mirrors and the free-space propagators, the above relation is
always valid.

For the propagation of the first off-axis mode, we obtain the same result as the

fundamental mode.
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B. Circuits

The circuits used in the experiment are shown.
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Figure B.1: Wideband (1kHz) coil driver, which is used for the cavity locking servo.

Two of the four coils for one mirror are sequentially connected and driven by one

driver.

=
3. 3k
in Ean— N WIV\
_I/ P
oP27 Buffer
T

1k

out

Figure B.2: Narrowband (48Hz) coil driver, which is used for the DC control of

the cavity for the frequency stabilization. T'wo of the four coils for one mirror are

sequentially connected and driven by one driver.
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Figure B.3: PZT driver for controlling the frequency of the laser.
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Figure B.4: Coil driver for the beam splitter-control. T'wo of the four coils for BS are
parallel-connected to one driver. For monitoring the feedback current, the voltage

of the small resistance was used.
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Figure B.5: RF photo detector to detect the picked-off light from the arm cavities.

This detector was used for the Pound-Drever-Hall detection of the cavity deviation

from the resonance.
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Figure B.6: Response of the photo diode (S3759, Hamamatsu Photonics) used in the

RF detector versus the wavelength. This plot is from the spec sheet of Hamamatsu

Photonics.
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Figure B.7: DC photo detector to detect the Michelson fringe. The feedback resis-
tance R was 1.5k} and 2.19k() for PD1 and PD2, respectively.
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Figure B.8: Efficiency of the photo diode (S1223-01, Hamamatsu) used in the DC
detector versus the wavelength. This plot is from the spec sheet of Hamamatsu

Photonics.
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