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Abstract

The sensitivity of gravitational-wave (GW) detectors is designed to be limited by quantum

noise. The quantum noise originates from the quantum vacuum field entering from an out-

put port of the interferometer. The quantum noise is composed of shot noise and radiation

pressure noise. The shot noise originates from the phase fluctuation of the vacuum field

and dominates at high frequencies of the detector sensitivity, while the radiation pressure

noise originates from the amplitude fluctuation of the vacuum field and dominates at low

frequencies. The sensitivity of current GW detectors is dominated by shot noise at high

frequencies. To reduce the shot noise, the frequency-independent squeezing, whose phase

quadrature is squeezed, has been injected into the interferometer and the shot noise re-

duction by ∼3 dB has been achieved in Advanced LIGO and Advanced Virgo. However,

the increase of the radiation pressure noise due to the frequency-independent squeezing

has been observed in Advanced LIGO and Advanced Virgo.

To reduce the shot noise and radiation pressure noise simultaneously, the frequency-

dependent squeezing, which is phase squeezed at high frequencies and amplitude squeezed

at low frequencies, is required. The most promising way to realize the frequency-dependent

squeezing is reflecting a frequency-independent squeezed vacuum field off an optical cavity

called filter cavity. In the past, the squeezing angle rotation using rigid, meter-scale filter

cavities has been realized in the MHz and kHz regions. However, frequency-dependent

squeezing with a rotation frequency below 100 Hz, which is required in GW detectors, has

not been demonstrated.

In this thesis, we developed the first frequency-dependent squeezed vacuum source

with a rotation frequency below 100 Hz by using a 300 m filter cavity which can fit for

Advanced LIGO and Advanced Virgo. It is shown that our frequency-dependent squeezed

vacuum source can realize the broadband quantum noise reduction in GW detectors.

However, in this measurement, the filter cavity length noise and the mode mismatch

between the squeezer and the filter cavity were not satisfying the target value, and the

detuning fluctuation of ∼30 Hz was observed. For further quantum noise reduction, it is

necessary to stabilize the filter cavity length fluctuation, the alignment fluctuation, and

the detuning fluctuation. In this measurement, the filter cavity was controlled with the

auxiliary green field whose frequency is as twice as the squeezing frequency. As the optical

path and the frequency of the green field and the squeezed field are different, the filter

cavity control with the auxiliary green field does not ensure the filter cavity length and

alignment for the squeezed field.
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To solve this problem, I suggested a new control scheme of the filter cavity using co-

herent control sidebands, which are already used to control the squeezing angle. As the

coherent control sidebands have the same optical path and almost the same frequency

as the squeezed field, the control of the filter cavity with the coherent control sidebands

ensures the filter cavity length and alignment for the squeezed field. I succeeded in control-

ling the length of the 300 m filter cavity with the new control scheme and demonstrated

that the new control scheme reduced the filter cavity length fluctuation from 3.4 pm to

0.75 pm, which satisfies the target value of 1 pm. Using this new control scheme, the

frequency-dependent squeezing with a rotation frequency approximately 100 Hz also has

been realized.

The results presented in this thesis are significant for improving the sensitivity of the

current GW detectors such as Advanced LIGO, Advanced Virgo, and KAGRA as well

as the future third-generation GW detectors such as the Einstein Telescope and Cosmic

Explorer, which require even longer filter cavities.

Thesis supervisor: Masaki Ando (Associate Professor)

Thesis title: Frequency-Dedenpent Squeezed Vacuum Source with Filter Cavity Control

using Coherent Control Sidebands for Gravitational-Wave Detectors
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Chapter 1

Introduction

In 2015, gravitational waves (GWs) from a binary black hole merger were observed by

Advanced LIGO for the first time [1]. Thereafter, GW astronomy rapidly became a

mature research field. After the observation of GWs from a binary neutron star merger [2]

and the publication of the first GW sources catalog [3], the network of the GW detectors

(composed of the two Advanced LIGO [4] and Advanced Virgo [5]) performed a third

observing run (O3) and detected several candidates per month. The second GW sources

catalog, which contains detections during the first half of O3, was recently published [6].

The Japanese detector KAGRA [7] is expected to join the network from the next observing

run (O4) and a fifth detector, LIGO India, is expected to join in 2025 [8]. However, the

sensitivity of the current GW detectors is not enough to determine the characteristics of

the compact objects such as black holes and neutron stars, and to reveal the formation

scenario of the compact binary systems, and to test the general relativity in the stronger

gravity field. For the further GW detections and the precise measurement of the GW

waveforms, it is necessary to improve the sensitivity of the current GW detectors.

The principle of the current GW detectors is a Michelson interferometer. As the

motion of the test mass mirrors induced by GWs can be measured by the laser light in the

interferometer, the fundamental sensitivity of the interferometric GW detectors is limited

by the quantum fluctuation of the laser light in the classical picture. Therefore, it is

important to reduce the quantum noise to improve the fundamental sensitivity of GW

detectors. In the current GW detectors, the quantum noise limits the sensitivity at high

frequencies, while other classical noises limit the sensitivity at low frequencies. In the

future, the other classical noises are expected to be reduced and the quantum noise will

limit the sensitivity at all frequencies.

The quantum noise originates from the quantum fluctuation of light and it is composed

of quantum shot noise and radiation pressure noise. The shot noise dominates at high

frequencies of the detector sensitivity, while the radiation pressure noise dominates at low

frequencies. In 1981, Caves reported that quantum noise originates from quantum vacuum

fluctuations entering from an output port of the interferometer [9]. He also suggested that

quantum noise can be reduced by replacing the ordinary vacuum states with so-called

squeezed vacuum states, whose fluctuations are reduced in one quadrature, while they

12



are increased in the orthogonal quadrature, following Heisenberg’s uncertainty principle.

When the noise reduced quadrature of the squeezed vacuum states is aligned with the GW

signal, the signal to noise ratio of the GW signal is increased and therefore the sensitivity

of GW detectors is improved.

In order to enhance the sensitivity of the current GW detectors at high frequencies

where the shot noise mainly dominates, so-called frequency-independent squeezed vac-

uum sources have been implemented into the GW detectors such as Advanced LIGO and

Advanced Virgo. The squeezed vacuum states of these frequency-independent squeezed

vacuum sources are squeezed in the phase quadrature. Consequently, both Advanced

LIGO and Advanced Virgo successfully reduced the shot noise and their detection rates

were increased by ∼50 % in O3 [10, 11]. However, the frequency-independent squeezed

vacuum currently used in GW detectors cannot reduce the shot noise and radiation pres-

sure noise simultaneously. The reason is the optomechanical coupling between the laser

light and the suspended test masses, which induces a rotation of the squeezing ellipse as a

function of frequency. Therefore, the quadrature whose noise is reduced cannot be aligned

with the GW signal at all frequencies. In fact, the increase in radiation pressure noise

due to the frequency-independent squeezing has recently been observed in both Advanced

LIGO and Advanced Virgo [12, 13]. This is one of the biggest obstacles for advanced GW

detectors to reach their design sensitivity and go beyond.

One of the solutions to reduce the quantum noise at all frequencies is the injection

of so-called frequency-dependent squeezed vacuum, whose squeezing angle rotates by 90◦

as a function of frequency, to counteract the squeezing angle rotation induced by the

interferometer. Such a quantum noise reduction is optimal if the rotation occurs at the

crossover frequency between the shot noise and the radiation pressure noise, which is

approximately 70 Hz for advanced GW detectors. To realize the frequency-dependent

squeezing, it was suggested to reflect a frequency-independent squeezed vacuum off an

optical Fabry-Perot cavity called a filter cavity [14]. Previously, squeezing angle rotation

using rigid, meter-scale filter cavities has been realized in the MHz [15] and kHz [16]

regions.

In this thesis, we developed the first frequency-dependent squeezed vacuum source

with the rotation frequency below 100 Hz by using a 300 m filter cavity which can fit

for Advanced LIGO and Advanced Virgo [17]. It is shown that our frequency-dependent

squeezed vacuum source can realize the broadband quantum noise reduction in GW detec-

tors. However, in this measurement, the filter cavity length noise and the mode mismatch

between the squeezer and the filter cavity were not satisfying the target value, and the

detuning fluctuation of ∼30 Hz was observed. For further quantum noise reduction, it is

necessary to stabilize the filter cavity length fluctuation, the alignment fluctuation, and

the detuning fluctuation. In this measurement, the filter cavity was controlled with the

auxiliary green field whose frequency is as twice as the squeezing frequency. As the optical

path and the frequency of the green field and the squeezed field are different, the filter

cavity control with the auxiliary green field does not ensure the filter cavity length and

alignment for the squeezed field.
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To solve this problem, I suggested a new control scheme of the filter cavity using co-

herent control sidebands which are already used to control the squeezing angle [18]. As

the coherent control sidebands have the same optical path and almost the same frequency

as the squeezed field, the control of the filter cavity with the coherent control sidebands

ensures the filter cavity length and alignment for the squeezed field. I succeeded in control-

ling the length of the 300 m filter cavity with the new control scheme and demonstrated

that the new control scheme reduced the filter cavity length fluctuation from 3.4 pm to

0.75 pm which satisfies the target value of 1 pm. Using this new control scheme, the

frequency-dependent squeezing with the rotation frequency around 100 Hz also has been

realized.

This thesis is organized as follows: in Chapter 2, the theory of gravitational waves and

gravitational-wave observations are explained. In Chapter 3, the principle of gravitational-

wave detectors is explained. In Chapter 4, the theory of the quantum states of light includ-

ing squeezed states is described. In Chapter 5, the quantum noise in GW detectors and

how to reduce it are presented. In Chapter 6, the experiment on frequency-independent

squeezing is described. In Chapter 7, the experimental characterization of the 300 m filter

cavity and the experiment on frequency-dependent squeezing are presented. In Chapter

8, the theoretical suggestion and experimental demonstration of a new control scheme of

the filter cavity are presented. In Chapter 9, the conclusion is described.
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Chapter 2

Gravitational Wave

Gravitational waves (GWs) are ripples of spacetime derived from general relativity. As

GWs almost do not interfere with matters, GWs from astrophysical sources can reach

Earth without losing their information. In this chapter, the theory of GWs and recent

GW detections are presented.

2.1 Derivation of gravitational waves

2.1.1 Linearization of Einstein equation

Einstein equation derived from general relativity can be written as follows:

Rµν −
1

2
gµνR =

8πG

c4
Tµν , (2.1)

where Rµν is the Ricci tensor, gµν is the metric tensor, R is the scalar curvature or Ricci

scalar, Tµν is the energy momentum tensor, G is the gravitational constant, and c is the

speed of light. The greek indices range from 0 to 3. Rµν and R can be written as

Rµν = Rα
µαν , (2.2)

R = gµνRµν , (2.3)

where Rµ
νρσ is the Riemann curvature tensor:

Rµ
νρσ =

∂Γµ
νσ

∂xρ
− ∂Γµ

νρ

∂xσ
+ Γµ

αρΓ
α
νσ − Γµ

ασΓ
α
νρ, (2.4)

and

Γρ
µν =

1

2
gρσ

(
∂gσν
∂xµ

+
∂gσµ
∂xν

− ∂gµν
∂xσ

)
(2.5)

is the Christoffel symbol.

Considering the small perturbation of the metric as follows:

gµν = ηµν + hµν , (2.6)
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where ηµν = diag(−1, 1, 1, 1) is the metric in Minkowski spacetime (flat spacetime) and

hµν is the small perturbation of the metric. Substituting this into the Einstein equation

and considering the first order of hµν , the Einstein equation results in the following wave

equation:

□hµν = −16πG

c4
Tµν , (2.7)

where hµν ≡ hµν −
1

2
ηµνη

αβhαβ and the Lorentz gauge

∂h
µν

∂xµ
= 0 (2.8)

is assumed. This wave equation indicates that the small metric variation propagates the

spacetime as waves and these are gravitational waves.

2.1.2 Plane wave solution of gravitational waves

Gravitational waves propagating in the vacuum (Tµν = 0) can be written as

□hµν = 0. (2.9)

As a solution of this wave equation, hµν = aµνe
ikαxα

is considered. Based on the symmetry

of hµν , the Lorentz gauge, and wave equation,

aµν = aνµ, (2.10)

aµαk
α = 0, (2.11)

kαk
α = 0. (2.12)

Equation (2.11) indicates that the gravitational waves are transverse waves and Equation

(2.12) shows that the gravitational waves propagate at the speed of light.

To remove the remaining degrees of freedom for coordinate transformation, Transverse

Traceless gauge (TT gauge) is assumed as follows:

hµ0 = 0, (2.13)

h ,j
ij = 0, (2.14)

hjj = 0. (2.15)

Here, the Latin indices range from 1 to 3. Under this gauge, the amplitude of the gravi-

tational wave aµν is written as follows:

aµν =


0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0

 . (2.16)
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The gravitational waves have two degrees of freedom, which are h+ and h×.

When the plane wave with frequency ω propagates toward the z-axis direction,

hTT
µν = aµν exp [−iω(t− z/c)]. (2.17)

The space line element of the Minkowski spacetime is

dl2 = (δij + hTT
ij )dxidxj

= {1 + h+ cos [ω(t− z/c)]}dx2 + {1− h+ cos [ω(t− z/c)]}dy2 + dz2

+ 2h× cos [ω(t− z/c)]dxdy, (2.18)

where the real part of hij is considered.

When the amplitude of the gravitational waves is significantly small and the metric is

the Minkowski spacetime, Equation (2.18) indicates that the distance between two points

changes as follows:

dl2 = δijdx
′idx′j , (2.19)

dx′ =

(
1 +

h+ cos [ω(t− z/c)]

2

)
dx+

h× cos [ω(t− z/c)]

2
dy, (2.20)

dy′ =

(
1− h+ cos [ω(t− z/c)]

2

)
dy +

h× cos [ω(t− z/c)]

2
dx. (2.21)

This change is shown in Figure 2.1.

h+

h⇥

Figure 2.1: + mode and × mode of gravitational waves. Red points represent free masses
and the gravitational waves are injected from the vertical direction to the sheet.
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2.2 Generation of gravitational waves

The wave equation for GWs (2.7) indicates that GWs are generated from the energy

momentum tensor Tµν . The solution of the wave equation can be written as

hµν(t,x) =
4G

c

∫
d3x′Tµν(t− |x− x′|/c,x′)

|x− x′|
. (2.22)

When the size of the GW source is much smaller than the GW wavelength, the equation

above can be approximated as

hij(t,x) =
2G

c4r
Q̈ij(t− r/c), (2.23)

where r = |x| and

Qij(t) =

∫
ρ(t,x)

(
xixj −

1

3
δijx

ixj
)
d3x (2.24)

is the quadrupole momentum of the GW source and ρ is the density of the GW source.

2.3 Astrophysical sources of gravitational waves

As the effect of GWs is extremely small, the main GW sources are astrophysical sources

with significantly large quadrupole momentums. In this section, the main astrophysical

sources of GWs are introduced.

Compact binary coalescence

The compact binary coalescence (CBC) is the merger the compact binary systems such

as binary black hole (BBH), binary neutron star (BNS). All GW detections by LIGO

and Virgo thus far are GWs from CBC. The CBC is composed of the following three

phases: inspiral, merger, and ringdown. In the inspiral phase, the binary system is in

circular orbit, and the orbit shrinks by losing its energy through the GWs. In the merger

phase, the binary system merges emitting the largest GWs and forms a perturbed remnant

compact object. In the ringdown phase, the perturbed remnant compact object relaxes to

the stationary state by emitting the GWs. The ringdown of a remnant black hole is called

the quasi normal mode.

When the component masses of CBC are m1 and m2, the strain of CBC in the inspiral

phase is written as [19]

h(f) ≃ 1

π2/3

(
5

24

)1/2 c

r

(
GMc

c3

)5/6

f−7/6, (2.25)

where

Mc =
(m1m2)

3/5

(m1 +m2)1/5
(2.26)
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is called the chirp mass. Here, phase term of h(f) is ignored.

The inspiral phase finishes at the innermost stable circular orbit (ISCO). The GW

frequency at ISCO is as follows:

fISCO =
1

12
√
6π

c3

GM
(2.27)

= 2.2 kHz

(
M⊙
M

)
, (2.28)

where M = m1 +m2. The most sensitive frequency region of the current GW detectors is

∼ 10 Hz -1 kHz and thus the target mass of CBC is ∼ 1-100 M⊙.

For m1 = m2 = m, the amplitude of GWs from CBC is

h(f) = 4.3× 10−24

(
100 Mpc

r

)(
m

1.4 M⊙

)5/6(100 Hz

f

)7/6

. (2.29)

Pulsar

The pulsar is a rotating neutron star emitting periodic electromagnetic pulses. If the

pulsar is not axisymmetric around the rotational axis, it generates GWs. The amplitude

of the GWs from the pulsar is [19]

h(f) =
4π2G

c4
Izzf

2

r
ϵ, (2.30)

where Izz is the moment of inertia around the rotational axis (z axis) of the pulsar, frot is

the rotational frequency of the pulsar, and ϵ = |Ixx−Iyy|/Izz is the ellipticity of the pulsar

(Ixx and Iyy are the moments of inertia around the x and y axes, which are orthogonal to

the z axis). The GW frequency from the pulsar can be written as f = 2frot.

The amplitude of the GWs from the pulsar with a typical galactic distance is

h = 1.1× 10−25
( ϵ

10−6

)( Izz
1038 kg m2

)(
10 kpc

r

)(
f

1 kHz

)2

. (2.31)

Supernova

The core collapse supernova (Type II supernova) can generate GWs if there is a non-

axisymmetric mechanism in the supernova. The typical strain and frequency of the core

collapse supernova is estimated to be h ∼ 10−22−10−21 and ∼ 1 kHz considering a distance

of 10 kpc from the supernova [20].

Early universe

Another important GW source is the stochastic GW background from the early universe.

Quantum fluctuation during inflation is one of the candidates that produces the stochastic
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GW background. The strain of the stochastic GW background can be written as [19]

h(f) =

√
3H2

0

4π2
Ωgw(f)

f3
, (2.32)

where H0 ∼ 68 km s−1Mpc−1 is the Hubble constant and

Ωgw(f) =
1

ρc

dρgw
d(log f)

, (2.33)

where ρgw is the energy density of the stochastic GW background and ρc is the critical

energy density for a flat universe,

ρc =
3c2H2

0

8πG
. (2.34)

As Ωgw is estimated to be ∼ 10−15 [21], the strain of the stochastic GW background is

h(f) ∼ 6× 10−25

(
0.1 Hz

f

)3/2

. (2.35)

The equation above indicates that the amplitude of the stochastic GW background is larger

at lower frequencies. However, this strain sensitivity is difficult to achieve in ground-based

GW detectors because the sensitivity is limited by seismic noise at low frequencies. To

avoid the seismic noise, a spaceborne GW detector called the DECIGO is planned [22].

The ultimate target of DECIGO is the stochastic GW background from the early universe.

2.4 Observations of gravitational waves

In 2015, Advanced LIGO observed gravitational waves from a BBH for the first time, as

shown in Figure 2.2 [1].

LIGO and Virgo had observing runs three times thus far. The first observing run (O1)

was from September 12, 2015 to January 19, 2016. The second observing run (O2) was

from November 30, 2016 to August 25, 2017. The third observing run (O3) was from April

1, 2019 to March 27, 2020. There were 11 events, including a BNS merger, observed in

O1 and O2 [3], and 39 events were observed in the first half of O3 (O3a) from April 1,

2019 to October 1, 2019 [6]. Cumulative GW events from O1 to O3a are shown in Figure

2.3. The significant increase of GW events from O2 to O3 was achieved by some upgrades,

especially the injection of a squeezed vacuum field [10, 11].

Binary black hole merger

There are 46 binary black hole (BBH) mergers observed from O1 to O3a. The BBH merger

rate estimated from the results from O1 to O3a is RBBH = 23.9+14.9
−8.6 Gpc−3 yr−1 [24].
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Figure 2.2: Observed chirp signals of GW150914 by Hanford and Livingston observatories
of Advanced LIGO [1]. The left and right plots show the GW signals for Hanford and
Livingston, respectively. The first and second plots from the top show the measured
GW time series and calculated GW time series with numerical relativity, respectively.
The second from the bottom plots show the residual GW signal after subtracting the
calculated GW signal from the measured GW signal. The bottom plots show the GW
frequency as a function of time. The GW frequency increases over time, which is why this
GW signal is called the chirp signal.

Binary neutron star merger

There are two binary neutron star (BNS) mergers observed from O1 to O3a which are

GW170817 [2] and GW190425 [29]. GW170817 was sufficiently localized by GW obser-

vation, which enabled the observations of the electromagnetic (EM) counterpart to the

GW170817 with multiple wavelengths [30]. On the other hand, GW190425 was not suf-

ficiently localized because one of the GW detectors were not working at the time of the

event, and there was no observed EM counterpart to the GW190425 [29].

The BNS merger rate estimated from the results from O1 to O3a isRBNS = 320+490
−240 Gpc−3 yr−1

[24].

Neutron star black hole merger

There are two potential neutron star black hole (NSBH) mergers observed from O1 to

O3a, which are GW190426 152155 [6] and GW190814 [25]. The component masses are 5.7

M⊙ and 1.5M⊙ for GW190426 152155, and 23M⊙ and 2.6M⊙ for GW190814. The lower
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Figure 2.3: Cumulative GW events from O1 to O3a [23].

mass components of these events are either a neutron star or a black hole, and therefore,

these events are either an NSBH or BBH merger.

2.5 Science from gravitational wave observations

Several scientific milestones were achieved from the GW observations, which will be pre-

sented in this section.

Population of compact objects

To understand the formation channel of compact objects and compact binary systems,

the population of compact objects, such as mass and spin, provided crucial information.

From GW observations, the compact objects were found in the wide mass range, which

are not observed by EM. For example, the 2.6 M⊙ compact object in GW190814 is in the

mass gap region (called lower mass gap) between the neutron stars (< 2.5M⊙) and the

black holes (> 5M⊙).

Tests of general relativity

GW observations of the compact binary coalescences enable the tests of general relativity

in the strong gravity field. By using the binary black holes observed from O1 to O3a, tests

of general relativity were conducted and several constraints on the general relativity were

tighten [28]. However, there is still no evidence for violation of the general relativity.
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Multi-messenger observation of a binary neutron star merger

As GW170817 was sufficiently localized, the EM counterparts to GW170817 were observed

with multiple wavelengths [30]. Approximately 1.7 s after the BNS merger, a short gamma-

ray burst (GRB 170817A) was observed [31]. This confirms that the BNS mergers are one

of the progenitors of the short gamma-ray burst. Using the information on the time

delay of GW170817 and GRB 170817A, the difference between the speed of gravity and

the speed of light was constrained [31]. Another important EM observation related to

GW170817 was an ultraviolet, optical, and infrared transient called kilonova [30]. The

kilonova was caused by the radioactive decay of the r-process nuclei. This indicates that

the BNS mergers are progenitors of heavy elements synthesized with the r-process.

Standard siren measurement

GW170817 enabled the first measurement of the Hubble constant with gravitational waves

[32]. The distance to the source of GW170817 d was obtained from the GW observation,

and the Hubble flow velocity of the corresponding GW source vH was obtained from the

EM observation. Using Hubble’s law vH = H0d, the Hubble constant H0 was determined

to be 70.0+12.0
−8.0 km s−1Mpc−1. This measurement is consistent with existing measurements,

while it is independent of them. Future GW observations will improve the precision of the

Hubble constant measurement.

2.6 Observation scenario

In the future, the fourth observing run (O4) will start around 2022, and the fifth observing

run (O5) will start around 2025, as shown in Figure 2.4. KAGRA will join the observing

run from O4, and LIGO-India will join from O5 [8]. One of the major upgrades towards O4

and O5 in LIGO, Virgo, and KAGRA is the implementation of the frequency-dependent

squeezing, which is the main topic of this thesis. In particular, LIGO and Virgo plan to

install a 300 m filter cavity from O4.

Third-generation GW detectors, such as the Einstein Telescope [33] and Cosmic Ex-

plorer [34], are planned to operate in the 2030s. The arm lengths of these detectors are

10-40 km, and the sensitivity is an order of magnitude better than the current GW de-

tectors, which will lead to an increase of approximately 1000 times the GW events. In

third-generation GW detectors, frequency-dependent squeezing with kilometer-scale filter

cavities is planned to be installed for quantum noise reduction [35, 36].
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Figure 2.4: Observation scenario of GW detectors [8]. In this figure, KAGRA was expected
to join O3, but actually KAGRA could not join O3 due to the early end of O3, although
the BNS range of KAGRA reached around 1 Mpc.
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Chapter 3

Gravitational-Wave Detector

The basic principle of ground-based GW detectors is the Michelson interferometer, which

can measure the differential motion of test masses and is thus suitable to measure the

motion induced by GWs. The configuration of the current GW detectors is called the dual

recycled Fabry-Perot Michelson interferometer (DRFPMI). In this chapter, the principle

of the interferometric GW detectors is presented.

3.1 Michelson interferometer

A configuration of the Michelson interferometer is shown in Figure 3.1.

BS

Laser

PD

End mirror

End mirror
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Figure 3.1: Configuration of the Michelson interferometer.

For simplicity, the splitting ratio of a beam splitter (BS) is assumed to be 50:50, and

the reflectivity of the end mirror is 1. In Figure 3.1, when the arm length (distance between

BS and end mirror) in the x-axis (horizontal) direction is Lx and the arm length in the
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y-axis (vertical) direction is Ly, and the carrier laser frequency is ω0, the round-trip phase

between the BS and end mirror in x-arm and y-arm are ϕx = 2Lxω0/c and ϕy = 2Lyω0/c,

respectively. The electric field at an anti-symmetric port (AS port) is

EAS =
1

2
E0(e

−iϕx − e−iϕy)

= −iE0e
−i

ϕ+
2 sin

ϕ−
2
, (3.1)

where E0 is the input electric field and ϕ+ ≡ ϕx + ϕy, ϕ− ≡ ϕx − ϕy are defined.

The carrier power at the AS port is

PAS = |EAS|2 = P0 sin
2 ϕ−

2
, (3.2)

where P0 = |E0|2. The carrier power at the AS port only depends on the differential

arm length in the x and y arms. The point where the carrier power at the AS port is 0

(ϕ− = 2nπ, n: integer) is called the dark fringe, where all the injected carrier beam is

reflected back to the injection port. This condition is necessary for the power recycling

technique, which will be presented in Section 3.3.

3.1.1 Response to gravitational waves

In this section, we consider a response of a Michelson interferometer to GWs. We assume

that GWs only have the plus mode and propagate in the z direction.

The spacetime interval in the TT gauge is

ds2 = −c2dt2 + (1 + h)dx2 + (1− h)dy2 + dz2. (3.3)

As light travels along the null geodesics: ds2 = 0, the light in x arm obeys the following

equation:

dx

dt
= ± c√

1 + h
≃ ±c

(
1− 1

2
h

)
, (3.4)

where ± represents the light propagating in the ±x direction.

The round-trip phase for x arm is

ϕx(t) = ω0

∫
roundtrip

(
dx

dt

)−1

dx

=
2Lxω0

c
+
ω0

2

∫ t

t−2L/c
h(t′)dt′, (3.5)

where Lx ≃ L = (Lx + Ly)/2 is assumed. Similarly, the round-trip phase for y arm is

ϕy(t) =
2Lyω0

c
− ω0

2

∫ t

t−2L/c
h(t′)dt′. (3.6)
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Therefore, the electric field at the AS port is

EAS =
1

2
E0(e

−iϕx − e−iϕy)

=
1

2
E0e

−iϕx [1− ei(ϕ−+ϕGW)], (3.7)

where

ϕ− =
2ω0(Lx − Ly)

c
, (3.8)

ϕGW(t) = ω0

∫ t

t−2L/c
h(t′)dt′. (3.9)

Here, ϕGW is the phase induced by GWs. Using the Fourier transformation of h(t′) in

Equation (3.9),

ϕGW(t) = ω0

∫ t

t−2L/c

∫ ∞

−∞
h(ω)eiωt

′
dωdt′

=

∫ ∞

−∞
HMI(ω)h(ω)e

iωtdω, (3.10)

where

HMI(ω) =
2ω0L

c

sin (ωL/c)

ωL/c
e−iωL/c (3.11)

is the frequency response of a Michelson interferometer to GWs. This response is maximum

when ωL/c = π/2. The optimal arm length for f = 100 Hz of GW frequency is L = 750

km. This arm length is not a realistic value to build it on Earth. To increase the effective

arm length, Fabry-Perot cavities are used in current GW detectors, which will be presented

in Section 3.2. Although the cavity length of the current GW detectors is only 3-4 km,

the effective arm length is significantly enhanced by the cavity.

For ω ≪ c/L, which is the case for f = 100 Hz and L = 3-4 km, Equation (3.11) is

HMI(ω) =
2ω0L

c
. (3.12)

3.1.2 DC readout

From Equation (3.7), the power at the AS port in the dark fringe is

PAS = P0 sin
2 ϕGW

2
. (3.13)

In the dark fringe, the GW signal ϕGW is second order at the AS port. To obtain a

linear GW signal at the AS port, a DC readout technique [37] is used in the current GW

detectors. In the DC readout, the Michelson interferometer is operated close to the dark

fringe to enable the small carrier light to leak into the AS port. The power at the AS port
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in the DC readout is

PAS = P0 sin
2 ϕ− + ϕGW

2
≃ P0

4
(ϕ2− + 2ϕ−ϕGW). (3.14)

Therefore, a linear GW signal can be obtained.

3.2 Fabry-Perot cavity

As mentioned in the previous section, Fabry-Perot cavities are used in the current GW

detectors to increase the effective arm length. The Fabry-Perot cavity is composed of two

mirrors that reflect the beam back and forth between them and enhance the power inside

the cavity. A configuration of the Fabry-Perot cavity is shown in Figure 3.2.

input mirror end mirror

cavity length

Er

Et

L

rE, tE
<latexit sha1_base64="ATX1cSB7dDfPUzL8PZx/nQJwbO4="></latexit>

rI, tI

<latexit sha1_base64="f8/DuyP0ACOFSHuwjDflV86utQ8="></latexit>

E0

Figure 3.2: Configuration of the Fabry-Perot cavity. The Fabry-Perot cavity is composed
of an input mirror and end mirror. We assume that the cavity length is L, the amplitude
reflectivity and transmissivity of the input mirror are rI and tI, respectively, and the
amplitude reflectivity and transmissivity of the end mirror are rE and tE, respevtively.

Firstly, we will not consider the effect of optical losses in the cavity. When the input

electric field to the input mirror is E0, the amplitude of the reflected field from the cavity

is

Er = E0rI − E0t
2
I rEe

−iϕ − E0t
2
I r

2
ErIe

−2iϕ − · · ·

= E0rI − E0t
2
I rEe

−iϕ
∞∑
n=0

(rIrEe
−iϕ)n

= E0

(
rI −

t2I rEe
−iϕ

1− rIrEe−iϕ

)
, (3.15)

where ϕ is the round-trip phase in the cavity and can be written as follows:

ϕ =
2Lω0

c
. (3.16)
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Similarly, the amplitude of the transmission field is

Et = E0tItEe
−iϕ/2

∞∑
n=0

(rIrEe
−iϕ)n

= E0
tItEe

−iϕ/2

1− rIrEe−iϕ
. (3.17)

The amplitude reflectivity and transmissivity of a Fabry-Perot cavity (rFP, tFP) are

rFP(ϕ) = rI −
t2I rEe

−iϕ

1− rIrEe−iϕ
, (3.18)

tFP(ϕ) =
tItEe

−iϕ/2

1− rIrEe−iϕ
. (3.19)

The transmission power is

Pt = |Et|2

=
(tItE)

2

(1− rIrE)2 + 4rIrE sin2 ϕ/2
P0. (3.20)

The power transmissivity |tFP(ϕ)|2 as a function of the round-trip phase is shown in Figure

3.3.
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Figure 3.3: Power transmissivity of a Fabry-Perot cavity as a function of the round-trip
phase. rI = rE = 0.89 is assumed.

When the Fabry-Perot cavity resonates, the transmission and the intracavity power

are the maximum. The resonance condition is

ϕ = 2πm (m = 1, 2, · · · ). (3.21)

29



From Equation (3.16) and ω0 = 2πc/λ0, this condition can be written as follows:

2L = mλ0 (m = 1, 2, · · · ). (3.22)

When the cavity length L is fixed, the transmission power changes periodically as a

function of the laser frequency and this frequency period is called the free spectral range

(FSR). From Equation (3.16) and (3.21), the FSR can be written as follows:

fFSR =
ωFSR

2π
=

c

2L
. (3.23)

From Equation (3.20), the full width at half maximum of the transmission power

fFWHM can be obtained by solving the following equation.

1

1 +
4rIrE

(1− rIrE)2
sin2

(
πLfFWHM

c

) =
1

2
. (3.24)

Assuming
πLfFWHM

c
=
πfFWHM

2fFSR
≪ 1 1, we can expand the sine term as follows:

fFWHM =
c(1− rIrE)

2πL
√
rIrE

. (3.25)

The ratio of fFSR and fFWHM represents the sharpness of the resonance and is called the

finesse, which is

F ≡ fFSR
fFWHM

=
π
√
rIrE

1− rIrE
. (3.26)

When the intracavity loss Tloss is considered, the finesse (3.26) is

F =
π
√
r

1− r
, (3.27)

where r = rIrErloss with rloss =
√
1− Tloss.

The cavity decay time is when the stored power inside the cavity is reduced by a factor

of e2 after turning off the input beam to the cavity [38]. The cavity transmission power

after turning off the input beam can be written as follows:

P (t) = P0e
−2t/τ , (3.28)

where P0 is the cavity transmission power before turning off the input beam and τ is the

cavity decay time.

The decay time is written as follows:

τ =
F

πfFSR
=

1

πfFWHM
. (3.29)

1This corresponds to F ≫ 1 in Equation (3.26)
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This cavity decay time can be directly measured by turning off the input beam to the cavity

and measuring the transmission or reflection beam from the cavity. This measurement is

called a ringdown.

The finesse of a cavity is often measured by scanning the cavity length or the laser

frequency, and measuring the time series of the transmission power from the cavity, as

shown in Figure 3.3. This measurement is called cavity scan. From Equation (3.20), the

time series of the transmission beam from the cavity can be written as follows:

T (t) =
a

1 + 4(Fπ )
2 sin2 (π(t−t0)

tFSR
)
, (3.30)

where a is the amplitude of the peak height, t0 is the time offset depending on the starting

time of the scan, and tFSR is the time difference of the free spectral range. By fitting the

measured data with this function, the finesse can be obtained.

3.2.1 Response to gravitational waves

In this section, we consider a response of a Fabry-Perot cavity to the GWs. For simplicity,

we ignore the losses in the cavity. We assume that GWs only have the plus mode and

propagate in the z direction and the Fabry-Perot cavity is placed along the x direction.

The phase for the beam with round trips in the cavity n times is

ϕn(t) =
2Lω0n

c
+
ω0

2

∫ t

t−2Ln/c
h(t′)dt′. (3.31)

The amplitude reflectivity of the cavity around the resonance is

rFP = rI − t2I rE

∞∑
n=1

rn−1
I rn−1

E e−iϕn

≃ rI − t2I rE

∞∑
n=1

rn−1
I rn−1

E

(
1− i

ω0

2

∫ t

t−2Ln/c
h(t′)dt′

)

=
rI − rE
1− rIrE

+ i(t2I rE)
ω0

2

∞∑
n=1

rn−1
I rn−1

E

∫ t

t−2Ln/c

∫ ∞

−∞
h(ω)eiωt

′
dωdt′

=
rI − rE
1− rIrE

(
1 + i

∫ ∞

−∞
HFP(ω)h(ω)e

iωtdω

)
, (3.32)

where

HFP(ω) =
ω0L

c

t2I rE

(rI − rE)(1− rIrEe−2iωL/c)

sin (ωL/c)

ωL/c
e−iωL/c (3.33)

is the frequency response of a Fabry-Perot cavity to the GWs. In the case of ωL/c ≪ 1,

rI ≃ 1, and rE = 1,

HFP(ω) = −2ω0L

c

F
π

1

1 + iω/ωp
, (3.34)
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where

fp =
ωp

2π
=

c

4LF
=
fFWHM

2
(3.35)

is called the cavity pole. The frequency response of the Fabry-Perot cavity is the first-order

low pass filter with a cutoff frequency fp for GWs (also for cavity length noise and laser

frequency noise). When we compare Equation (3.34) with Equation (3.12), the response of

the Fabry-Perot cavity is enhanced by F/π with respect to the Michelson interferometer

with the same arm length.

In current GW detectors, the Fabry-Perot cavities are used for arms of the Michelson

interferometer, as shown in Figure 3.4. The response of the Fabry-Perot Michelson inter-

ferometer (FPMI) is enhanced by 2F/π compared to the Michelson interferometer with

the same arm length.

BS
Laser

PD

ITM

ETM

ITM ETM

Figure 3.4: Configuration of a Fabry-Perot Michelson interferometer. There are two Fabry-
Perot cavities used for the arms of the Michelson interferometer to enhance the effective
arm length.

3.2.2 Pound-Drever-Hall technique

The Pound-Drever-Hall (PDH) technique is used to obtain the phase difference between

a cavity resonance and injection beam and to keep the cavity resonate [39]. An example

configuration of the PDH technique is shown in Figure 3.5.

The phase modulated injection beam is

E = E0e
i(ωt+β sinΩt)

≃ E0[J0(β)e
iωt + J1(β)e

i(ω+Ω)t − J1(β)e
i(ω−Ω)t], (3.36)
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Laser CavityEOM
BS

PD

Figure 3.5: Example configuration of the PDH technique. The phase difference between
the cavity resonance and the injection beam δϕ can be obtained by modulating the phase
of the injection beam using an electro-optic modulator (EOM) and demodulating the
reflected beam from the cavity at the modulation frequency. The PDH signal is fed back
to the cavity length to maintain the cavity resonance.

where β is the modulation depth, Ω is the modulation frequency, and Jn is the n-th order

Bessel function of the first kind. From Equation (3.18), the reflected power from the cavity

is

Pr = P0

∣∣∣J0(β)r(ω)e−iωt + J1(β)r(ω +Ω)e−i(ω+Ω)t − J1(β)r(ω − Ω)e−i(ω−Ω)t
∣∣∣2

= P0(|J0(β)r(ω)|2 + |J1(β)r(ω +Ω)|2 + |J1(β)r(ω − Ω)|2)

+ 2P0J0(β)J1(β){Re[r(ω)r∗(ω +Ω)− r∗(ω)r(ω − Ω)] cosΩt

+ Im[r(ω)r∗(ω +Ω)− r∗(ω)r(ω − Ω)] sinΩt}+ (2Ω terms). (3.37)

In Equation (3.37), the phase information of the carrier is included in the Ω terms, which

are the beat notes of the carrier and sidebands. By demodulating the reflected signal with

sinΩt, the PDH signal in phase can be obtained as follows:

P I
demod = P0J0(β)J1(β) Im{r(ω)r∗(ω +Ω)− r∗(ω)r(ω − Ω)}. (3.38)

By demodulating the reflected light with cosΩt, the PDH signal in the quadrature phase

is

PQ
demod = P0J0(β)J1(β) Re{r(ω)r∗(ω +Ω)− r∗(ω)r(ω − Ω)}. (3.39)

When the modulation frequency is significantly larger than the cavity linewidth (Ω ≫
ωFWHM) and the carrier is around the resonance, the sidebands are off resonance of the

cavity and nearly completely reflected by the cavity (r(ω ± Ω) ≃ 1). Therefore,

r(ω)r∗(ω +Ω)− r∗(ω)r(ω − Ω) ≃ i2 Im{r(ω)}. (3.40)
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In this case, the Q phase PDH signal (3.39) disappears. The I phase PDH signal (3.38) is

P I
demod ≃ 2P0J0(β)J1(β) Im{r(ω)}

=
2P0J0(β)J1(β) t

2
I rE sinϕ

1 + r2I r
2
E − 2rIrE cosϕ

≃
4P0J0(β)J1(β)t

2
I rE

(1− rIrE)2
δϕ, (3.41)

where ϕ = δϕ≪ 1 is assumed. The PDH signal is proportional to δϕ around the resonance.

The intracavity power and the normalized PDH signals (In-phase, Quadrature) are

shown in Figure 3.6.
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Figure 3.6: Normalized PDH signal of the Fabry-Perot cavity. The red line represents
the intracavity power normalized with respect to its maximum intracavity power. The
blue and green lines represent the PDH signals (in-phase and quadrature) normalized
with respect to P0J0(β)J1(β). It is assumed that the laser wavelength is λ = 1064 nm,
the cavity length is L = 4 cm, the mirrors reflectivity is rI = rE =

√
0.9999, the cavity

linewidth is fFWHM = 8 MHz, the modulation frequency is Ω/2π = 100 MHz, and the
modulation depth is β = 0.15 rad.

3.3 Configuration of GW detectors

The standard configuration of the current GW detectors is called the dual recycled Fabry-

Perot Michelson interferometer (DRFPMI). The configuration of DRFPMI is shown in

Figure 3.7. Two additional mirrors, called the power recycling and signal recycling mirrors,

are placed in the FPMI.
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Figure 3.7: Configuration of DRFPMI. In addition to the FPMI, there are two additional
mirrors called the power recycling mirror and signal recycling mirror.

Power recycling

The power recycling mirror (PRM) is placed at the injection port of the interferometer and

reflects back the laser to the interferometer. The PRM and input test mass (ITMs) form

a cavity called the power recycling cavity (PRC). When the carrier field is anti-resonant

inside the PRC, the power recycling effectively increases the injection laser power.

Signal recycling

The signal recycling mirror (SRM) is placed at the anti-symmetric port of the interferom-

eter and reflects the GW signal to the interferometer. The SRM and ITMs form a cavity

called the signal recycling cavity (SRC). When GW sidebands are resonant inside the

SRC, the effective bandwidth of the arm cavity is increased because the effective ITM re-

flectivity is reduced for the GW sidebands. This technique is called the resonant sideband

extraction (RSE). The effective bandwidth of the arm cavity with RSE can be written as

follows:

γifo =
1 + rsr
1− rsr

γarm, (3.42)

where rsr is the amplitude reflectivity of the SRM and γarm is the arm cavity half band-

width. The interferometer bandwidth can be increased with RSE.
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3.4 Noise sources in GW detectors

There are several noise sources in GW detectors. In this section, the following three

main noise sources in GW detectors will be introduced: quantum noise, seismic noise, and

thermal noise.

Quantum noise

The quantum noise is fundamental noise originated from the quantum fluctuation of light.

It is composed of shot noise and radiation pressure noise. In a semi-classical picture, the

shot noise is the photon counting noise in a photo detector, and the radiation pressure

noise is the mirror fluctuation owing to the fluctuation of the photon number hitting on the

mirror. In a quantum picture, the origin of the quantum noise is the vacuum field entering

the output port of the interferometer [9]. Details of the quantum noise are presented in

Chapter 5.

Seismic noise

The seismic noise originates from the mirror fluctuation owing to the seismic motion of

the ground. Test masses in GW detectors are suspended by multiple pendulums to isolate

the test masses from seismic noise. As the seismic noise below the resonant frequency of a

suspension (which is usually an order of 1 Hz) cannot be isolated, it is a significant noise

source at low frequencies.

Thermal noise

The thermal noise is composed of the Brownian motion of the mirror substrate, mirror

coating, and suspension wires. The ways to reduce the thermal noise are using high Q

factor coating and suspension wires, and cooling down the mirrors and suspension wires.

LIGO and Virgo operate at room temperature, while test masses are cooled down to 20

K in KAGRA to reduce the thermal noise.

3.5 Sensitivity of GW detectors

The design sensitivities of Advanced LIGO, Advanced Virgo, and KAGRA are shown in

Figure 3.8-3.10. For all cases, quantum noise broadly limits the sensitivity and it is crucial

to reduce the quantum noise to improve the sensitivity of GW detectors.
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Figure 3.8: Design sensitivity of Advanced LIGO [4].

Figure 3.9: Design sensitivity of Advanced Virgo (AdV) [5].
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Figure 3.10: Design sensitivity of KAGRA (broadband RSE) [40].
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Chapter 4

Theory of Quantum States of

Light

Quantum noise in GW detectors originates from the vacuum field entering from the output

port of the interferometer. To understand the quantum noise in GW detectors and how

to reduce it, the basics of the quantum states of light are presented in this chapter.

4.1 Quantization of the electromagnetic field

In this section, we present the quantization of the electromagnetic field. The formalism

used in this chapter (and throughout this thesis) is based on [14].

Quantized electric field can be written as follows:

E(t) =

∫ ∞

0

√
2πℏω
Ac

a(ω)e−iωtdω

2π
+ h.c., (4.1)

where A is the effective cross-sectional area of the electric field and a(ω) is the annihilation

operator for a photon whose frequency is ω. h.c. indicates the Hermitian conjugate. The

commutation relation of a(ω) is

[a(ω), a(ω′)] = 0, [a(ω), a†(ω′)] = 2πδ(ω − ω′). (4.2)

We consider a carrier field whose frequency is ω0 and its sidebands whose frequencies are

ω0±Ω. In GW detectors, the carrier frequency is ω0/(2π) ∼ 300 THz, while the frequency

of a GW signal is Ω ∼ 10 − 10 kHz, and thus, we can assume Ω ≪ ω0. In this sideband

picture, Equation (4.1) can be written as follows:

E(t) = e−iω0t

√
2πℏω0

Ac

∫ ∞

0
[a+e

−iΩt + a−e
iΩt]

dΩ

2π
+ h.c., (4.3)

where a+ = a(Ω) and a− = a(−Ω) are annihilation operators for the upper and lower

sidebands. Here, we approximated ω0 ± Ω ≃ ω0 inside the square root. Formalism using

operators a+, a− is called one-photon formalism as each operator acts on only one photon.
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Using the annihilation and creation operators for the upper and lower sidebands, we

can define

a1(Ω) =
a+ + a†−√

2
, a2(Ω) =

a+ − a†−√
2i

. (4.4)

In the time domain,

a1(t) =
a(t) + a†(t)√

2
, a2(t) =

a(t)− a†(t)√
2i

. (4.5)

A formalism using operators a1, a2 is called two-photon formalism because each operator

acts on two photons, which are the upper and lower sidebands [41, 42]. The two-photon

formalism is used throughout this thesis as it is useful for describing the squeezed vacuum

states and calculating the quantum noise in GW detectors.

The commutation relation in the two-photon formalism is

[a1, a
†
2′ ] = −[a2, a

†
1′ ] = i2πδ(Ω− Ω′), (4.6)

[a1, a1′ ] = [a1, a
†
1′ ] = [a†1′ , a

†
1′ ] = [a†1′ , a

†
2′ ] = [a1, a2′ ] = 0, (4.7)

and similarly, with 1↔2.

The electric field (4.3) can be written in terms of the two-photon formalism as follows:

E(t) =

√
4πℏω0

Ac
{a1(t) cos (ω0t) + a2(t) sin (ω0t)}, (4.8)

where

a1,2(t) =

∫ ∞

0

[
a1,2(Ω)e

−iΩt + a†1,2(−Ω)eiΩt
] dΩ
2π
. (4.9)

When the carrier electric field is in the cosine quadrature, a1(t) is the amplitude modu-

lation and a2(t) is the phase modulation for the carrier. Conventionally, a1 is called the

amplitude quadrature and a2 is called the phase quadrature.

4.2 Heisenberg uncertainty principle

For an arbitrary Hermitian operator A and an arbitrary state |ψ⟩, we define the uncertainty
of the operator as

∆A = A− ⟨A⟩ , (4.10)
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where ⟨A⟩ = ⟨ψ|A |ψ⟩ is the expectation value of A for state |ψ⟩. The variance of the

operator is defined as follows:

⟨(∆A)2⟩ = ⟨A2⟩ − ⟨A⟩2 . (4.11)

According to the Heisenberg uncertainty principle, for arbitrary Hermitian operators A

and B, and an arbitrary state |ψ⟩,

⟨(∆A)2⟩ ⟨(∆B)2⟩ ≥ 1

4
| ⟨[A,B]⟩ |2. (4.12)

As the commutation relation for a, a† in the time domain is [a, a†] = 1, the commutation

relation for the quadrature operators is [a1, a2] = i. The uncertainty principle for the

quadrature operators is

⟨(∆a1)2⟩ ⟨(∆a2)2⟩ ≥
1

4
| ⟨[a1, a2]⟩ |2 =

1

4
. (4.13)

This indicates that the product of variances of the amplitude and phase quadratures has

an unavoidable lower limit for any states.

4.3 Quantum states of light

In this section, the basic quantum states of light, including Fock states, vacuum states,

coherent states and squeezed states, are introduced.

4.3.1 Fock states and vacuum states

Fock states or number states |n⟩ are defined as follows:

a |n⟩ =
√
n |n− 1⟩ , (4.14)

a† |n⟩ =
√
n+ 1 |n+ 1⟩ , (4.15)

N |n⟩ = n |n⟩ , (4.16)

where N = a†a is the number operator. The Fock states are orthogonal: ⟨n|m⟩ = δnm.

The vacuum states |0⟩ are defined as follows:

a |0⟩ = 0. (4.17)

The Fock states can be written in terms of the creation operator as follows:

|n⟩ = (a†)n√
n!

|0⟩ . (4.18)

This indicates that there are n photons in the Fock states |n⟩.
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The expectation value and variance of a1 and a2 for the Fock states are

⟨n| a1 |n⟩ = ⟨n| a2 |n⟩ = 0, (4.19)

⟨n| (∆a1)2 |n⟩ = ⟨n| (∆a2)2 |n⟩ = n+
1

2
. (4.20)

The vacuum states |0⟩ are the Fock states with no photon. Although the expectation

value of the amplitude and phase quadratures for the vacuum states is 0, the vacuum

states have an uncertainty in amplitude and phase quadratures owing to the Heisenberg

uncertainty principle. This uncertainty of the vacuum states entering from the output

port of the interferometer is the origin of the quantum noise in GW detectors.

4.3.2 Coherent states

Coherent states |α⟩ can be defined as the eigenstates of the annihilation operator as follows:

a |α⟩ = α |α⟩ , (4.21)

where α is an eigenvalue of a. Coherent states in the number state basis can be written as

|α⟩ = e−|α|2/2
∞∑
n=0

αn

√
n!

|n⟩ . (4.22)

The displacement operator from the vacuum states to the coherent states can be written

as

D(α) |0⟩ = |α⟩ , (4.23)

D(α) = exp (αa† − α∗a). (4.24)

The expectation value and variance of a1 and a2 for the coherent states are

⟨α| a1 |α⟩ =
√
2Re[α], (4.25)

⟨α| a2 |α⟩ =
√
2Im[α], (4.26)

⟨α| (∆a1)2 |α⟩ = ⟨α| (∆a2)2 |α⟩ =
1

2
. (4.27)

The coherent states have an equal uncertainty for the amplitude and phase quadrature,

and the product of the uncertainty for the amplitude and phase quadrature is the minimum

value allowed by the uncertainty principle.

4.3.3 Squeezed states

The operator for the squeezed states can be written as

S(r, ϕ) = exp

(
1

2
re−2iϕa2 − 1

2
re2iϕa†2

)
, (4.28)
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where r is the squeezing factor and ϕ is the squeezing angle. Using the operator for the

squeezed states, the amplitude and phase quadrature evolve as follows:

S(r, ϕ)†a1S(r, ϕ) = a1(cosh r − sinh r cos 2ϕ)− a2 sinh r sin 2ϕ, (4.29)

S(r, ϕ)†a2S(r, ϕ) = a2(cosh r + sinh r cos 2ϕ)− a1 sinh r sin 2ϕ. (4.30)

In the case of ϕ = 0,

S(r)†a1S(r) = a1e
−r, (4.31)

S(r)†a2S(r) = a2e
r. (4.32)

The expectation value and variance of a1 and a2 in the squeezed states are as follows:

⟨0|S(r)†a1S(r) |0⟩ = ⟨0|S(r)†a2S(r) |0⟩ = 0, (4.33)

⟨0|S(r)†(∆a1)2S(r) |0⟩ =
1

2
e−2r, (4.34)

⟨0|S(r)†(∆a2)2S(r) |0⟩ =
1

2
e2r. (4.35)

Compared to the vacuum states, the variance of the amplitude quadrature in the squeezed

states is decreased (or squeezed) by a factor of e2r, while the variance of the phase quadra-

ture is increased (or anti-squeezed) by the same factor. The squeezed states have a min-

imum uncertainty, however, the variance of the two quadratures are redistributed in the

squeezed states.

The squeezed states for ϕ = 0 can be written in terms of the number state as follows:

S(r) |0⟩ = 1√
cosh r

∞∑
n=0

√
(2n)!

2nn!
(tanh r)n |2n⟩ . (4.36)

This indicates that only an even number of photons are present in the squeezed states.

The squeezed states are generated from the pairs of correlated photons, which will be

presented in Section 4.5.

4.4 Second order nonlinear process

The second order nonlinear process plays a key role in generating the squeezed vacuum

states. In this section, the theory of the second order nonlinear process will be presented.

When an electric field E is applied to a nonlinear material, it induces a polarization

P as follows:

P = ϵ0(χ
(1)E + χ(2)E2 + ...)

= P (1) + P (2) + ..., (4.37)

where ϵ0 is the free space permittivity and χ(n) is the n-th order optical susceptibility of
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the nonlinear material. In this thesis, only the second order nonlinear term is considered.

When the electric field can be written as E = E0e
−iωt + h.c., the second order polar-

ization in Equation (4.37) is

P (2) = ϵ0χ
(2)(E2

0e
−2iωt + h.c.) + ϵ0χ

(2)(2E0E
∗
0). (4.38)

This equation indicates that the second harmonics of the input electric field and the

DC field are generated. When the input electric field is composed of more than one

frequency components, the second order nonlinear optical susceptibility leads to the sum

and difference frequency generation of the input electric fields.

For the sum frequency generation, the field with a frequency ω3 = ω1+ω2 is generated

from the input fields with a frequency ω1, ω2, as shown in Figure 4.1.
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Figure 4.1: Schematic of sum frequency generation. A block in the center is a nonlinear
material with effective nonlinear susceptibility deff = χ(2)/2. The optical axis is defined
as the z axis and the length of the nonlinear material in the z axis is L. A field with a
frequency ω3 = ω1 + ω2 is generated from the input fields with a frequency ω1, ω2.

The input and generated fields should satisfy the following wave equation [43]:

∇2En − n2(ωn)

c2
∂2En

∂t2
=

1

ϵ0c2
∂2PNL

n

∂t2
, (4.39)

where En is the n-th electric field, n(ωn) is the refractive index of the nonlinear material

for the n-th field, ωn is the frequency of the n-th field, and PNL
n is the nonlinear part of

the polarization for the n-th field.

In the absence of a nonlinear source term, the solution of the wave equation (4.39) is

E3(z, t) = A3e
i(k3z−ω3t) + h.c., (4.40)

where A3 is the constant amplitude of the generated field and

k3 =
n3ω3

c
, n3 = n(ω3). (4.41)
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When the nonlinear source term is not large, we can assume that the solution to Equation

(4.39) remains in the same form as Equation (4.40), except that A3 becomes a slowly

varying function of z. The nonlinear source term in Equation (4.39) can be written as

follows:

P3(z, t) = P3e
−iω3t + h.c., P3 = 4ϵ0deffE1E2, (4.42)

where deff = χ(2)/2.

Substituting Equation (4.40) and (4.42) into the wave equation (4.39),[
d2A3

dz2
+ 2ik3

dA3

dz
− k23A3 +

n23ω
2
3A3

c2

]
ei(k3z−ω3t) + h.c.

= −4deffω
2
3

c2
A1A2e

i(k1+k2)z−ω3t + h.c.. (4.43)

As k3 = n3ω3/c, the third and fourth terms on the left hand side of Equation (4.43) are

cancelled out. Assuming a slowly varying amplitude approximation,∣∣∣∣d2A3

dz2

∣∣∣∣≪ ∣∣∣∣k3dA3

dz

∣∣∣∣ . (4.44)

Equation (4.43) is

dA3

dz
=

2ideffω
2
3

k3c2
A1A2e

i∆kz, (4.45)

where ∆k = k1 + k2 − k3 is called the wavevector mismatch. In the simplified case where

A1, A2 are constant,

A3 =
2ideffω

2
3A1A2

k3c2

∫ L

0
ei∆kzdz =

2ideffω
2
3A1A2

k3c2
ei∆kL − 1

i∆k
. (4.46)

The intensity of the generated field is calculated from the time averaged Poynting vector

as follows:

I3 = 2n3ϵ0c|A3|2. (4.47)

Thus, we obtain

I3 =
8n3ϵ0d

2
effω

4
3|A1|2|A2|2L2

k23c
3

sinc2
(
∆kL

2

)
. (4.48)

I3 is characterized by the sinc function, which is shown in Figure 4.2. I3 is maximum

when the wavevector mismatch is ∆k = 0.
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Figure 4.2: sinc2(∆kL/2) as a function of the wavevector mismatch.

4.4.1 Phase matching

As we discussed in the previous section, the phase matching is important to maximize the

nonlinear effect. The perfect phase matching condition ∆k = 0 is

n1ω1

c
+
n2ω2

c
=

n3ω3

c
, (4.49)

ω1 + ω2 = ω3. (4.50)

This condition is typically difficult to achieve because the refractive index is an increas-

ing function of the frequency in the normal dispersion. To achieve the phase matching

condition, the following three different techniques are commonly used [43]. The first two

techniques use the birefringence of the nonlinear material, while the third one can be used

for the non-birefringence material.

Type I phase matching

In type I phase matching, the input fields have the same polarization, while the generated

field has the orthogonal polarization with respect to the input fields. Phase matching

can be done when the refractive indices of the nonlinear crystal for the two orthogonal

polarizations have different values. Fine tuning of the refractive index of the crystal for

the input and generated fields can be done by changing the incident angle of the input

fields and the temperature of the crystal.

The second harmonic generator (SHG) in our experiment uses MgO : LiNbO3 as a non-

linear crystal. As the refractive index of MgO : LiNbO3 for the IR ordinary ray is approx-

imately the same as that for the green extraordinary ray: no(1064 nm) ≃ ne(532 nm) ≃
2.23 [44], phase matching can be done via Type I phase matching.
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Type II phase matching

In type II phase matching, the input fields have orthogonal polarizations, and the generated

field has the same polarization as either of the injected fields.

Quasi phase matching

Instead of using the birefringence of the crystal, the quasi-phase matching flips the sign of

the nonlinearity of the crystal before the phase mismatch between the input and generated

fields becomes π/2. The quasi-phase matching can be done by inverting the crystal’s

domain periodically with a short length scale. A phase mismatch in the quasi-phase

matching can be written as follows:

∆kQPM = k1 + k2 − k3 −
2π

Λ
, (4.51)

where Λ is the crystal inversion period. With quasi-phase matching, deff is replaced with

dQPM = 2
πdeff . Fine tuning of the phase matching condition can be done by tuning the

refractive index of the crystal with the crystal temperature.

The optical parametric oscillator (OPO) in our experiment uses periodically oled potas-

sium titanyl phosphate (PPKTP) as a nonlinear crystal, and phase matching is done via

quasi-phase matching.

4.5 Generation of squeezed vacuum states

Squeezed vacuum states can be generated from OPO, which is an optical cavity and has a

nonlinear crystal inside. OPO converts the pump photon, whose frequency is 2ω0, to two

correlated photons whose frequency is ω0. In this section, the principle of the generation

of squeezed vacuum states with OPO is presented.

4.5.1 Equation of motion of OPO with losses

In this section, the calculation of the equation of motion of OPO with losses is presented

based on [45, 46, 47]. The OPO with losses can be modelled, as shown in Figure 4.3. It

is a triangular cavity with the input, output, and loss couplers. We denote the coupler

j = i, o, l for the input, output, and loss couplers, respectively.

The Hamiltonian of the OPO with loss can be written as [48]

H = Hcav +Hint +Hbath, (4.52)

where Hcav is the Hamiltonian for the cavity modes, Hint is the Hamiltonian for the

interaction between the cavity modes and the external modes that couple through coupler

j, and Hbath is the Hamiltonian for the external modes,

Hcav = ℏω0a
†a+ ℏ(2ω0)b

†b+
iℏ
2
(ϵa†2b− ϵ∗a2b†), (4.53)
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Figure 4.3: Model of OPO. a and b are the intracavity fields at the fundamental and
second harmonic modes. κa,bi , κa,bo , and κa,bl are the decay rates for the input, output, and
loss couplers for the fundamental and second harmonic modes. Ai,in and δBi,in, δAo,in and
Bo,in, and δAl,in and δBl,in are the fundamental and second harmonic fields entering the
cavity via the input, output, and loss couplers, respectively. Ai,out and Bi,out, Ao,out and
Bo,out, and Al,out and Bo,out are the fundamental and second harmonic fields exiting the
cavity from the input, output, and loss couplers.

Hint = iℏ
∑
j

∫ ∞

−∞

[√
2κaj (A

†
ja− a†Aj) +

√
2κbj(B

†
jb− b†Bj)

]
dω, (4.54)

Hbath =
∑
j

∫ ∞

−∞
ℏω(A†

jAj +B†
jBj)dω, (4.55)

where ϵ is the nonlinear coupling parameter and assumed to be a real number (optimal

phase matching). a and b are the intracavity fields for the fundamental and second har-

monic modes, respectively. Aj and Bj are the external fields coupling to the coupler j for

the fundamental and second harmonic modes, respectively. κa,bj = (1 −
√
Ra,b

j )/τrt is the

decay rate of the coupler j for the fundamental and second harmonic modes, where Ra,b
j

is the power reflectivity of the coupler j for the fundamental and second harmonic mode

and τrt = L/c is the cavity round-trip time. The total cavity decay rate κa,b =
∑

j κ
a,b
j

corresponds to the cavity pole 2πfa,bp when the total cavity losses are low.

Assuming that the fundamental coherent field is injected from the input coupler, and

second harmonic coherent field is injected from the output coupler which is the case for

our experiment, the Langevin equation for the fundamental and second harmonic modes
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will be [45]

ȧ =
1

iℏ
[a,Hcav]− κaa+

√
2κaiAi,ine

iω0t +
√
2κaoδAo,in +

√
2κal δAl,in, (4.56)

ḃ =
1

iℏ
[b,Hcav]− κbb+

√
2κbiδBi,in +

√
2κboBo,ine

i2ω0t +
√

2κbl δBl,in, (4.57)

where Aj,in and Bj,in are the input external fields from the coupler j for the fundamental

and second harmonic modes.

In a reference frame co-rotating with the injection coherent field,

ȧ = ϵa†b− (κa − i∆a)a+
√
2κaiAi,in +

√
2κaoδAo,in +

√
2κal δAl,in, (4.58)

ḃ = − ϵ
2
a2 − (κb − i∆b)b+

√
2κbiδBi,in +

√
2κboBo,in +

√
2κbl δBl,in, (4.59)

where ∆a = ω0 − ωa
cav,∆

b = 2ω0 − ωb
cav are the detuning of the injection frequency with

respect to the cavity resonance.

We assume that the cavity operates on the resonance (∆a,b = 0), constant pump

(ḃ = 0), and photon number at the fundamental frequency is small (a2 = 0). In this

assumption,

ȧ = ϵba† − κaa+
√

2κaiAi,in +
√
2κaoδAo,in +

√
2κal δAl,in, (4.60)

0 = −κbb+
√
2κbiδBi,in +

√
2κboBo,in +

√
2κbl δBl,in. (4.61)

Classical calculation

First, we calculate Equation (4.60) classically. Ignoring the quantum fluctuation terms

and considering the steady state ȧ = 0, Equation (4.60) is

0 = |ϵ||b|eiϕpumpa† − κaa+
√

2κaiAi,in, (4.62)

0 = |ϵ||b|e−iϕpumpa− κaa† +
√

2κaiA
†
i,in, (4.63)

where ϕpump is the phase of the pump field. The a† term in Equation (4.62) represents

the sideband generated by the nonlinear effect. From Equation (4.62), (4.63) and setting

the input field is real (Ai,in = A†
i,in),

a =

√
2κai
κa

1 + xeiϕpump

1− x2
Ai,in, (4.64)

where x = |ϵ||b|/κa is the OPO nonlinear factor. The OPO nonlinear factor is the ratio

of the round-trip gain to the round-trip loss inside the OPO for the fundamental field.

When it is above 1, the fundamental intracavity field becomes infinity, and the OPO can

produce the fundamental coherent field. For the squeezing measurement, the OPO is

49



operated below the threshold. The OPO threshold power Pth can be written as follows:

x =

√
Ppump

Pth
, (4.65)

where Ppump is the injection pump power.

The parametric gain is the ratio of the transmission power (or intracavity power) of the

fundamental field with/without the pump, which can be obtained from Equation (4.64):

G(ϕpump) =
1 + x2 + 2x cosϕpump

(1− x2)2
. (4.66)

The injected fundamental field is amplified or de-amplified, depending on the pump phase.

In particular, the amplification factor

G(ϕpump = 0) =
1

(1− x)2
= g (4.67)

is called the nonlinear gain.

Quantum calculation

From Equation (4.60), when there is no coherent field at the fundamental frequency,

δȧ = |ϵ||b|eiϕpumpδa† − κaδa+
∑
j

√
2κaj δAj,in, (4.68)

δȧ† = |ϵ||b|e−iϕpumpδa− κaδa† +
∑
j

√
2κaj δA

†
j,in. (4.69)

From these equations, we can calculate the amplitude and phase quadrature Xa
1 = a+a†√

2

and Xa
2 = a−a†√

2i
,

δẊa
1 = (−κa + |ϵ||b| cosϕpump)δX

a
1 + |ϵ||b| sinϕpumpδX

a
2 +

∑
j

√
2κaj δX

Aj,in

1 ,(4.70)

δẊa
2 = (−κa − |ϵ||b| cosϕpump)δX

a
2 + |ϵ||b| sinϕpumpδX

a
1 +

∑
j

√
2κaj δX

Aj,in

2 .(4.71)

Obtaining the Fourier transform,

(1− x cosϕpump + iΩ/κa)δX̃a
1 − x sinϕpumpδX̃

a
2 =

∑
j

√
2κaj
κa

δX̃
Aj,in

1 , (4.72)

(1 + x cosϕpump + iΩ/κa)δX̃a
2 − x sinϕpumpδX̃

a
1 =

∑
j

√
2κaj
κa

δX̃
Aj,in

2 . (4.73)
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From Equation (4.72) and (4.73),(
δX̃a

1

δX̃a
2

)
=

1

(1 + x+ iΩ/κa)(1− x+ iΩ/κa)

×

(
1 + x cosϕpump + iΩ/κa x sinϕpump

x sinϕpump 1− x cosϕpump + iΩ/κa

) ∑
j

√
2κa

j

κa δX̃
Aj,in

1∑
j

√
2κa

j

κa δX̃
Aj,in

2

 .

(4.74)

The boundary condition for the output coupler is [45]

Ao,in +Ao,out =
√
2κaoa. (4.75)

Converting this to the two-photon formalism and obtaining the Fourier transform,

δX̃
Ao,out

1,2 =
√
2κaoδX̃

a
1,2 − δX̃

Ao,in

1,2 . (4.76)

The variance of the amplitude and phase quadrature for the transmission field can be

calculated as V trans
1,2 = ⟨0| |δX̃Ao,out

1,2 |2 |0⟩. Using ⟨0| δX̃i
nδX̃

†j
m |0⟩ = δijδnm, where i, j =

Ai,in, Ao,in, Al,in and n,m = 1, 2, the variance of the amplitude and phase quadrature for

the OPO transmission are

(
V trans
1

V trans
2

)
=


1 + 4xηesc

2x+ (1 + x2 + (Ω/κa)2) cosϕpump

((1− x)2 + (Ω/κa)2)((1 + x)2 + (Ω/κa)2)

1 + 4xηesc
2x− (1 + x2 + (Ω/κa)2) cosϕpump

((1− x)2 + (Ω/κa)2)((1 + x)2 + (Ω/κa)2)

 , (4.77)

where ηesc = κao/κ
a is called the OPO escape efficiency. V trans

1,2 can be written in terms of

V± as follows: (
V trans
1

V trans
2

)
=

(
cos2

ϕpump

2 sin2
ϕpump

2

sin2
ϕpump

2 cos2
ϕpump

2

)(
V+

V−

)
, (4.78)

where

V+ = 1 + ηesc
4x

(1− x)2 + (Ω/κa)2
, (4.79)

V− = 1− ηesc
4x

(1 + x)2 + (Ω/κa)2
. (4.80)

V+ corresponds to the anti-squeezing quadrature and V− corresponds to the squeezing

quadrature.

When Ω/κa ≪ 1, the variances of the squeezing and anti-squeezing quadrature V± are

V± = 1± 4ηesc
x

(1∓ x)2
. (4.81)
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From Equation (4.81), the nonlinear gain g is related to the generated squeezing level

σdB without losses (ηesc = 1) as follows:

σdB = −10 log10 V− = −20 log10
1− x

1 + x
= 20 log10 (2

√
g − 1). (4.82)

4.6 Balanced homodyne detection

To measure the squeezed vacuum states, balanced homodyne detection is widely used, as

shown in Figure 4.4. The local oscillator and the squeezed vacuum states are combined

with the beam splitter, and the two outputs from the beam splitter are detected with

photo detectors, and the difference of the two outputs is extracted.

a
b

c

d

Figure 4.4: Configuration of balanced homodyne detection. a, b are input fields for BS and
c, d are output fields for BS. The output fields from BS are detected with photo detectors
and then subtracted.

The input-output relation of the beam splitter is(
c

d

)
=

1√
2

(
1 1

1 −1

)(
a

b

)
. (4.83)

The photocurrent at each PD is

Ic ∝ c†c =
1

2
(a†a+ a†b+ b†a+ b†b), (4.84)

Id ∝ d†d =
1

2
(a†a− a†b− b†a+ b†b). (4.85)

When the two signals are balanced, the difference of these signals is

Idiff = Ic − Id ∝ a†b+ b†a. (4.86)
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When a is the squeezed vacuum filed and b is the local oscillator (LO),

a = δaeiϕCC , b = (b+ δb)eiϕLO , (4.87)

where b is the DC amplitude of the LO and δa and δb are fluctuation terms. ϕCC and ϕLO

are the phase of the squeezed vacuum field and LO, respectively. ϕCC can be tracked by

the coherent control (CC) field, which is presented in the next section.

Ignoring the second order of the fluctuation terms, Equation (4.86) is

Idiff ∝ b(δa†ei(ϕLO−ϕCC) + δae−i(ϕLO−ϕCC))

=
√
2b(δX1 cos (ϕLO − ϕCC) + δX2 sin (ϕLO − ϕCC)). (4.88)

Normalizing the equation above by the LO power, the variance of the squeezed vacuum

field measured by the homodyne detector is

Vmeas = cos2 (ϕLO − ϕCC)V1 + sin2 (ϕLO − ϕCC)V2. (4.89)

From Equation (4.78), the amplitude quadrature δX1 is rotated from the anti-squeezing

quadrature δX+ by ϕpump/2. Therefore, we can express the measured quadrature as

follows:

δXmeas =
(

cos (ϕLO − ϕCC) sin (ϕLO − ϕCC)
) cos

ϕpump

2
− sin

ϕpump

2

sin
ϕpump

2
cos

ϕpump

2

( δX+

δX−

)
.

(4.90)

The variance of the measured quadrature is

Vmeas = cos2 (ϕsqz)V+ + sin2 (ϕsqz)V−, (4.91)

where

ϕsqz = ϕLO − ϕCC − ϕpump

2
(4.92)

is called the squeezing angle. ϕsqz = 0 corresponds to the anti-squeezing quadrature and

ϕsqz = π/2 corresponds to the squeezing quadrature. In this thesis, we define the homo-

dyne angle as ϕhom = π/2 − ϕsqz. By changing the squeezing angle ϕsqz, any quadrature

of the squeezed vacuum filed can be measured. When we want to maintain the same

quadrature, ϕsqz has to be controlled.

4.7 Coherent control

Coherent control is a technique used to control the squeezing angle [49]. The coherent

control field, whose frequency is ω0 + Ωcc, is injected to the OPO and copropagates with
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the squeezed vacuum field. The coherent control field can track the phase of the squeezed

vacuum field. The coherent control is composed of two coherent control loops (referred to

as CC1 and CC2 in this thesis). ϕpump is maintained constant by CC1, and the relative

phase between LO and CC (ϕLO − ϕCC) is maintained constant by CC2 to make the

squeezing angle ϕsqz constant.

For simplicity, we assume that detuning of the CC field inside the OPO is significantly

smaller than the OPO bandwidth Ωcc ≪ κa. When the CC field is injected from the input

port of the OPO, as shown in Figure 4.3, the CC field inside the OPO is from Equation

(4.62) and (4.63),

acav,cc =

√
2κaiAcc

(1− x2)κa

(
ei(ω0+Ωcc)t + xei(ω0−Ωcc)t+iϕpump

)
, (4.93)

where Acc is the amplitude of the CC field before the OPO. In this formula, the reference

frame is not co-rotating with eiω0t. Owing to the nonlinear effect of the OPO, an additional

sideband with a frequency of ω0 − Ωcc and phase of ϕpump is generated.

CC1 error signal

The CC1 error signal is obtained by detecting the beat note of the two CC sidebands

(CCSB) at the OPO reflection. The reflected CCSB fields from the OPO can be calculated

from the boundary condition of the input port as follows:

Arefl,cc =
√
2κai acav,cc −Ain,cc

=

{
2κai

(1− x2)κa
− 1

}
Acce

i(ω0+Ωcc)t +
2κaiAccx

(1− x2)κa
ei(ω0−Ωcc)t+iϕpump . (4.94)

The beat note of the CCSB at the OPO reflection is

PCC1 =
4A2

ccκ
a
i x

(1− x2)κa

{
2κai

(1− x2)κa
− 1

}
cos (2Ωcct− ϕpump). (4.95)

Demodulating this signal with cos (2Ωcc + ϕdm,CC1) and low-passing it, the CC1 error

signal is

PCC1 =
2A2

ccκ
a
i x

(1− x2)κa

{
2κai

(1− x2)κa
− 1

}
cos (ϕpump + ϕdm,CC1). (4.96)

As the CC1 error signal is locked at the point where the CC1 error signal (4.96) is 0,

ϕpump = −ϕdm,CC1 +
π

2
. (4.97)

ϕpump can be fixed to any value by changing the CC1 demodulation phase ϕdm,CC1.
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CC2 error signal

The CC2 error signal is obtained from the beat note of CCSB and LO at the homodyne

detector. The CCSB transmit the OPO and reach the homodyne detector with squeezed

vacuum states. When the phase of the CCSB between the OPO and homodyne detector

is ϕCC, the CCSB at the homodyne detector are

eiϕCC
√
2κaoacav,cc =

2
√
κai κ

a
oAcc

(1− x2)κa

(
ei(ω0+Ωcc)t+iϕCC + xei(ω0−Ωcc)t+i(ϕCC+ϕpump)

)
. (4.98)

From Equation (4.86), the beat signal of CCSB and LO (ALOe
iω0t+iϕLO) at the homodyne

detector is

PCC2 =
4
√
κai κ

a
oAccALO

(1− x2)κa
{cos (Ωcct− ϕLO + ϕCC) + x cos (Ωcct+ ϕLO − ϕCC − ϕpump)}

=
4
√
κai κ

a
oAccALO

(1− x2)κa
{cos (Ωcct− ϕsqz − ϕpump/2) + x cos (Ωcct+ ϕsqz − ϕpump/2)}.

(4.99)

Considering the cosine terms in Equation (4.99),

PCC2 ∝ cos (Ωcct− ϕsqz − ϕpump/2) + x cos (Ωcct+ ϕsqz − ϕpump/2)

= {cos (ϕsqz + ϕpump/2) + x cos (ϕsqz − ϕpump/2)} cosΩcct

+ {sin (ϕsqz + ϕpump/2)− x sin (ϕsqz − ϕpump/2)} sinΩcct

=
√
1 + x2 + 2x cos (2ϕsqz) cos (Ωcct+ ϕCC2), (4.100)

where

ϕCC2 = arctan

{
− sin (ϕsqz + ϕpump/2) + x sin (ϕsqz − ϕpump/2)

cos (ϕsqz + ϕpump/2) + x cos (ϕsqz − ϕpump/2)

}
. (4.101)

Demodulating Equation (4.100) by cos (Ωcct+ ϕdm,CC2) and low-passing it, the CC2 error

signal is

PCC2 =
2
√
κai κ

a
oAccALO

κa

√
1 + x2 + 2x cos (2ϕsqz)

1− x2
cos (ϕCC2 − ϕdm,CC2). (4.102)

As the CC2 error signal is locked at the point where the CC2 error signal (4.102) is 0,

ϕdm,CC2 = ϕCC2 +
π

2
. (4.103)

The squeezing angle ϕsqz, which is included in ϕCC2, can be fixed to any value by changing

the CC2 demodulation phase ϕdm,CC2.
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CC2 demodulation phase and squeezing angle

The relationship between the squeezing angle and the CC2 demodulation phase is linear

without a nonlinear effect (x = 0), however, it becomes nonlinear with a nonlinear effect

of CCSB. The relationship between the CC2 demodulation phase and the squeezing angle

(4.103) with ϕpump = 0 is shown in Figure 4.5. The squeezing angle becomes sensitive to

the CC2 demodulation phase around the anti-squeezing quadrature (ϕsqz = 0, π) owing to

the nonlinear effect of CCSB.
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Figure 4.5: Relation between the CC2 demodulation phase and squeezing angle with
ϕpump = 0 for x = 0 and 0.8.

4.8 Squeezing degradation sources

In the experiment, there are several sources which degrade the achievable squeezing level.

In this section, the main squeezing degradation sources, including losses, classical noise,

and phase noise, are presented.

4.8.1 Losses

When there are losses in the squeezing path, the squeezed vacuum field is lost, and the

external vacuum field comes in from the loss port, and the squeezing level is degraded.

The squeezing and anti-squeezing levels with losses l are

V l
± = (1− l)V± + l, (4.104)
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where V± are the squeezing and anti-squeezing levels without any losses,

V± = 1± 4
x

(1∓ x)2
. (4.105)

From Equation (4.104) and (4.105), the squeezing and anti-squeezing noise levels with

losses can be written as follows:

V l
− = 1− 4η

x

(1 + x)2
, (4.106)

V l
+ = 1 + 4η

x

(1− x)2
, (4.107)

where η = 1 − l is the total efficiency, which can be divided into η = ηescηlossηvisηPD

where ηesc is the escape efficiency of OPO, ηloss is the propagation efficiency, ηvis is the

efficiency of the visibility of the LO and squeezed field, and ηPD is the efficiency of the

photo detectors.

The squeezing and anti-squeezing levels as a function of losses are shown in Figure 4.6.
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Figure 4.6: Squeezing and anti-squeezing levels as a function of losses for 5, 10, and 15 dB
generated squeezing. The squeezing level is degraded more than the anti-squeezing level
by losses.

4.8.2 Classical noise

As the classical noise in the detected signal, such as dark noise of the electronics, increases

both vacuum noise (quantum noise without squeezing) and squeezing noise levels, the

classical noise can be considered as an optical loss [50, 51]. The squeezing level with the
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classical noise is

V obs
− =

V obs
sqz

V obs
vac

=
Vsqz + Vclass
Vvac + Vclass

=

(
1− Vclass

Vvac + Vclass

)
Vsqz
Vvac

+
Vclass

Vvac + Vclass

=

(
1− Vclass

V obs
vac

)
V− +

Vclass
V obs
vac

, (4.108)

where V obs
− , V obs

sqz and V obs
vac are the observed squeezing ratio, observed squeezing noise

level, and observed vacuum noise level, respectively. Vclass is the classical noise level. This

formula has the same form as Equation (4.104) and the effect of the classical noise is the

same as the effect of the losses l = Vclass/V
obs
vac (ratio of the classical noise and observed

vacuum noise in the power spectral density).

4.8.3 Phase noise

The squeezing angle fluctuation (phase noise) couples the anti-squeezing quadrature to the

squeezing quadrature and degrades the squeezing level. The squeezing and anti-squeezing

levels with the phase noise are

V θ
±(t) = V± cos2 θ(t) + V∓ sin2 θ(t). (4.109)

Although the squeezing angle can be controlled by the coherent control, there are residual

fluctuations of the squeezing angle. If we model the fluctuations as normally distributed

around θ = 0 with a small rms fluctuation θrms (< 100 mrad), we can write the averaged

variance of the squeezing and anti-squeezing quadrature as follows:

V θrms
± =

∫ ∞

−∞
dθ
e−θ2/2θ2rms

√
2πθrms

(V± cos2 θ + V∓ sin2 θ)

≃ V± cos2 θrms + V∓ sin2 θrms. (4.110)

The squeezing and anti-squeezing levels as a function of the phase noise are shown in

Figure 4.7.

4.8.4 Combination of squeezing degradation sources

From Equation (4.104) and (4.110), the squeezing and anti-squeezing levels with the loss

and phase noise are

V l,θrms
± = (1− l)(V± cos2 θrms + V∓ sin2 θrms) + l (4.111)
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Figure 4.7: Squeezing and anti-squeezing level as a function of phase noise for 5, 10, and
15 dB generated squeezing. The squeezing level is degraded by the phase noise, while the
anti-squeezing level nearly does not degrade.

From Equation (4.105) and (4.111), the squeezing level with the loss and phase noise can

be written as a function of x as follows:

V l,θrms
− = 1 + 4ηx

{
sin2 θrms

(1− x)2
− cos2 θrms

(1 + x)2

}
. (4.112)

When the generated squeezing level is increased, the squeezing level is increased, but

the anti-squeezing level is also increased, which decreases the squeezing level due to phase

noise. Therefore, there is an optimal generated squeezing level for the maximum achievable

squeezing level with loss and phase noise, which can be obtained by solving dV l,θrms
− /dx = 0

where

dV l,θrms
−
dx

= −4η
(1 + 6x2 + x4) cos 2θrms − 4x(1 + x2)

(1− x2)3
. (4.113)

The optimal value for x is obtained as follows [46]:

x = 1− 2
√
θrms + 2θrms − 2θ3/2rms + 2θ2rms. (4.114)

The optimal generated squeezing for a maximum achievable squeezing level depends on

only phase noise.

Although the maximum achievable squeezing level with loss and phase can be obtained

by substituting Equation (4.114) into Equation (4.112), it is easier to obtain it from

Equation (4.111) without using x. From Equation (4.111) and V+V− = 1, the squeezing

level with loss and phase noise can be written as a function of the anti-squeezing level as
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follows:

V l,θrms
− =

1− l

2

{(
tan2 θrms +

1

tan2 θrms

)
V l,θrms
+ − l

1− l

+

(
tan θrms −

1

tan θrms

)√√√√(tan θrms +
1

tan θrms

)2
(
V l,θrms
+ − l

1− l

)2

− 4

+ l,

(4.115)

where θrms ≪ 1 is assumed. It is a general formula between the squeezing level and anti-

squeezing levels with the loss and phase noise and is independent of the generated squeezing

level. From Equation (4.115), the maximum achievable squeezing level for a given loss and

phase noise can be obtained. By solving dV l,θrms
− /dV l,θrms

+ = 0, the maximum achievable

squeezing level and the corresponding anti-squeezing level are derived as follows:

V l,θrms
− =

2(1− l)

tan θrms +
1

tan θrms

+ l, (4.116)

V l,θrms
+ = (1− l)

tan2 θrms +
1

tan2 θrms

tan θrms +
1

tan θrms

+ l. (4.117)

The maximum achievable squeezing level (4.116) as a function of loss and phase noise is

shown in Figure 4.8.
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Figure 4.8: Maximum achievable squeezing level with losses and phase noise.
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Chapter 5

Quantum Noise in

Gravitational-Wave Detector

Quantum noise in GW detectors originates from the vacuum field entering the output

port of the interferometer, as shown in Figure 5.1. Injecting the squeezed vacuum field

instead of the vacuum field is a key for reducing the quantum noise. In this chapter, a

basic summary of the quantum noise and how the squeezed vacuum field can improve the

quantum noise are presented.

<latexit sha1_base64="zT1ED55w06tjPcfv2S+ihsNEqm0="></latexit>a1
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Figure 5.1: Injection of vacuum field in GW detectors.
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5.1 Quantum noise

The relationship between the injected vacuum field a and the vacuum field reflected from

the interferometer b is [14](
b1

b2

)
= ei2β

(
1 0

−K 1

)(
a1

a2

)
+ eiβ

(
0√
2K

)
h

2hSQL
, (5.1)

where K is the optomechanical coupling factor of the interferometer, h is GW strain signal,

hSQL is the standard quantum limit, and β is the phase shift from the interferometer,

K =

(
ΩSQL

Ω

)2 γ2ifo
Ω2 + γ2ifo

, (5.2)

hSQL =

√
8ℏ

mΩ2L2
arm

, (5.3)

β = arctan

(
Ω

γifo

)
, (5.4)

where ΩSQL is the approximate frequency at which the quantum noise reaches the standard

quantum limit and γifo is the interferometer bandwidth,

ΩSQL =
tsr

1 + rsr

8

c

√
Parmω0

mTarm
, (5.5)

γifo =
1 + rsr
1− rsr

Tarmc

4Larm
=

1 + rsr
1− rsr

γarm. (5.6)

Here, tsr and rsr are the amplitude transmissivity and reflectivity of the signal recycling

mirror, respectively. Parm is the arm intracavity power, m is the test mirror mass, Larm is

the arm cavity length, and ω0 is the carrier frequency. These parameters in KAGRA are

summarized in Table 5.1.

Table 5.1: KAGRA parameter

Parameter Symbol Value

Carrier field frequency ω0 2π × 283 THz
Standard quantum limit frequency ΩSQL 2π × 76.4 Hz

Interferometer bandwidth γifo 2π × 382 Hz
Arm input mirror transmissivity Tarm 0.004

Signal recycling input transmissivity t2sr 0.1536
Arm intracavity power Parm 400 kW

Mirror mass m 22.8 kg
Arm cavity length Larm 3 km

The GW signal is included in b2 in Equation (5.1):

b2 = ei2β(a2 −Ka1) + eiβ
√
2K h

2hSQL
. (5.7)
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The first term is the quantum noise, and the second term is the GW signal. From this

formula, the quantum noise in terms of the GW strain will be

h =
hSQL√
2K

eiβ(a2 −Ka1). (5.8)

The power spectral density of quantum noise in GW detectors can be written as follows:

Sh =
h2SQL

2

(
1

K
+K

)
≧ h2SQL. (5.9)

The first term is shot noise, and the second term is the radiation pressure noise. Quantum

noise in terms of strain
√
Sh is shown in Figure 5.2. Quantum noise is dominated by shot

noise at high frequencies and dominated by radiation pressure noise at low frequencies.
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Figure 5.2: Quantum noise in GW detectors. In this figure, the KAGRA parameters
shown in Table 5.1 are assumed.

There is a tradeoff between shot noise and radiation pressure noise in terms of laser

power, and the quantum noise cannot surpass the standard quantum limit (SQL) hSQL,

as shown in Figure 5.3. When K = 1, which corresponds to Ω ≃ ΩSQL with Ω ≪ γifo, the

quantum noise reaches the SQL.

Ponderomotive squeezing

Quantum noise in GW detectors can be better understood by considering the amplitude

and phase picture, as shown in Figure 5.4. The vacuum field injected into the interferome-

ter is reflected by the SRM without entering the interferometer at high frequencies, while at

low frequencies, the vacuum field enters the interferometer, and the amplitude fluctuation

of the vacuum induces test mass fluctuations through optomechanical coupling, leading to

63



10
1

10
2

10
3

Frequency [Hz]

10
-24

10
-23

10
-22

S
tr

a
in

 [
1
/

H
z
]

Standard Quantum Limit

P
arm

 = 400 kW

P
arm

 = 1600 kW

P
arm

 = 100 kW

Figure 5.3: Quantum noise in GW detectors with various arm intracavity powers and the
standard quantum limit.

the phase fluctuation. This is the origin of the radiation pressure noise. The output from

the interferometer is squeezed at low frequencies, which is called ponderomotive squeezing.

phase fluctuation from 
mirror motion caused by 
amplitude fluctuation 

high frequency low frequency
gravitational
wave signal

OutputInput

phase
fluctuation

amplitude
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a2

a1
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Figure 5.4: Ponderomotive squeezing.

5.2 Frequency-independent squeezing

To reduce the quantum noise, it was suggested to inject the squeezed vacuum states to

the interferometer instead of the vacuum states as shown in Figure 5.5 [9].
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amplitude

phase

frequency

Figure 5.5: Injection of frequency-independent squeezing in GW detectors.

Quantum noise with frequency-independent squeezing can be expressed as [14]

Ssqz =
h2SQL

2

(
1

K
+K

)
(cosh 2r − sinh 2r cos [2(Φ− ϕsqz)]), (5.10)

where r is the injection squeezing factor, ϕsqz is the injection squeezing angle, and Φ =

arccotK.

When the injection squeezing angle ϕsqz = π/2 (phase squeezing), Equation (5.10) is1

Ssqz(ϕsqz = π/2) =
h2SQL

2

(
1

Ke2r
+Ke2r

)
. (5.11)

The formula above indicates that the shot noise is reduced by a factor of e2r, while the

radiation pressure noise is increased by the same factor. The tradeoff between shot noise

and radiation pressure noise remains, and the SQL cannot be surpassed with the phase

squeezing. Shot noise reduction with phase squeezing was achieved in Advanced LIGO

and Advanced Virgo in O3 [10, 11]. Furthermore, the increase in radiation pressure noise

with frequency-independent squeezing was observed in Advanced LIGO and Advanced

Virgo [12, 13].

1Here we used, cos2Φ = cos2Φ− sin2Φ =
K2

1 +K2
− 1

1 +K2
= −1−K2

1 +K2
.
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5.3 Frequency-dependent squeezing

To reduce the shot noise and radiation pressure noise simultaneously, frequency-dependent

squeezed vacuum states, which are phase squeezed at high frequencies and amplitude

squeezed at low frequencies, are required. When the injection squeezing angle has a

frequency dependence, such as ϕsqz(Ω) = Φ(Ω) = arccotK(Ω), the quantum noise with

frequency-dependent squeezing (5.10) can be written as

Ssqz =
h2SQL

2

(
1

K
+K

)
e−2r. (5.12)

The formula above indicates that both of the shot noise and the radiation pressure noise

can be reduced by a factor of e−2r.

A comparison of the quantum noise with the vacuum, frequency-independent squeez-

ing, and frequency-dependent squeezing are shown in Figure 5.6.
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Figure 5.6: Quantum noise with vacuum, frequency-independent squeezing, and frequency-
dependent squeezing.

5.4 Filter cavity

The most promising method to realize the frequency-dependent squeezing is by reflecting

the frequency-independent squeezed vacuum field off a Fabry-Perot cavity, called the filter

cavity [14]. The optical configuration of the frequency-dependent squeezing with the filter

cavity is shown in Figure 5.7.
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Figure 5.7: Optical configuration of frequency-dependent squeezing with the filter cavity.
The squeezing angle rotates by 90◦ at low frequencies with the filter cavity, while the
squeezing angle does not change at high frequencies.

The frequency-independent squeezed field is reflected by the filter cavity, acquiring a

frequency dependence. This mechanism can be better understood in a sideband picture,

where the squeezing angle at each frequency is determined by the average phase between

the upper and lower sidebands, as shown in Figure 5.8. If the cavity is operating at a

detuned configuration, the symmetric sidebands have a differential phase change depending

on the cavity dispersion, resulting in a rotation of the squeeze ellipse in the quadrature

plane.

Here, we theoretically derive the squeezing angle rotation by the filter cavity based on

[52]. From Equation (3.18), the complex filter cavity reflectivity for a sideband frequency

Ω can be written as follows:

rfc(Ω) = rin −
t2in
rin

rrte
−iΦ(Ω)

1− rrte−iΦ(Ω)
, (5.13)

where rin is the amplitude reflectivity of the input mirror and rrt is the cavity’s round-trip

amplitude reflectivity. The cavity round-trip phase Φ(Ω) is

Φ(Ω) = (Ω−∆ωfc)
2Lfc

c
, (5.14)

where ∆ωfc = ωfc − ω0 is the filter cavity detuning with respect to the carrier frequency

ω0 and Lfc is the filter cavity length.

For a high-finesse cavity near the resonance, we can assume that

e−iΦ(Ω) ≃ 1− iΦ(Ω), (5.15)
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Figure 5.8: Squeezing angle rotation by the filter cavity. The red, orange, and blue arrows
represent the carrier, upper sideband, and lower sideband, respectively. The left three
plots represent the normalized intracavity power of the filter cavity and the phase of the
filter cavity reflectivity for the normalized sideband frequency 0,

√
2, 3. The horizontal

axis represents the sideband frequency normalized with respect to ∆ωfc,0.

and

rrt ≃ rin ≃
√
1− t2in − Λ2

rt ≃ 1− (t2in + Λ2
rt)/2, (5.16)

where Λ2
rt is the round-trip loss in the cavity (not including the input mirror transmission).

Under these assumptions, the complex reflectivity of the filter cavity (5.13) can be

written as follows:

rfc(Ω) ≃ 1− 2− ϵ

1 + iξ(Ω)
, (5.17)

where

ϵ =
fFSR
γfc

Λ2
rt, (5.18)

ξ(Ω) =
Ω−∆ωfc

γfc
, (5.19)

with fFSR is the FSR of the filter cavity and γfc is the filter cavity half-bandwidth.
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The amplitude and phase of the filter cavity reflectivity can be written as follows:

ρfc(Ω) = |rfc(Ω)| =

√
1− (2− ϵ)ϵ

1 + ξ2(Ω)
, (5.20)

αfc(Ω) = arg{rfc(Ω)} = arg{−1 + ϵ+ ξ2(Ω) + i(2− ϵ)ξ(Ω)}. (5.21)

We define the sum and difference of the amplitude and phase of the filter cavity reflectivity

for the symmetric sidebands as follows:

ρ± = ρfc(±Ω), α± = αfc(±Ω),

ρp
m

=
ρ+ ± ρ−

2
, αp

m
=
α+ ± α−

2
. (5.22)

The transfer matrix of the filter cavity in the two-photon formalism is

Tfc = A2 ·

(
r+ 0

0 r∗−

)
·A−1

2 , (5.23)

where r± = rfc(±Ω) and A2 is the conversion matrix from one-photon to the two-photon

formalism,

A2 =
1√
2

(
1 1

−i i

)
. (5.24)

From Equation (5.22) and (5.23), the transfer matrix of the filter cavity is

Tfc = eiαmRαp(ρpI− iρmRπ/2), (5.25)

where Rθ is the 2× 2 rotation matrix with the rotation angle θ and I is the 2× 2 identity

matrix. The first term represents the sidebands’ phase rotation by αp, which induces the

squeezing angle rotation. The second term represents the effect of the filter cavity losses.

From (5.21) and (5.22), the squeezing rotation angle by the filter cavity is

αp(Ω) ≃ arctan

(
(2− ϵ)γfc∆ωfc

(1− ϵ)γ2fc −∆ω2
fc +Ω2

)
, (5.26)

which holds for the typical filter cavity parameters, ϵ≪ 1 or Λ2
rt ≪ t2in.

As the frequency region where the squeezing angle rotates is smaller than the interfer-

ometer bandwidth Ω ≪ γifo, Equation (5.2) can be approximated as follows:

K ≃
(
ΩSQL

Ω

)2

. (5.27)

The required squeezing angle rotation by the filter cavity is

αp ≃ arctan

(
ΩSQL

Ω

)2

. (5.28)
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From Equation (5.26) and (5.28), the optimal filter cavity bandwidth and detuning are

∆ωfc,0 =
√
1− ϵγfc, (5.29)

γfc =

√
2

(2− ϵ)
√
1− ϵ

ΩSQL√
2
. (5.30)

In the case of KAGRA, ΩSQL = 76 Hz and the filter cavity half bandwidth should be

γfc ∼ ΩSQL/
√
2 = 54 Hz. This requires a long and high finesse filter cavity.

From Equation (5.18) and (5.30), we can solve for ϵ as follows:

ϵ =
4

2 +

√
2 + 2

√
1 +

(
2ΩSQL

fFSRΛ2
rt

)4 . (5.31)

From this formula, the effect of the filter cavity losses ϵ is determined by Λ2
rt/Lfc once

ΩSQL is fixed. When we have a longer filter cavity, the finesse of the filter cavity will be

lower to achieve the same half bandwidth of the filter cavity, and therefore, the effect of

the filter cavity losses decreases. As these filter cavity losses are one of the most dominant

squeezing degradation sources, LIGO and Virgo plan to install a 300 m filter cavity from

O4.

5.5 Analytical model of squeezing degradation sources

In this section, an analytical model of the squeezing degradation sources and a calcula-

tion of quantum noise with the filter cavity based on [52] is introduced. The squeezing

degradation sources in GW detectors with the filter cavity are shown in Figure 5.9. There

are mainly three degradation sources: loss, phase noise, and mode mismatch. The loss is

composed of extra-cavity/intracavity loss of the filter cavity. The extra-cavity loss can be

divided into the injection/readout loss of the interferometer. The phase noise is composed

of an extra-cavity/intracavity phase fluctuation. The mode mismatch is composed of a

mismatch between the squeezer/filter cavity and the squeezer/local oscillator.

To calculate the quantum noise with the squeezing degradation sources, we divide the

quantum noise into the following three parts: noise due to vacuum fluctuations passing

through the squeezer N1, noise due to vacuum fluctuations that do not pass through

squeezer N2, and noise due to vacuum fluctuations in the readout N3.

Quantum noise at the interferometer readout is given by the following:

N(ζ) = |bζ ·T1 · v1|2 + |bζ ·T2 · v2|2 + |bζ ·T3 · v3|2

≡ N1 +N2 +N3, (5.32)

where vi =
√
2ℏω0I (i = 1, 2, 3) is vacuum fluctuation and I is 2× 2 identity matrix. bζ =

ALO(sin ζ cos ζ) is local oscillator and N(ζ = 0) is the quantum noise in the quadrature

containing the interferometer signal.
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Figure 5.9: Squeezing degradation sources with the filter cavity in the GW detectors [52].

T1 is written as

T1 = τroTifo(T00Tfc +Tmm)Tinj, (5.33)

Tifo =

(
1 0

−K 1

)
, (5.34)

T00 = |t00|Rarg(t00),Tmm = |tmm|Rarg(tmm), (5.35)

Tinj = τinjRϕ

(
eσ 0

0 e−σ

)
R−ϕ, (5.36)

where Tifo, Tfc, and Tinj are transfer matrices of interferometer, optimally matched filter

cavity, and injection field, respectively. T00 and Tmm are transfer matrices of 00 mode

and higher order modes, respectively.

τinj, τro in Equation (5.33) and (5.36) are the injection and readout transmissivity,

respectively, and can be written as

τinj =
√
1− Λ2

inj, (5.37)

τro =
√
1− Λ2

ro, (5.38)

where Λ2
inj and Λ2

ro are injection and readout losses, respectively.

t00, tmm in Equation (5.35) can be written as t00 = a0b
∗
0, tmm =

∑∞
n=1 anb

∗
n where

an, bn are complex coefficients when we express the squeezed vacuum states and the local

oscillator in the basis of the filter cavity mode and can be written as

Usqz =
∞∑
n=0

anUn,with
∞∑
n=0

|an|2 = 1, (5.39)

Ulo =

∞∑
n=0

bnUn,with

∞∑
n=0

|bn|2 = 1, (5.40)
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where Un are the orthogonal basis of spatial modes and U0 is the filter cavity fundamental

mode.

σ and ϕ in Equation (5.36) are the injection squeezing factor and injection squeezing

angle.

T2 is written as

T2 = τroTifoΛ2, (5.41)

Λ2 =
√
1− (|τ2(Ω)|2 + |τ2(−Ω)|2)/2, (5.42)

τ2(Ω) = (t00rfc(Ω) + tmm)τinj. (5.43)

T3 is written as

T3 = Λro. (5.44)

Quantum noise normalized with respect to shot noise level is

N̂ =
N

2ℏω0A2
LO

. (5.45)

Phase noise

Phase noise is the squeezing angle fluctuation that degrades the squeezing level by coupling

to anti-squeezing. Phase noise in the filter cavity can be divided into two components:

extra-cavity fluctuations (i.e., frequency-independent phase noise) and intracavity fluctu-

ations (i.e., frequency-dependent phase noise).

Assuming multiple incoherent noise parameters Xn in quantum noise N̂ have small

Gaussian-distributed fluctuations with a variance δX2
n, the average readout noise is given

by

N̂avg ≃ N̂ +
∑
n

(
N̂(Xn + δXn) + N̂(Xn − δXn)

2
− N̂

)
. (5.46)

For frequency-independent phase noise, Xn = ϕ, which is the injection squeezing angle.

For frequency-dependent phase noise, Xn = ∆ωfc, which is the filter cavity detuning. This

detuning noise results from filter cavity length noise δLfc, driven by seismic motion of the

cavity mirrors or sensor noise of the filter cavity length control loop, according to

δ∆ωfc =
ω0

Lfc
δLfc. (5.47)

First, the calculation of frequency-independent phase noise is presented. Frequency-

independent phase noise can be represented by variations of injection squeezing angle,

δϕ.

To calculate the effect of only phase noise, we restrict our discussion to an opti-

mally matched filter cavity and without injection and readout losses. From Equation

(5.32)-(5.38) and (5.45), quantum noise owing to vacuum fluctuations passing through the
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squeezer, N̂1 can be written as follows:

N̂1(ϕ) = A cos2 ϕ+ 2B cosϕ sinϕ+ C sin2 ϕ, (5.48)

A = (ρ2pe
−2σ + ρ2me

2σ)(cosαp +K sinαp)
2

+ (ρ2pe
2σ + ρ2me

−2σ)(K cosαp − sinαp)
2, (5.49)

B = (e2σ − e−2σ)(ρ2m − ρ2p)

× (cosαp +K sinαp)(K cosαp − sinαp), (5.50)

C = (ρ2pe
2σ + ρ2me

−2σ)(cosαp +K sinαp)
2

+ (ρ2pe
−2σ + ρ2me

2σ)(K cosαp − sinαp)
2. (5.51)

When ϕ = 0, N̂1(ϕ = 0) = A and this represents the quantum noise of an optimally

matched filter cavity without injection and readout losses, Equation (44) in [52].

From Equation (5.46), the frequency-independent phase noise of N̂1 can be calculated

as follows:

N̂1,avg(ϕ) =
N̂1(δϕ) + N̂1(−δϕ)

2
= A cos2 δϕ+ C sin2 δϕ. (5.52)

Frequency-dependent phase noise can be calculated by averaging N̂1(∆ωfc,0 + δ∆ωfc) and

N̂1(∆ωfc,0 − δ∆ωfc),

N̂1,avg(∆ωfc,0) =
N̂1(∆ωfc,0 + δ∆ωfc) + N̂1(∆ωfc,0 − δ∆ωfc)

2
. (5.53)

For the calculation of frequency-dependent phase noise, we can consider only N1 because

the frequency-dependent phase noise for N2 is negligible compared to N1, and N3 is inde-

pendent of the filter cavity.

5.6 Squeezing degradation budget in 300 m filter cavity

Quantum noise with the squeezing degradation sources in the filter cavity (5.32) can be

numerically calculated. The realistic squeezing degradation sources in the 300 m filter

cavity and the corresponding squeezing degradation budget are presented in Table 5.2 and

Figure 5.10. The quantum noise can be reduced at all frequencies with a 300 m filter

cavity. In particular, the quantum noise can be reduced by 4 dB at low frequencies and 6

dB at high frequencies.

As shown in Figure 5.10, the mode mismatch is the most dominant degradation source

at low frequencies, while the injection and readout losses are the most dominant at high

frequencies. As the filter cavity losses are not the most dominant noise source, increasing

the filter cavity length more than 300 m will not significantly improve the overall sensitivity.
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Table 5.2: Squeezing degradation sources in 300 m filter cavity.

Parameter Symbol Value

Filter cavity losses Λ2
rt 80 ppm

Injection losses Λ2
inj 5 %

Readout losses Λ2
ro 5 %

Mode-mismatch squeezer-filter cavity Λ2
mmFC 2 %

Mode-mismatch squeezer-local oscillator Λ2
mmLO 5 %

Frequency-independent phase noise (RMS) δϕ 30 mrad
Filter cavity length noise (RMS) δLfc 1 pm

Generated squeezing σdB 9 dB
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Ideal system
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Filter cavity losses: 80 ppm

Mismatch: SQZ/FC: 0.02 - SQZ/LO: 0.05

Phase noise rms: 30 mrad

lock accuracy rms: 1 pm

All mechanisms

Figure 5.10: Squeezing degradation budget in 300 m filter cavity. The squeezing degrada-
tion parameters are listed in Table 5.2.

5.7 Sensitivity improvement of KAGRA

The sensitivity improvement of KAGRA with a 300 m filter cavity is shown in Figure 5.11.

The KAGRA sensitivity for BRSE without a filter cavity is 129 Mpc, and the filter cavity

can improve the sensitivity up to 188 Mpc. The GW event rate will improve by a factor

of 3.
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Figure 5.11: Sensitivity improvement of KAGRA with a 300 m filter cavity. The black
solid and dashed lines represent the KAGRA sensitivity (BRSE) with and without the
300 m filter cavity, respectively. In this calculation, the arm intracavity power is 337 kW,
which corresponds to the power at BS of 674 W. The half bandwidth and detuning of the
filter cavity are 51 Hz and 47 Hz, respectively. The squeezing degradation parameters are
based on Table 5.2, although the mode mismatch and phase noise are not included in this
calculation.
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Chapter 6

Frequency-Independent Squeezing

The two key components to realize the frequency-dependent squeezing are the filter cavity

and the squeezed vacuum source. To realize frequency-dependent squeezing with rota-

tion below 100 Hz, a frequency-independent squeezed vacuum source capable of producing

squeezing below 100 Hz is necessary. In this chapter, the development of the frequency-

independent squeezed vacuum source is explained. I mainly contributed to the implemen-

tation of the homodyne detector and coherent control and realization of the 5.4 dB of

frequency-independent squeezing down to 20 Hz in this chapter.

6.1 Experimental setup

The in-air squeezed vacuum source in this experiment follows the design of the GEO600

squeezer [53]. The optical layout of the squeezed vacuum source is shown in Figure 6.1.

The simplified optical layout is shown in Figure 6.2. The core part is an optical parametric

oscillator (OPO) which is a linear cavity hosting a periodically poled potassium titanyl

phosphate (PPKTP) crystal. The squeezed vacuum is generated from a parametric down-

conversion process in the crystal. This process requires a pump field at twice the frequency

of the squeezed field and the pump field is generated by injecting a 1064 nm laser into

a second harmonic generator (SHG). The main laser, a 2-W 1064-nm Nd:YAG laser, is

used to pump the SHG, which generates a green field with a wavelength of 532 nm, and

is used as a local oscillator (LO) for the balanced homodyne detector to measure the

squeezing. An infrared mode cleaner (IRMC) cavity is installed to clean the beam shape

of the LO before it reaches the homodyne detector. A green mode cleaner (GRMC) cavity

and a Mach-Zehnder interferometer (MZ) are installed along the green path, respectively,

to clean the beam shape and to stabilize the power of the green pump field before it

reaches the OPO. Two auxiliary lasers, which are phase-locked to the main laser with

a frequency offset, are also used. The first one (Auxiliary Laser 1 or coherent control

(CC) laser) is injected into the OPO and copropagates with the squeezed vacuum field up

to the homodyne detector for CC. The second one (Auxiliary Laser 2 or p-pol laser) is

also injected into the OPO with an orthogonal polarization with respect to the generated

squeezed field and is used to control the OPO length.
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Figure 6.1: Optical layout of frequency-independent squeezed vacuum source.

For the alignment of the squeezed vacuum field, a pickoff of the main laser is tem-

porarily injected into the OPO and copropagates with the squeezed vacuum field (we refer

to this beam as a seed beam or bright alignment beam). This beam is also used for the

characterization of the OPO (such as nonlinear gain) and the filter cavity (such as finesse,

locking accuracy, and round-trip losses), which will be explained later.

Two flipping mirrors are placed on the squeezing path so that we can switch between

sending the squeezing directly to the homodyne detector and sending it to the filter cavity.

A steering mirror placed before the homodyne detector is also a flipping mirror so that

we can switch between sending the squeezing to the homodyne detector and sending it to

an alignment mode cleaner (AMC), which will be explained in Section 6.9. It should be

noted that the AMC is not shown in Figure 6.2.

6.2 Laser sources

The laser sources used in this experiment are 1064 nm Nd:YAG lasers. There are mainly

two constraints on the current and temperature of the laser sources. One is the mode

hopping of the lasers and another is the limited frequency range (400 MHz) of the phase-
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Filter cavity

Figure 6.2: Simplified optical layout of frequency-independent squeezed vacuum source.

locked loop (PLL), which limits the maximum frequency offset that the auxiliary lasers

can have with respect to the main laser. Therefore, the current and temperature of the

lasers have to be chosen so that we can avoid the mode hopping of the three lasers and

ensure that the two beat notes of the main laser/p-pol laser and the main laser/CC laser

are within the PLL frequency range. The current and temperature settings used are listed

in Table 6.1.

Table 6.1: Current and temperature of the laser sources.

Main laser CC laser p-pol laser

Current (A) 1.832 1.185 1.338
Temperature (◦C) 23.11 38.15 32.49

6.3 Direct digital synthesizer

All the RF sources used in the experiment were generated using direct digital synthesizers

(DDS). The amplitude, frequency, and phase of the RF sources were digitally controlled.
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There were three DDS boards, and each DDS board has four RF channels. The DDS

channel list used in this experiment is shown in Table 6.2. In DDS1, CH0 and CH1 provided

the modulation and demodulation RF sources for SHG/IRMC. CH2 and CH3 in DDS1

provided the modulation and demodulation RF sources for OPO. In DDS2, CH0 provided

the modulation RF sources for FC/GRMC (FC indicates green lock for the filter cavity,

which will be explained in Chapter 7), and CH1 and CH2 provided the demodulation RF

sources for FC and GRMC. CH3 in DDS2 provided the demodulation RF sources for the

two quadrant photodiodes (QPDs) for auto alignment. In DDS3, CH0 and CH1 provided

the LO for the CC and p-pol PLL, respectively. CH2 in DDS3 provided the demodulation

RF sources for CC1/CCFC (CCFC is a control loop for the filter cavity with coherent

control sidebands, which will be explained in Chapter 8). CH3 in DDS3 provided the

demodulation RF source for CC2. CH1 in DDS1 (for SHG/IRMC demodulation), CH3 in

DDS2 (for two QPDs demodulation), and CH2 in DDS3 (for CC1/CCFC demodulation)

were split with 50:50 power splitters (Z99SC-62-S+).

Table 6.2: DDS channel list
DDS1

channel function frequency

CH0 SHG/IRMC EOM 15.2 MHz
CH1 SHG/IRMC demod 15.2 MHz
CH2 OPO EOM 87.6 MHz
CH3 OPO demod 87.6 MHz

DDS2

channel function frequency

CH0 FC/GRMC EOM 78 MHz
CH1 FC demod 78 MHz
CH2 GRMC demod 78 MHz
CH3 AA demod 78 MHz

DDS3

channel function frequency

CH0 CC PLL LO 7 MHz
CH1 p-pol PLL LO < 400 MHz
CH2 CC1/CCFC demod 14 MHz
CH3 CC2 demod 7 MHz

6.4 Phase-locked loop

The frequencies of the main laser and the auxiliary lasers are locked by the phase-locked

loop (PLL). The configuration of the PLL is shown in Figure 6.3. The Phase Detec-

tor/Frequency Synthesizer (ADF4002 in Analog devices) is used for the PLL. The fre-

quency range that the ADF4002 can handle as a voltage-controlled oscillator (VCO) is

400 MHz.
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Figure 6.3: Configuration of PLL. Parts of the main laser and the auxiliary lasers are
picked off and combined with a fiber BS. One of the two outputs is fed back to the
frequency of the auxiliary lasers to follow the frequency of the main laser. Another output
of the fiber BS is used for monitoring the frequency of the beat note.

6.5 Second harmonic generator

The second harmonic generator (SHG) is a cavity composed of a nonlinear crystal (MgO : LiNbO3)

and a meniscus mirror. The SHG converts 1064 nm of the IR field into 532 nm of the

green field through a nonlinear process. The schematic of the cross section of the SHG

cavity used in this experiment is shown in Figure 6.4. The optical parameters of the SHG

are listed in Table 6.3.

Table 6.3: SHG design parameters.

Cavity parameter Value

MgO : LiNbO3 HR reflectivity 99.95 % (IR), 99.8 % (GR)
MgO : LiNbO3 AR reflectivity < 0.1 % (IR, GR)

Meniscus HR reflectivity 92 % (IR), 2 % (GR)

MgO : LiNbO3 RoC 12 mm (HR), ∞ (AR)
Meniscus RoC 25 mm (HR), 20 mm (AR)

Optical cavity length 38 mm
FSR 4 GHz

FWHM 55 MHz (IR), 2.9 GHz (GR)
Finesse 73 (IR), 1.4 (GR)

6.5.1 Finesse

The IR finesse of the SHG was measured by the cavity scan. To avoid the conversion from

IR to green in the SHG, the SHG temperature was set in the region where the nonlinear

effect in the SHG is small during the cavity scan. The SHG cavity scan is shown in Figure

6.5. The measured IR finesse of the SHG is 70, which is close to the design finesse.
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Figure 6.4: Schematic of cross section of SHG. The injected IR field is p-polarized and
generated green field is s-polarized. The conversion efficiency of the SHG from IR to
green is 35 %. The SHG cavity length is controlled with a Piezoelectric (PZT) actuator
attached to the meniscus mirror. The PDH signal of the SHG cavity is obtained at the
SHG transmission and fed back to the PZT actuator. The temperature of the crystal is
monitored with the thermistors and controlled with the Peltier heaters.
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Figure 6.5: SHG cavity scan. The blue and red lines represent the SHG transmission curve
and its fitting curve, respectively. The offset was removed from the data. The finesse value
obtained from the fitting is 70.30(5) which is close to the expected value.

6.5.2 Length control

The open-loop transfer function of SHG cavity length control is shown in Figure 6.6.
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Figure 6.6: Open-loop transfer function of SHG cavity length control. The UGF is 2 kHz
and the phase margin is 56 deg.

6.5.3 Temperature control

The temperature of the nonlinear crystal inside the SHG is controlled for phase matching.

The temperature control is composed of thermistors (103JT-025), Peltier heaters (CP0.8-

31-06L), and a temperature controller (Thorlabs TED200C). According to the manual of

the thermistor and temperature controller, the relation between the resistance R and the

temperature T of the thermistor is

T (R) =
BT0

T0 ln
R
R0

+B
, (6.1)

where R0 = 10 kΩ is the nominal resistance of the thermistor at the nominal temperature

of T0 = 298.15 K and B = 3435 K is the energy constant of the thermistor. We can set

the target resistance of the thermistor in the temperature controller and the difference

between the target resistance and current resistance is sent to the Peltier heaters.

To determine the optimal temperature for the SHG, we measured the generated green

power from the SHG as a function of the SHG temperature as shown in Figure 6.7. The

shape of the generated green power is not symmetric around the optimal temperature

unlike Figure 4.2, which is the case for the single-pass SHG. This asymmetry is caused

by the phase shift of the fundamental and second harmonics in the forward and backward

passes in the SHG cavity (double pass) [54, 55, 56]. The generated second harmonic power

with the double pass can be written as

P2 ∝

∣∣∣∣∣
∫ L

0

[
ei∆kz

1− i z−z0
zR

+ eiϕ+i∆kL ei∆kz

1− i z−(L−z0)
zR

]
dz

∣∣∣∣∣
2

, (6.2)
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where L is the crystal length, z0 is the distance between the entrance surface of the crystal

and the beam waist, zR = kw2
0/2 is the Rayleigh range, and w0 is the radius of the beam

waist. ϕ = ϕ2 − 2ϕ1 where ϕ1 and ϕ2 are the phases of the fundamental and second

harmonics, respectively.

For the plane wave (zR → ∞), the generated second harmonic power is

P2 ∝ sinc2
(
∆kL

2

)
cos2

(
ϕ+∆kL

2

)
. (6.3)

There is an additional factor of cos2 (ϕ+∆kL
2 ) compared with the single pass, which causes

the asymmetry around the optimal temperature, as shown in Figure 6.7.
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Figure 6.7: Generated green power from SHG as a function of SHG temperature.

6.6 Green and infrared mode cleaners

The GRMC and IRMC are triangular cavities used to clean the beam shapes of the green

pump field and the LO, respectively. The configurations of GRMC and IRMC are shown

in Figure 6.8. They have the same configurations, apart from wavelength.
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22 mm

281 mm

Figure 6.8: Configuration of GRMC. The configuration of IRMC is the same as GRMC
apart from wavelength. The triangular cavity is composed of one top mirror with the PZT
actuator and two bottom mirrors (input, output mirrors). The PDH signal of the cavity
is obtained at the cavity reflection and fed back to the PZT actuator of the top mirror.

The optical parameters of the green and infrared mode cleaners are shown in Table 6.4.

The optical parameters of the GRMC/IRMC are also the same, apart from the wavelength.

The nominal GRMC/IRMC transmissivity is 89 % without any losses.

Table 6.4: Design parameters of GRMC and IRMC.

GRMC/IRMC

top mirror RoC 1 m
bottom mirrors RoC ∞
top mirror reflectivity 99.9 % (0◦ AOI)

bottom mirrors reflectivity 99.2 % (s-pol)
nominal cavity transmissivity 89 %

cavity length 0.584 m
FSR 513 MHz

FWHM 1.39 MHz
finesse 368

The finesse of GRMC and IRMC are measured by a cavity scan. The GRMC and

IRMC cavity scans are shown in Figure 6.9 and 6.10, respectively. The measured finesse

of GRMC and IRMC are 323 and 291, respectively.
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Figure 6.9: GRMC cavity scan. The blue and red lines represent the GRMC transmission
curve and its fitting curve, respectively. The offset was removed from the data. The finesse
value obtained from the fitting is 322.9(3) which is close to the expected value.
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Figure 6.10: IRMC cavity scan. The blue and red lines represent the IRMC transmission
curve and its fitting curve, respectively. The offset was removed from the data. The finesse
value obtained from the fitting is 290.6(1) which is close to the expected value.

The open-loop transfer functions of GRMC and IRMC cavity length control are shown

in Figure 6.11 and 6.12.
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Figure 6.11: Open-loop transfer function of GRMC cavity length control. The UGF is 1.9
kHz and the phase margin is 52 deg.
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Figure 6.12: Open-loop transfer function of IRMC cavity length control. The UGF is 2.2
kHz and the phase margin is 60 deg.

6.7 Mach-Zehnder interferometer

The Mach-Zehnder interferometer (MZ) is placed on the path of the green pump after the

SHG before the GRMC to stabilize the green pump power injected into the OPO. The
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configuration of the MZ is shown in Figure 6.13. The open-loop transfer function of the

MZ is shown in Figure 6.14.

offset

Figure 6.13: Configuration of Mach-Zehnder interferometer. One of the mirrors in the MZ
has a PZT actuator for MZ control. The error signal is obtained by picking off the GRMC
transmission and fed back to the PZT actuator in the MZ. The green pump power after
the MZ can be controlled by changing the offset in the MZ control loop.
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Figure 6.14: Open-loop transfer function of MZ control loop. The UGF is 2 kHz and the
phase margin is 89 deg.
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6.8 Optical parametric oscillator

The OPO is a cavity composed of a nonlinear crystal (PPKTP) and a meniscus mirror.

The schematic cross section of OPO used in this experiment is shown in Figure 6.15. The

OPO design parameters are listed in Table 6.5.
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Figure 6.15: Schematic cross section of OPO. The pump, squeezing, and CC fields are s-
polarized, while the length control field is p-polarized. The OPO cavity length is controlled
with the PZT actuator attached to the meniscus mirror. A PDH signal of the OPO cavity
is obtained by picking off the length control field with PBS at OPO transmission and fed
back to the PZT actuator. The temperature of the crystal is monitored with thermistors
and controlled with Peltier heaters.

Table 6.5: OPO design parameters

Cavity parameter Value

PPKTP HR reflectivity 99.975 % (IR, GR)
PPKTP AR reflectivity < 0.2 % (IR, GR)
Meniscus HR reflectivity 92 % (IR), 20 % (GR)

PPKTP RoC 8 mm (HR), ∞ (AR)
Meniscus RoC 25 mm (HR), 20 mm (AR)

Escape efficiency 95 %
Optical cavity length 38 mm

FSR 4 GHz
FWHM 56 MHz (IR), 1.1 GHz (GR)
Finesse 72 (IR), 3.8 (GR)
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6.8.1 Escape efficiency

The OPO escape efficiency can be written as

ηesc =
κao
κa

=
T

T + Lcav
, (6.4)

where T = 8 % is the transmissivity of the meniscus mirror and Lcav is the intracavity

round-trip loss of the OPO (not including T ). Because the PPKTP AR reflectivity is

0.2 % and the PPKTP HR transmissivity is 0.025 %, the intracavity round-trip loss of

the OPO is Lcav = 0.2 · 2 + 0.025 = 0.425 %. Therefore, the design escape efficiency is

ηesc = 8/(8 + 0.425) = 95 %.

6.8.2 Finesse

To measure the IR finesse of the OPO cavity, the OPO cavity length was scanned and the

IR transmission was measured as shown in Figure 6.16. The measured IR finesse of the

OPO is 69.
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Figure 6.16: OPO cavity scan. The blue and red lines represent the OPO IR transmission
curve and its fitting curve, respectively. The offset was removed from the data. The finesse
value obtained from the fitting is 68.76(5), which is close to the expected value.

6.8.3 Length control

The OPO cavity length is controlled with a p-polarized laser so as not to interfere with the

squeezed vacuum field, which is s-polarized. The frequency of the p-polarized laser has to

be chosen such that both the p- and s-polarized beams are resonant inside the OPO. The

open-loop transfer function of the OPO cavity length control is shown in Figure 6.17.
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Figure 6.17: Open-loop transfer function of OPO cavity length control. The UGF is 3.6
kHz and the phase margin is 57 deg.

6.8.4 Temperature control

To find the optimal temperature for OPO, we injected the seed IR field into the OPO

and measured the generated green power. The generated green power from the OPO as

a function of the OPO temperature is shown in Figure 6.18. Similar to the SHG, it is not

symmetric around the optimal temperature owing to the double pass configuration.
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Figure 6.18: Generated green power from OPO as a function of the OPO temperature.
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6.8.5 Threshold

The OPO threshold power can be measured from the parametric amplification and de-

amplification of the IR seed beam injected into the OPO. The parametric amplification

and de-amplification can be measured from the maximum and minimum values of the

OPO transmission of the IR seed beam, while the phase of the pump field is scanned

with a phase shifter, which will be explained in Section 6.11. From Equation (4.66), the

parametric gain G is written as

G =
1(

1∓
√

Ppump

Pth

)2 , (6.5)

where − and + correspond to the parametric amplification and deamplification, respec-

tively.

The measured parametric (de)amplification as a function of the pump green power is

shown in Figure 6.19. From this measurement, the OPO threshold power is determined

as 80.6(2) mW.
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Figure 6.19: Parametric (de)amplification as a function of the pump green power. The
measured parametric amplification is used for fitting.

The expected generated squeezing as a function of the pump power with Pth = 80.6

mW is shown in Figure 6.20.
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Figure 6.20: Expected generated squeezing as a function of the pump power with Pth =
80.6 mW.

6.9 Alignment mode cleaner

To overlap LO and squeezed field completely, an alignment mode cleaner (AMC) was put

next to the homodyne detector as shown in Figure 6.21. The specification of the AMC is

the same as the IRMC. The overlapping of LO and squeezed field is achieved by aligning

the LO and the seed beam to the AMC.

Squeezing

(Seed beam)

Alignment 

mode cleaner
Homodyne

Local oscillator

Figure 6.21: Configuration of AMC.

The nonoptimal overlapping of the LO and a squeezed field introduces losses. The

overlapping of the LO and the squeezed field is called visibility, which can be determined

by measuring the maximum and minimum values of the beat note between the LO and

92



the seed beam, as follows:

Vexp =
Vmax − Vmin

Vmax + Vmin
. (6.6)

When the LO power is P1 and the seed beam power is P2, the optimal visibility is

Vopt =
2
√
P1P2

P1 + P2
. (6.7)

The optimal visibility is 1 when P1 = P2, and it is smaller than 1 otherwise. The efficiency

of the visibility is ηvis = V 2
exp/V

2
opt. The typical efficiency of the visibility is ηvis = 0.98

when the seed beam is directly sent to the homodyne detector without the filter cavity.

6.10 Homodyne detector

The homodyne detector in this experiment was designed and developed in the Albert Ein-

stein Institute (AEI) in Germany. A picture of the homodyne detector is shown in Figure

6.22. The homodyne detector has DC and RF outputs. The DC output is proportional to

the difference of photocurrents in each PD and is used for measuring squeezing. The RF

output is the demodulated signal at 7 MHz and is used for the CC2 control loop.

Figure 6.22: A picture of homodyne detector. The homodyne detector has two photodi-
odes, and one of the photodiodes is covered with an aluminum cover in the picture. The
photodiodes of the homodyne detector are vertically tilted by 20◦ for higher quantum
efficiency with photon recycling [57]. Photon recycling has not been implemented in this
experiment.

The dark noise of the homodyne detector and the LO shot noise are shown in Figure

6.23. The dark noise of the homodyne detector is a noise source for squeezing and it is

equivalent to the optical losses of 1.6 %. Other noise sources for squeezing are coherent

control sidebands (CCSB), and the fundamental noise from the CCSB is their shot noise.
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Because the LO power is 1.78 mW and the CCSB power is around 10 µW before the BS

for the homodyne detector, the CCSB shot noise is more than 20 dB lower than the LO

shot noise. The corresponding loss from the CCSB shot noise is less than 1 %.
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Figure 6.23: Dark noise of the homodyne detector and LO shot noise. The black line is
the dark noise of the homodyne detector and the red line is the shot noise with 1.78 mW
LO (0.89 mW LO in each PD). The clearance between the dark noise and shot noise with
the 1.78 mW LO is about 18 dB. The loss from the dark noise is l = Vclass/V

obs
vac = 10−18/10

= 1.6 %.

Alignment procedure of LO and squeezed field

For common mode rejection of the classical noise of the LO, the LO power on each homo-

dyne PD should be very well balanced. In addition, the LO and the squeezed field should

be aligned accurately to the AMC for overlapping. Thus, the LO and the squeezed field

should be properly aligned as follows.

1. DC balance of LO

The condition of balance for the LO field is achieved when the homodyne DC signal is

0. The homodyne DC signal for the LO is set to 0 by tweaking two lenses before the

homodyne detector. If tweaking the lenses is not enough for DC balance, the BS for the

homodyne detector is tweaked so that the DC signal of the homodyne detector becomes

0.

2. Alignment of LO and seed beam into AMC

The LO is aligned to the AMC with two steering mirrors before the AMC. Then, the seed

beam is aligned to the AMC with steering mirrors on the path of the squeezing before the

seed beam combines with the LO.
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6.11 Coherent control

To control the squeezing angle, the CC laser, which has an offset frequency of 7 MHz with

respect to the main laser, is injected into the OPO. CC is composed of two control loops

(CC1 and CC2). The CC1 error signal is obtained at the OPO reflection by detecting the

beat notes of the two sidebands (CCSB) at 14 MHz, and the CC2 error signal is obtained

at the homodyne detector by detecting the beat notes of the CCSB and LO at 7 MHz.

To control the green pump phase for CC1 and the LO phase for CC2, the optical paths of

the green and LO fields are changed using phase shifters (see the PZT actuated mirror as

shown in Figure 6.24.) located before the GRMC on the green path and before the IRMC

on the LO path.

Figure 6.24: Phase shifter for coherent control. The mirror position can be adjusted by a
PZT actuator which is fixed on a rigid metal mount.

The open-loop transfer functions of the CC1 and CC2 are shown in Figure 6.25 and

6.26.
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Figure 6.25: Open-loop transfer function of CC1. The UGF is 2.5 kHz and the phase
margin is 51 deg.
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Figure 6.26: Open-loop transfer function of CC2. The UGF is 4 kHz and the the phase
margin is 80 deg

The phase noise of CC1 and CC2 can be estimated from the in-loop CC1, 2 error

signals. To calibrate the phase noise, the peak-to-peak values of CC1, 2 error signals were

measured by scanning the phase shifter for CC1, 2. The CC1, 2 error signals can be
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written as follows:

Verr =
Vpp
2

sin θ, (6.8)

where Verr are the CC1, 2 error signals, Vpp are the peak-to-peak values of the CC1, 2

error signals, and θ are CC1, 2 phase noise. From this equation, the conversion factor

from the CC1, 2 error signals (V) to the CC1, 2 phase noises (rad) is determined as 2/Vpp

when θ ≪ 1. The measured CC1, 2 phase noises are shown in Figure 6.27 and 6.28. The

CC1, 2 in-loop rms phase noises are 84.2 and 17.3 mrad, respectively.

10
2

10
3

10
4

frequency (Hz)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

p
h
a
s
e
 n

o
is

e
 (

ra
d
/

H
z
)

CC1 in loop phase noise

CC1 in loop rms phase noise: 84.2 mrad

Figure 6.27: CC1 in-loop phase noise.
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Figure 6.28: CC2 in-loop phase noise.
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6.12 Squeezing spectrum

The measurement of the squeezing and anti-squeezing spectra are shown in Figure 6.29.

The measured squeezing and anti-squeezing levels are 5.4 dB and 14.6 dB, respectively,

between 100 Hz and 100 kHz. This measurement was performed with the pump green

power of 40 mW, which is half of the OPO threshold. Around 5 dB of squeezing was

achieved between 20 Hz and 100 Hz, where the frequency-dependent squeezing rotation

occurs. Some peaks in the spectrum are harmonics of 50 Hz, which may originate from

some electronic components.
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Figure 6.29: Squeezing and anti-squeezing spectrum. The measured squeezing level is 5.4
dB and anti-squeezing level is 15.6 dB.

6.13 Loss and phase noise

The loss and phase noise in the frequency-independent squeezed vacuum source can be

estimated by measuring the squeezing and anti-squeezing levels with different pump green

powers as shown in Figure 6.30. By fitting this data with Equation (4.115), we determine

the loss as 25.2(2) % and the phase noise as 21.4(5) mrad. The current squeezing level is

mainly limited by optical losses.

Loss budget

The loss budget of the frequency-independent squeezed vacuum source is summarized in

Table 6.6. The classical noise listed in the Table includes dark noise of the homodyne

detector (1.6 %) and shot noise of the CCSB (1 %). The unknown loss is around 9 %

and the origin of the unknown loss is under investigation. However, we notice that the IR
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Figure 6.30: Measured squeezing and anti-squeezing levels with different pump green
powers. The pump green power was increased from 20 mW to 60 mW and the anti-
squeezing level increased accordingly. The error bars of the data are determined from
the standard deviation of the data. From this measurement, the loss and phase noise are
estimated to be 25.2(2) % and 21.4(5) mrad, respectively.

transmission from the OPO is decreased by around 7 % after propagation in free space.

This reduction could be an indication of some scattering present inside the OPO.

Table 6.6: Loss budget of frequency-independent squeezed vacuum source.

loss source loss

OPO escape efficiency (design) 5 %
mirror, lens, Faraday isolator 6 %

quantum efficiency of photodiodes 1 %
visibility 2 %

classical noise 2.6 %
unknown 8.6 %

total 25.2 %

6.14 Conclusion

To realize frequency-dependent squeezing below 100 Hz, a frequency-independent squeezed

vacuum source capable of producing squeezing below 100 Hz is necessary. In this chapter,

the development of the frequency-independent squeezed vacuum source was presented, and

5.4 dB of squeezing down to 20 Hz was achieved. The current squeezing level is limited by

optical losses, and a part of their origin is still under investigation. It is expected that an

OPO with escape efficiency as high as 99% [58] will significantly reduce the optical losses.
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Chapter 7

Frequency-Dependent Squeezing

with 300 m Filter Cavity

To realize frequency-dependent squeezing with rotation below 100 Hz, a 300 m-long filter

cavity in the former TAMA interferometer was used. Combining the 300 m filter cavity

and the squeezed vacuum source presented in the previous chapter, the first demonstra-

tion of the frequency-dependent squeezing with the rotation frequency below 100 Hz has

been realized [17]. In this chapter, the experimental characterization of the 300 m fil-

ter cavity and the result of the frequency-dependent squeezing are presented. I mainly

contributed to the realization and characterization of the frequency-dependent squeezing

in this chapter, while the simulation and characterization of the filter cavity mirrors and

initial measurement of round-trip losses were done before I joined this experiment and are

reported in [62, 63, 64].

7.1 Overview

The filter cavity used in this experiment is one of the 300 m arms of the former TAMA300

interferometer [59] in National Astronomical Observatory of Japan (NAOJ). The cavity

mirrors, with 10 cm in diameter, are suspended with a double pendulum system [60]

placed on a vibration isolation multilayer stack [61]. Mirror motion is sensed by optical

levers and controlled using coil-magnet actuators to align the cavity and to damp the

mechanical resonances of the suspension [64]. To realize a squeezing rotation around 70

Hz, a storage time of about 3 ms in a filter cavity is necessary, which requires either a

long or a very high-finesse cavity. As the longer cavity is more robust to length-dependent

squeezing degradation sources such as cavity losses and cavity length noise, the use of

several 100 m-long filter cavities have been considered for advanced detectors [52, 62].

The squeezing rotation frequency by the filter cavity depends on the cavity bandwidth,

which is inversely proportional to its length and finesse. Given the 300 m length of the

cavity, the finesse should be 4360 at a wavelength of 1064 nm to provide the squeeze

angle rotation at approximately 75 Hz, which corresponds to an optimal quantum noise

reduction for KAGRA.
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Because the filter cavity losses are one of the major limitations to squeezing, as dis-

cussed in Section 5.6, the requirements of surface quality of the filter cavity mirrors were

firstly determined by numerical simulations [62]. After the cavity assembly, the round-trip

losses were measured as 50-90 ppm, which is consistent with the requirements [63]. The

filter cavity parameters are listed in Table 7.1.

Table 7.1: Summary of the filter cavity parameters. The mirror transmissivity and radius
of curvature have been measured at the Laboratoire des Matériaux Avancés (LMA). It
should be noted that the round-trip losses include the end mirror transmissivity [63].

Cavity parameter Value

Length 300 m
Mirror diameter 10 cm

Input mirror radius of curvature 438 m
End mirror radius of curvature 445 m

Input mirror transmissivity (1064 nm) 0.136%
End mirror transmissivity (1064 nm) 3.9 ppm

Finesse (1064 nm) 4360
Input mirror transmissivity (532 nm) 0.7%
End mirror transmissivity (532 nm) 2.9%

Finesse (532 nm) 172
Beam diameter at waist 1.68 cm

Beam diameter at the mirrors 2.01 cm

7.2 Experimental setup

The experimental setup used to achieve the frequency-dependent squeezing is shown in

Figure 7.1. It is composed of two parts: a frequency-independent squeezed vacuum source

and a filter cavity whose mirrors are suspended with a double pendulum for seismic noise

isolation. These two parts are connected through an in-vacuum injection system, which

includes two suspended mirrors.
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Figure 7.1: Schematic view of the experimental setup. The squeezed vacuum field is gener-
ated by the OPO and injected into the filter cavity using an in-vacuum injection telescope.
The frequency-dependent squeezed vacuum field from the filter cavity is reflected by the
in-vacuum Faraday isolator and measured by the homodyne detector. The green field
generated by the SHG is used to pump the OPO and to control the filter cavity.
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7.3 300 m filter cavity

To realize frequency-dependent squeezing with a rotation frequency around 75 Hz, a crucial

parameter is the filter cavity half bandwidth (or filter cavity finesse). As we discussed in

Section 5.5, the filter cavity losses and length noise, which are the main degradation

sources for squeezing, are also important parameters. In this section, the characterization

of the 300 m filter cavity, such as filter cavity length noise, finesse, and round-trip losses,

is presented.

7.3.1 Green lock

The length of the filter cavity is controlled using an auxiliary green field that is picked off

the SHG output. The cavity finesse for the auxiliary green field is about 25 times smaller

than that for the infrared field. The green field is superposed to the squeezed field at an

in-vacuum dichroic mirror, as shown in Figure 7.1. The PDH signal is obtained from the

reflected green field, and the correction signal is sent to the PZT actuator of the main laser

to act on its frequency. An acousto-optic modulator (AOM) is placed on the green field

path before injection into the filter cavity. By driving the AOM at different frequencies,

it is possible to control the detuning of the carrier with respect to the cavity resonance by

changing the relative frequencies of the green and squeezed fields.

Table 7.2 and 7.3 show the zeros, poles, and frequency dependence of the open-loop

transfer function for the green lock.

Table 7.2: Zeros and poles of open-loop transfer function for green lock.

zeros Q quantity origin

145 Hz simple 1 servo
2.68 kHz simple 4 servo
88 kHz simple 1 servo

poles Q quantity origin

0.0001 Hz simple 5 servo
1.45 kHz simple 1 cavity
90 kHz simple 1 piezo
142 kHz 0.78 2 servo
329 kHz simple 1 servo
380 kHz simple 1 servo
658 kHz simple 1 servo
675 kHz simple 1 servo

The measured open-loop transfer function of the green lock for the filter cavity is shown

in Figure 7.2.
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Table 7.3: Frequency dependence of the open-loop transfer function for green lock.

frequency frequency dependence of OLTF

DC < f < 145 Hz f−5

145 Hz < f < 1.45 kHz f−4

1.45 kHz < f < 2.68 kHz f−5

2.68 kHz < f < 88 kHz f−1
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Figure 7.2: Open-loop transfer function of the green lock for the filter cavity. The UGF
is 14 kHz and the phase margin is 54 deg.

7.3.2 Locking accuracy

Locking accuracy of green field

The locking accuracy of the green field is evaluated using the in-loop green PDH signal.

The calibration of the green PDH signal is achieved by injecting a line at 28 kHz, which is

above the UGF of the green lock∼ 14 kHz, and therefore, the effect of the noise suppression

by the control loop is small. The line was injected into the PZT actuator of the main laser

and measured at the PZT monitor channel and the PDH signal, which are respectively

before and after the servo for the green lock. By comparing the two line amplitudes, the

calibration factor from the error signal to the locking accuracy (Hz/V) can be obtained.

The amplitude of the 28 kHz line in Hz is

SHz = Vin (Vrms) ·
√
2 · 100 · 2 · 106 (Hz/V) = 5827 (Hz) (7.1)

where Vin = 20.6 · 10−6 Vrms has been measured at the PZT monitor channel and the

factor of
√
2 is the conversion factor from Vrms to V. The factor of 100 is the attenuation
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factor of the PZT monitor channel. 106 Hz/V is the gain of the PZT actuator of the main

laser and the factor of 2 represents the frequency doubling in the SHG.

Considering the cavity pole of the filter cavity and the open-loop transfer function of

the green lock, the injected line in the error signal is

Verr =
1

|1 +GGR(f)|
· 1

K (Hz/V)
· SHz√

1 +
(

f
fp

)2 (7.2)

where Verr = 1.3 Vrms =
√
2 · 1.3 V is the measured amplitude of the injected line in the

error signal, K is the calibration factor (Hz/V), GGR is the open-loop transfer function

of the green lock at the frequency of the injected line, f = 28 kHz is the frequency of the

injected line, and fp = 1.45 kHz is the cavity pole for the green field. From Figure 7.2, the

gain and phase of GGR at 28 kHz are −5.8 dB and −125 deg, respectively. From Equation

(7.1) and (7.2), the calibration factor is K = 2.0× 102 Hz/V.

The measured green locking accuracy is shown in Figure 7.3. The green locking accu-

racy (rms) is 20.3 Hz.
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Figure 7.3: Locking accuracy of green field with green lock. The spectrum of the in-
loop green PDH signal is calibrated in units of Hz/

√
Hz using the calibration factor of

K = 2.0× 102 Hz/V. The green locking accuracy (rms) is 20.3 Hz.

Locking accuracy of IR field

The locking accuracy of the IR field is a significant parameter because it represents the

filter cavity length noise for squeezing. To evaluate the locking accuracy of the IR field, the

IR seed beam was injected into the filter cavity and the reflected seed beam was detected

using an auxiliary RFPD. The reflected IR signal was demodulated at 15.2 MHz to obtain

the IR PDH signal. To calibrate the IR PDH signal, the filter cavity was locked with the

green field and the frequency of the AOM was scanned around the IR resonance. The
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calibration factor from the IR PDH signal to frequency (Hz/V) is

cPDH =
sAOMtpp
2Vpp

(7.3)

where sAOM is the scan speed of the AOM for IR (Hz/s), Vpp is the peak-to-peak value

of the IR PDH signal (V), and tpp is the time difference of the peak-to-peak of IR PDH

signal (s). It should be noted that the scan speed of the AOM for IR is half of that for

the green field. The factor of 2 in Equation (7.3) is used because the slope of the error

signal around the resonance is as about twice as the slope of the peak-to-peak value.

To measure the locking accuracy, the IR seed field was set on resonance by adjusting

the AOM driving frequency and the IR PDH signal was measured. The measured IR error

signal is shown in Figure 7.4. The IR locking accuracy with green lock (rms) is 3.2 Hz.

The conversion from frequency noise δf to length noise δL in the 300 m cavity is

δL

δf
=
Lfc

f0
=
Lfcλ

c
= 1.06 pm/Hz. (7.4)

Therefore, the frequency noise of 3.2 Hz corresponds to the filter cavity length noise of 3.4

pm, while the target filter cavity length noise is 1 pm. The IR locking accuracy below 10

Hz is dominated by the filter cavity length noise and it is dominated by the laser frequency

or the phase noise above 10 Hz. Although the IR locking accuracy (rms) above 10 Hz is ∼
1 Hz, the filter cavity length noise below 10 Hz contributes to the IR locking accuracy of

∼ 2 Hz. This means that the green lock is not enough to stabilize the IR locking accuracy

below 1 pm.
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Figure 7.4: IR locking accuracy with the green lock. The IR locking accuracy with the
green lock (rms) is 3.2 Hz, which corresponds to the filter cavity length noise of 3.4 pm.
It should be noted that this is an out-of-loop estimation of the IR locking accuracy.
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7.3.3 Finesse

The finesse of the filter cavity was estimated by measuring the decay time of the cavity.

The filter cavity was set on resonance for an IR seed field and, by driving the AOM, it was

suddenly driven out of resonance. The IR transmission was monitored during this process.

The ringdown measurement is shown in Figure 7.5. By fitting the ringdown measurement

with Equation (3.28), the decay time is determined as τ = 2.680(1) ms. Using Equation

(3.29), the finesse is estimated to be F = πfFSRτ = 4210(2), which is close to the design

value of 4360.
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Figure 7.5: Finesse measurement with ringdown. The measured decay time is τ = 2.680(1)
ms, and the corresponding finesse is 4210(2). The offset was removed from the data.

7.3.4 Round-trip losses

The round-trip losses of the filter cavity can be measured from the ratio of the IR reflected

power from the cavity when it is on/off resonance. From Equation (3.18), this ratio can

be written as follows:

Rcav =
Pres

Pin
=

[
rI − rE
1− rIrE

]2
≃

[
rI −

√
1− Λ2

rt

1− rI
√

1− Λ2
rt

]2
, (7.5)

where Pres is the IR reflected power on resonance and Pin is the input power, which can

be measured from the IR reflected power when it is off resonance. Here it is assumed that

rE =
√
1− TE ≃

√
1− Λ2

rt. (7.6)

This means that the transmissivity of the end mirror is included in the round-trip losses.
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By solving Equation (7.5), we obtain the following:

Λ2
rt =

TI(1−Rcav)

(
√
RcavrI + 1)2

. (7.7)

The first round-trip loss measurement was done in 2018 before I joined this experiment.

The round-trip losses measured at that time were 50-90 ppm [63]. After I joined this

experiment, the round-trip losses were measured again in 2020. The result is shown in

Table 7.4. The result indicates that the round-trip losses are a bit larger than before.

One possible explanation is that the filter cavity mirrors might be contaminated becase

the vacuum chamber was opened several times and no cleaning was done during the last

two years. We also measured frequency-dependent squeezing during a similar period in

2020, and therefore, we estimate that the round-trip losses are 120(30) ppm during the

frequency-dependent squeezing measurement.

Table 7.4: Measurement of round-trip losses in 2020.

Measurement date Round-trip losses

2020.01.23 148 ppm
2020.02.07 122 ppm
2020.02.10 95 ppm

7.4 Loss and phase noise outside the filter cavity

In addition to the filter cavity losses and length noise, loss and phase noise outside the

filter cavity are also the main squeezing degradation sources. The loss and phase noise

outside the filter cavity was determined by measuring the squeezing and anti-squeezing

levels with different pump green powers in a frequency region where the squeezing is off

resonance of the filter cavity. Under this condition, the squeezed field sees the filter cavity

as a perfect mirror, and therefore, the loss and phase noise outside the filter cavity can be

measured. The result is shown in Figure 7.6. From this measurement, we find that the

loss and phase noise outside the filter cavity are 40(1) % and 30(5) mrad, respectively.

The optical loss is increased by 15 % as compared with that without the filter cavity, as

shown in Figure 6.30. The increase in the optical loss is mainly due to the in-vacuum

Faraday isolator with ∼ 15 % loss for double pass.
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Figure 7.6: Squeezing and anti-squeezing levels with different pump green powers. The
pump green power was increased from 18 mW to 57 mW and the anti-squeezing level
increased accordingly. The error bars of the data are determined from the standard de-
viation of the data. From this measurement, the loss and phase noise outside the filter
cavity are estimated to be 40(1) % and 30(5) mrad, respectively.

7.5 Frequency-dependent squeezing measurement

The measurement of the frequency-dependent squeezing was done by measuring the quan-

tum noise of the LO at the homodyne detector, changing the relative phase of the LO and

the squeezing angle (homodyne angle). The theoretical frequency-dependent squeezing

spectra for different homodyne angles are shown in Figure 7.7.
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Figure 7.7: Theoretical quantum noise spectra of the frequency-dependent squeezing for
different homodyne angles. The degradation parameters in Table 7.5 are assumed.

The measured frequency-dependent squeezing spectra for different homodyne angles

are shown in Figure 7.8. The measured squeezing level was 3.4±0.4 dB above the rotation

frequency and ∼1 dB below the rotation frequency. The measured spectra are fitted with

a theoretical model that uses the squeezing degradation parameters listed in Table 7.5.

These parameters are the same for every curve, while the homodyne angle and the cavity

detuning are fitted for each curve. The average of the fitted cavity detuning in Figure

7.8 was about 63 Hz, which corresponds to the squeezing rotation frequency of about

63×
√
2 = 90 Hz.

Although it is possible to operate the cavity at the optimal detuning, the detuning

in Figure 7.8 was set to have a squeezing rotation at a slightly higher frequency than

the optimal one (about 90 Hz instead of 75 Hz) because the spectrum is dominated by

the backscattering noise below ∼70 Hz. The backscattering noise comes from a leaked

LO which is reflected by the filter cavity and injected into the homodyne detector. This

backscattering noise depends on the mirror motion and alignment condition of the filter

cavity.
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Homodyne angle: 0.5  0.3 deg, Cavity detuning: 47.6  0.6 Hz

Homodyne angle: 14.8  0.1 deg, Cavity detuning: 68.6  0.3 Hz

Homodyne angle: 27.7  0.1 deg, Cavity detuning: 63.2  0.4 Hz

Homodyne angle: 39.4  0.1 deg, Cavity detuning: 60.6  0.4 Hz

Homodyne angle: 61.1  0.2 deg, Cavity detuning: 69.1  0.4 Hz

Homodyne angle: 92.9  1.4 deg, Cavity detuning: 70.5  1.3 Hz

Figure 7.8: Measured noise spectra of the frequency-dependent squeezing for different
homodyne angles. The measured squeezing level was 3.4 ± 0.4 dB above the rotation
frequency and ∼1 dB below the rotation frequency. Each curve above 70 Hz has been
fitted with a theoretical model assuming the degradation parameters listed in Table 7.5,
and the homodyne angle and the cavity detuning are extracted from the fitting. Each
spectrum has a resolution of 0.5 Hz and is averaged 100 times, leading to an acquisition
time of 200 s.

Table 7.5: Current and target squeezing degradation parameters.

Parameter Current Target

Filter cavity losses 120 ± 30 ppm 80 ppm
Propagation losses 36 %± 1% 10 %

Mode-mismatch squeezer-filter cavity 6 %± 1% 2 %
Mode-mismatch squeezer-local oscillator 2 %± 1% 5 %
Frequency-independent phase noise (rms) 30 ± 5 mrad 30 mrad

Filter cavity length noise (rms) 3 ± 0.5 pm 1 pm
Generated squeezing 8.3 ± 0.1 dB 9 dB

To check the reproducibility of the frequency-dependent squeezing spectra, the noise

spectra for homodyne angles around 90 deg were measured as shown in Figure 7.9. Al-

though the noise level below ∼70 Hz fluctuated due to the backscattering noise, each

spectrum has a rotation frequency around 100 Hz and agrees with the theoretical curve

above 70 Hz.
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Homodyne angle: 85  0.6 deg, Cavity detuning: 62.1  0.8 Hz

Homodyne angle: 100.5  0.8 deg, Cavity detuning: 77.6  0.7 Hz

Homodyne angle: 80.2  0.4 deg, Cavity detuning: 56.6  0.6 Hz

Homodyne angle: 92.9  1.4 deg, Cavity detuning: 70.5  1.3 Hz

Figure 7.9: Measured noise spectra of the frequency-dependent squeezing for homodyne
angles around 90 deg. The measured noise relative to the coherent vacuum were around
±1.5 dB below the rotation frequency due to the backscattering noise. Each curve above 70
Hz has been fitted with a theoretical model assuming the degradation parameters listed
in Table 7.5, and the homodyne angle and the cavity detuning are extracted from the
fitting. Each spectrum has a resolution of 0.5 Hz and is averaged 100 times, leading to an
acquisition time of 200 s.

7.6 Discussion

The achievable quantum noise reduction in GW detectors with the filter cavity described in

this chapter is shown in Figure 7.10. Here, a squeezing angle rotation at 75 Hz, which is the

optimal frequency for KAGRA, is assumed. This plot also assumes a lossless matching

with the interferometer. Because the loss values used in Figure 7.10 are larger than

those for advanced detectors in the next observation runs (including the losses due to a

non-optimal coupling between the squeezer and the interferometer), the quantum noise

reduction expected in advanced detectors will be higher than that shown in Figure 7.10

[65, 66].

The drift of the alignment condition of the suspended mirrors, such as cavity mirrors

and mirrors used to inject the squeezing into the cavity, limits the mode matching between

the squeezed field and the cavity to ∼94 %. Therefore, the auto alignment of the filter

cavity is necessary to improve the mode matching.

Propagation losses for the squeezed field are dominated by the low OPO escape effi-

ciency (∼90 %) as well as the in-vacuum Faraday isolator loss (∼15 % for double pass).

Both components will be replaced with lower loss components. In particular, Faraday

isolators with losses below 1% [67] and the OPO with an escape efficiency as high as 99 %

[58] have been realized. It is expected that the integration of a Faraday isolator with better
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Figure 7.10: Estimated degradation budget for the frequency-dependent squeezing source.
The squeezing degradation parameters used in this plot are listed in Table 7.5. The
solid black curve represents the expected quantum noise reduction for a GW detector
such as KAGRA. The dashed black curve represents the case for a frequency-independent
squeezing (with the same squeezing level as the frequency-dependent case). As expected,
quantum noise is significantly reduced at low frequencies owing to frequency-dependent
squeezing as compared with frequency-independent squeezing.

isolation factor and a better vibration isolation system will also reduce the backscattering

noise to below ∼50 Hz.

Because the filter cavity was controlled and aligned with respect to the auxiliary green

field, any relative misalignment of the squeezed field with respect to the green field will

not be corrected. In fact, a slow drift of the squeezed field axis with respect to the

green one was observed. This drift limits the long-term operation of the filter cavity. A

correlation was also observed between the alignment condition of the squeezed field and its

detuning with respect to the cavity resonance. This relation is suspected to be the cause

of the cavity detuning fluctuation observed in Figure 7.8. The mechanisms that couple the

alignment fluctuation with the detuning fluctuation are still under investigation. To solve

these problems, I proposed a new control scheme which uses the already present coherent

control field for both length and alignment control [18]. This scheme will be explained in

Chapter 8. A similar scheme, using an additional field at near the squeezing frequency,

has been demonstrated for the length control of a 16 m filter cavity at MIT [68].

7.7 Conclusion

In this chapter, the characterization of the 300 m filter cavity and the first demonstration

of frequency-dependent squeezing with the squeezing angle rotation below 100 Hz were
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reported.

Regarding the characterization of the 300 m filter cavity, the squeezing degradation

sources were characterized and the method to reduce them was discussed. In particular,

it is revealed that the conventional control scheme for the filter cavity with an auxiliary

green field is not enough to stabilize the locking accuracy of the filter cavity.

Regarding the demonstration of frequency-dependent squeezing, the rotation frequency

of the squeezing angle was below 100 Hz, which is necessary for broadband quantum

noise reduction in current GW detectors. It is indicated that the frequency-dependent

squeezing source reported in this chapter can reduce the quantum noise in GW detectors

at all frequencies. Because filter cavities whose length is comparable with 300 m, as in our

demonstration, are planned to be installed soon in Advanced LIGO, Advanced Virgo, and

KAGRA, the results presented in this chapter play a key role in realizing this technology

in advanced detectors.

This result is not only a step toward for the integration of filter cavities with the current

GW detectors in planned upgrades, but also a demonstration of the technology planned in

the third-generation detectors such as the Einstein Telescope and Cosmic Explorer, which

will use the frequency-dependent squeezing with kilometer-scale filter cavities [35, 36].
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Chapter 8

Control of a Filter Cavity with

Coherent Control Sidebands

One of the main challenges in the generation of frequency-dependent squeezing by using

filter cavities is the length and alignment control of the filter cavity. Because squeezed

vacuum has no coherent amplitude, it cannot provide the error signals necessary for the

control. Therefore the use of auxiliary fields is necessary. In the experiments described in

the previous chapter, the filter cavity was controlled using an auxiliary green field with

a wavelength of 532 nm, while the wavelength of the squeezed field is 1064 nm. Because

the optical paths for the green and squeezed fields are different and the relative alignment

between them can drift, the length and alignment control of the filter cavity with the green

field do not ensure the alignment of the squeezed field to the filter cavity. In addition,

the fluctuation of the relative phase delay between the green and squeezed fields induced

by the anisotropies or temperature dependency of the cavity mirror coating can lead to a

detuning fluctuation [69].

In this chapter, I study a new scheme for the length and alignment control for the

filter cavity whose length and alignment error signals can be provided by the coherent

control (CC) field [18]. The CC field is present in all the squeezed vacuum sources for GW

detectors and it is used to control the squeezing angle [49]. Because the coherent control

sidebands (CCSB) are generated inside the OPO together with the squeezed vacuum field,

they have the same mode matching conditions and almost the same frequency. The relative

frequency of the squeezed field and CCSB can be controlled accurately using a PLL and

can be tuned so that the squeezed field is properly detuned in the filter cavity. This

frequency difference is only a few MHz which makes any possible phase delay effect caused

by the coating negligible. Therefore, the length and alignment controls with CCSB ensure

the appropriate detuning and alignment of the filter cavity for the squeezed vacuum field.

This new control scheme was also implemented in the 300 m filter cavity for the

length control and an improvement of the locking accuracy from 3.4 pm to 0.75 pm was

successfully demonstrated. The experimental demonstration of the new control scheme is

also presented in this chapter.
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8.1 Principle

8.1.1 Filter cavity length signal

From Equation (4.93), the CC field passing through the OPO can be written as

Ecc =
√
2κaoacav,cc = acc

1

(1− x2)
ei(ω0+Ωcc)t + acc

x

(1− x2)
ei(ω0−Ωcc)t+iϕpump , (8.1)

where acc is the amplitude of the CC field at the OPO transmission without the pump

field,

acc =
2
√
κai κ

a
oAcc

κa
. (8.2)

It should be noted that Equation (8.1) assumes that Ωcc is significantly smaller than the

OPO bandwidth κa, Ωcc ≪ κa. In this chapter, we assume that ϕpump is maintained at a

constant value equal to 0 by CC1, but has residual noise, ϕpump = δϕpump ≪ 1.

To obtain frequency-dependent squeezing from a filter cavity, the resonance of the

filter cavity must be properly detuned from the carrier. By choosing the frequency of the

CC field (Ωcc) as follows, the CC field can be resonant inside the filter cavity, while the

resonance of the filter cavity is properly detuned from the carrier (Figure 8.1):

Ωcc = n× ωFSR +∆ωfc,0, (8.3)

where n is an integer number, ωFSR = 2πfFSR = πc/Lfc is the FSR of the filter cavity, Lfc

is the filter cavity length, and ∆ωfc,0 is the optimal filter cavity detuning with respect to

the carrier (5.29). Under this condition, the CC sideband at −Ωcc is detuned by −2∆ωfc,0

with respect to the filter cavity resonance. Thus, this sideband is almost reflected by the

filter cavity. The phase of the filter cavity reflectivity is shown in Figure 8.2. Because the

phase of the filter cavity reflectivity for the CC field, which is on resonance, is sensitive to

the filter cavity length change compared with the other sideband, which is off resonance,

the filter cavity length signal can be obtained by detecting the beat notes of CCSB.

The CCSB reflected by the filter cavity can be written as

Ecc = a+r+e
i(ω0+Ωcc)t + a−r−e

i(ω0−Ωcc)t+iδϕpump , (8.4)

where a± is

a+ = acc
1

(1− x2)
, a− = acc

x

(1− x2)
, (8.5)

and r±(∆ωfc) = rfc(±∆ωfc,0,∆ωfc) is the complex reflectivity of the filter cavity for the

CCSB. From Equation (5.17), the reflectivity can be written as

rfc(±∆ωfc,0,∆ωfc) ≃ 1− 2− ϵ

1 + iξ(±∆ωfc,0,∆ωfc)
, (8.6)
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Intracavity power

Figure 8.1: Frequency relationship inside the filter cavity. The red dashed line represents
a carrier, and the orange and blue lines represent the CCSB.

where

ξ(±∆ωfc,0,∆ωfc) =
±∆ωfc,0 −∆ωfc

γfc
. (8.7)

It should be noted that the sideband frequency Ω is fixed at ±∆ωfc,0 for the CCSB under

the condition expressed in Equation (8.3) and ∆ωfc is the variable representing the actual

(nonoptimal) filter cavity detuning.

Amplitude and phase of the filter cavity reflectivity for the CCSB can be written as

ρ±(∆ωfc) = |rfc(±∆ωfc,0,∆ωfc)|

=

√
1− (2− ϵ)ϵ

1 + ξ2(±∆ωfc,0,∆ωfc)
, (8.8)

α±(∆ωfc) = arg{rfc(±∆ωfc,0,∆ωfc)}

= arg{−1 + ϵ+ ξ2(±∆ωfc,0,∆ωfc) + i(2− ϵ)ξ(±∆ωfc,0,∆ωfc)}. (8.9)

The filter cavity length signal can be obtained by detecting the beat notes of the CCSB

as follows:

Pcc =
∣∣∣a+r+ei(ω0+Ωcc)t + a−r−e

i(ω0−Ωcc)t+iδϕpump

∣∣∣2
= (DC term) + 2a+a−Re{r+r∗−ei(2Ωcct−δϕpump)}. (8.10)

Demodulating this signal by sin (2Ωcct− α−(∆ωfc,0)) (in-phase) and cos (2Ωcct− α−(∆ωfc,0))

(quadrature) and low-passing it, we can obtain the filter cavity length signal as a function
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Figure 8.2: Phase of filter cavity reflectivity. The horizontal axis is the sideband frequency
normalized with respect to ∆ωfc,0. The black dashed lines represent the sideband frequency
of the CCSB.

of the filter cavity detuning ∆ωfc as follows:

PI = −a+a−ρ+(∆ωfc)ρ−(∆ωfc)

× sin (α+(∆ωfc)− α−(∆ωfc) + α−(∆ωfc,0)− δϕpump), (8.11)

PQ = a+a−ρ+(∆ωfc)ρ−(∆ωfc)

× cos (α+(∆ωfc)− α−(∆ωfc) + α−(∆ωfc,0)− δϕpump). (8.12)

The relative phase noise of the CCSB δϕpump is a noise source for the filter cavity length

signal. Assuming δϕpump = 0, the normalized filter cavity length signals (8.11) and (8.12)

with respect to a+a− are shown in Figure 8.3. The parameters used in this calculation

are listed in Table 8.1.

The filter cavity length noise δLfc causes detuning noise δ∆ωfc as follows:

δ∆ωfc =
ω0

Lfc
δLfc. (8.13)

When ∆ωfc ≡ ∆ωfc,0 + δ∆ωfc is defined, the phase response of the filter cavity reflectivity

to the detuning noise can be calculated from Equation (8.9) as follows:

δα(Ω) =
dα(Ω,∆ωfc)

d∆ωfc

∣∣∣∣
∆ωfc=∆ωfc,0

δ∆ωfc

≃
(
(Ω−∆ωfc,0)

2

γ2fc
+ 1

)−1
8F
λ
δLfc, (8.14)

where α(Ω,∆ωfc) = arg{rfc(Ω,∆ωfc)}, λ is the wavelength of the carrier, and F is the

filter cavity finesse. Here, it is assumed that ϵ≪ 1, which is true for the parameters listed
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Figure 8.3: Filter cavity error signal normalized with respect to a+a−. The horizontal
axis is the filter cavity detuning normalized with respect to ∆ωfc,0. The red solid and
dashed lines represent the intracavity power of the CCSB and carrier in the filter cavity
normalized with respect to their maximum intracavity powers, respectively. The blue and
green lines represent the filter cavity length signal (in-phase and quadrature). The filter
cavity length signal (in-phase) becomes 0 when ∆ωfc = ∆ωfc,0.

in Table 8.1. The filter cavity length signal (In-phase) (8.11) is

PI

a+a−ρ+ρ−
= sin(α+(∆ωfc,0 + δ∆ωfc)− α+(∆ωfc,0)− α−(∆ωfc,0 + δ∆ωfc) + α−(∆ωfc,0))

≃ δα(∆ωfc,0)− δα(−∆ωfc,0)

= 26 mrad

(
1064 nm

λ

)(
F

4360

)(
δLfc

1 pm

)
. (8.15)

Because the relative phase noise of the CCSB (δϕpump) can be stabilized by CC1 below

1.7 mrad [58], the residual filter cavity length signal (8.15) can be obtained with a good

enough SNR. The phase noise of an RF source for the demodulation also becomes a noise

source for the filter cavity length signal. The typical phase noise of an RF source for the

demodulation is several tens of µrad and, therefore, significantly smaller than the residual

filter cavity length signal (8.15).

8.1.2 Filter cavity alignment signal

The CCSB can be also used to control the alignment of the filter cavity using the wave

front sensing (WFS) technique [70]. The principle of wave front sensing is explained in

Appendix A.

The misalignment of the filter cavity axis with respect to the input beam axis as well

as that of the immediately reflected beam axis with respect to the filter cavity axis can be
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Table 8.1: Parameters for 300 m filter cavity [62].

Parameter Symbol Value

Filter cavity length Lfc 300 m
Filter cavity half-bandwidth γfc 2π × 57.3 Hz
Filter cavity detuning ∆ωfc,0 2π × 54 Hz
Filter cavity finesse F 4360
Filter cavity input mirror transmissivity t2in 0.00136
Filter cavity round-trip losses Λ2

rt 80 ppm
Injection losses Λ2

inj 5 %

Readout losses Λ2
ro 5 %

Mode-mismatch losses Λ2
mmFC 2 %

(squeezer-filter cavity)
Mode-mismatch losses Λ2

mmLO 5 %
(squeezer-local oscillator)
Frequency-independent phase δϕ 30 mrad
noise (rms)
Filter cavity length noise (rms) δLfc 1 pm
Generated squeezing σdB 9 dB
Nonlinear gain g 3.6

represented in terms of the dimensionless coupling factors γ and γr as follows:

γ = δx/w0 + iδθ/θ0, (8.16)

γr = δx′/w0 + iδθ′/θ0, (8.17)

where w0 is the beam radius at the waist position and θ0 = λ/πw0 is the beam divergence.

δx and δx′ represent the shift in the x-axis direction measured at the waist position of the

filter cavity axis with respect to the input beam axis and the immediately reflected beam

axis with respect to the filter cavity axis, respectively. δθ and δθ′ represent the tilt around

the y-axis of the filter cavity axis with respect to the input beam axis and the immediately

reflected beam axis with respect to the filter cavity axis, respectively. Here, the z-axis is

the beam axis and the y-axis is orthogonal to the x- and z-axis. z = 0 is the beam waist

position. γ and γr can be expressed in terms of the input and end mirror misalignment of

the filter cavity as follows:

γ =
R

2

δθI + δθE
w0

+ i
R

2R− Lfc

δθI − δθE
θ0

(8.18)

γr =
LfcδθI − R

2 (δθI + δθE)

w0
+ i

2δθI − R
2R−Lfc

(δθI − δθE)

θ0
,

=

(
Lfc

w0
+ i

2

θ0

)
δθI − γ, (8.19)

where R is the radius of curvature of the input and end mirrors, δθI and δθE are the angular

misalignments of the input and end mirrors, respectively. The directions of the input and

end mirror misalignments are defined so that the positive direction of the misalignment
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causes the shift of the filter cavity axis in the positive direction of the x-axis.

We treat only the x-axis misalignment (HG 10 mode), and the calculations of the

y-axis misalignment (HG 01 mode) are entirely analogous.

From Equation (A.21) and (A.22), the 2Ωcc term of the filter cavity error signal (8.10)

can be written as

Pcc(2Ωcc) = 2a+a−Re{r+r∗−ei2Ωcct}

= 2a+a−Re{(U00rc0 − U10C)(U
∗
00r

∗
s0 − U∗

10S
∗)ei2Ωcct}

= 2a+a−Re{(U00U
∗
00rc0r

∗
s0 − U00U

∗
10rc0S

∗

− U∗
00U10r

∗
s0C + U10U

∗
10CS

∗)ei2Ωcct}. (8.20)

The WFS signal (W ) is expressed as the sum of the second and the third terms of

Equation (8.20). Defining U = U00U
∗
10 yields

W = 2a+a−Re({−Urc0(r∗s0γ∗r + r∗s1γ)− U∗r∗s0(rc0γr + rc1γ
∗)}ei2Ωcct)

= 2a+a−Re({−rc0r∗s0(Uγ∗r + U∗γr)− rc0r
∗
s1Uγ − rc1r

∗
s0U

∗γ∗}ei2Ωcct). (8.21)

The differential signal of W in the x-axis direction with a QPD is

Wdiff =

∫ ∫
dxdy{W (x > 0)−W (x < 0)}. (8.22)

As ∫ ∫
dxdy{U(x > 0)− U(x < 0)} =

√
2

π
e−iη(z), (8.23)

and rc1, rs1 ≃ 1 because of the Gouy phase separation in the cavity, the WFS signal can

be written as

Wdiff = 2a+a−

√
2

π
Re({−r+r∗−(e−iηγ∗r + eiηγr)− r+e

−iηγ − r∗−e
iηγ∗}ei2Ωcct),

(8.24)

where r± = r±(∆ωfc,0) and η represents the Gouy phase. Demodulating (8.24) by

sin (2Ωcct− α−(∆ωfc,0)) (In-phase) and low-passing it, the first term of Equation (8.24),

which is proportional to the filter cavity length signal, will disappear.

The WFS signal after the demodulation is

WI =

√
2

π
a+a−

× {Re(r+e−iηγ + r∗−e
iηγ∗) sinα−(∆ωfc,0)

+ Im(r+e
−iηγ + r∗−e

iηγ∗) cosα−(∆ωfc,0)}. (8.25)

The WFS signal as a function of the Gouy phase is shown in Figure 8.4. The displacement
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Figure 8.4: Filter cavity WFS signal as a function of the Gouy phase normalized with√
2
πa+a−. The red and blue lines represent the shift signal with δx = w0 and the tilt

signal with δθ = θ0, respectively.

and tilt signals of the filter cavity can be obtained with two different Gouy phases.

The fourth term in Equation (8.20) is the beat note of the CCSB HG10 mode and

becomes a noise source for the filter cavity length signal, which is the first term in Equation

(8.20). The fourth term in Equation (8.20) is

2a+a−|U10|2Re{CS∗ei2Ωcct}

= 2a+a−|U10|2Re{(rc0r∗s0|γr|2 + rc0r
∗
s1γrγ + rc1r

∗
s0γ

∗γ∗r + rc1r
∗
s1|γ|2)ei2Ωcct}.

(8.26)

Demodulating by sin (2Ωcct− α−(∆ωfc,0)), the first term in Equation (8.26), which is

proportional to the filter cavity length signal, will disappear. After integration with respect

to x, y, Equation (8.26) will become

−a+a− { Re(rc0γrγ + r∗s0γ
∗γ∗r ) sinα−(∆ωfc,0)

+ Im(rc0γrγ + r∗s0γ
∗γ∗r ) cosα−(∆ωfc,0)

+ |γ|2 sinα−(∆ωfc,0)}, (8.27)

where rc1, rs1 ≃ 1 is used. From Equation (8.18) and (8.19), Equation (8.27) can be

numerically calculated in terms of the input and end mirror misalignment δθI , δθE as

shown in Figure 8.5. Here it is assumed that R = 415 m and w0 = 0.825 cm [63].

Equation (8.27) normalized with a+a− should be smaller than the residual filter cavity

length signal normalized with a+a− which is PI/a+a− = 23 mrad. It should be noted

that the filter cavity length signal in Equation (8.15) is normalized with a+a−ρ+ρ−. We

consider the maximum angular motion of the filter cavity mirrors θmax as δθ2I+δθ
2
E = θ2max
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Figure 8.5: Coupling from input and end mirror misalignment of the filter cavity to
the filter cavity length signal (8.27) normalized with respect to a+a−. As the coupling
should be smaller than the filter cavity length signal ∼ 0.023, the input and end mirror
misalignment should be inside the ellipse corresponding to 0.023.

which corresponds to a circle with radius θmax in Figure 8.5. This circle should be smaller

than the ellipse corresponding to 0.023. θmax can be determined from the semi-minor

axis of the ellipse corresponding to 0.023 in Figure 8.5. Thus, the requirement of θmax is

obtained as θmax = 2.7 µrad, which is achievable through double pendulum suspensions in

KAGRA [71]. By numerically calculating |γ|2 as a functions of the input and end mirror

misalignment, this requirement corresponds to |γ|2 = 0.01. Because this requirement

is more stringent than the requirement of mode-mismatch losses (squeezer-filter cavity),

which is 2 %, the requirement of γ is set as |γ|2 = 0.01.

8.1.3 Experimental setup in GW detectors

An example of the experimental implementation of this scheme in GW detectors is shown

in Figure 8.6. There are three control loops related to the CC field which are CC1, CC2,

and the filter cavity control loop with CCSB (hereafter, we refer to it as CCFC).

The CCFC error signal can be obtained at an output mode cleaner (OMC) reflection

because the CCSB are almost fully reflected by the OMC, while the carrier is almost

entirely transmitted. The CCFC error signal is obtained by demodulating the OMC re-

flection at a frequency of 2Ωcc and is fed back to the filter cavity length. The demodulation

phase can be determined by injecting the bright carrier field to the filter cavity and simul-

taneously checking the carrier transmission and CCFC error signal, as shown in Figure

8.3. The demodulation phase can be fine-tuned by optimizing the GW sensitivity. The

CC1 error signal for controlling the relative phase between the green pump field and the

CC field can be obtained at the OPO reflection and it is fed back to the optical path

length of the pump field. The CC2 error signal for controlling the relative phase between

the carrier and the CC field is obtained at the OMC transmission and fed back to the PLL
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between the interferometer and squeezer lasers [72].

OMC

Filter Cavity

Squeezer Laser

Coherent Control Laser

SHG

OPO
2

2

PLL

PLL

cc

Interferometer

cc

cc

cc

Interferometer Laser

CC1CC2

CCFC

Figure 8.6: Example of experimental implementation of a CCFC scheme in GW detectors.
The red solid, red dashed and orange lines represent the carrier, squeezed field, and CC
field, respectively. The green line represents the green pump field, which is generated by
the SHG and injected into the OPO.

8.1.4 Coherent control error signal

As either of CCSB enters the filter cavity and senses the filter cavity length noise, the filter

cavity length noise appears in the CC2 loop, which controls the relative phase between

the LO and CCSB. In the case of GW detectors, the LO is the interferometer laser.

In this section, the CC2 error signal, which includes the phase noise coming from the

filter cavity, is calculated. For simplicity, we write ρ±(∆ωfc) = ρ±, α±(∆ωfc) = α± and

α±(∆ωfc,0) = α±,0.

The power at the OMC transmission is

PCC2 =
∣∣∣a0ei(ω0t+ϕLO) + τcca+ρ+e

i(ω0+Ωcc)t+i(ϕCC+α+)

+ τcca−ρ−e
i(ω0−Ωcc)t+i(ϕCC+α−+δϕpump)

∣∣∣2
= 2τcca0a+ρ+ cos (Ωcct− ϕLO + ϕCC + α+)

+ 2τcca0a−ρ− cos (Ωcct+ ϕLO − ϕCC − α− − δϕpump)

+ (DC term) + (2Ωcc term), (8.28)

where a0 is the amplitude of the LO and τcc is the transmissivity of the CCSB from the

OPO to the OMC transmission.
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Demodulating (8.28) by cos (Ωcct+ θdm,CC2) and low-passing it, where the demodula-

tion phase θdm,CC2 is

θdm,CC2 =
α+,0 − α−,0

2
, (8.29)

we find

PI = τcca0a+ρ+ sin
(
−ϕLO + ϕCC + αp,0 + δα+ +

π

2

)
− τcca0a−ρ−sin

(
ϕLO − ϕCC − αp,0 − δα− − π

2
− δϕpump

)
, (8.30)

where

αp,0 =
α+,0 + α−,0

2
, (8.31)

δα± = α± − α±,0. (8.32)

When the squeezing angle ϕsqz is changed from π/2 (squeeze quadrature) by δϕsqz, Equa-

tion (4.92) can be written as

ϕsqz = ϕLO − ϕCC =
π

2
+ δϕsqz. (8.33)

Assuming δϕsqz, δα±, δϕpump ≪ 1, the CC2 error signal (8.30) can be written as

PI = τcca0a+ρ+[(1 + aρ) sinαp,0

+{−(1 + aρ)δϕsqz + 2δαp(∆ωfc, a, ρ) + aρδϕpump} cosαp,0], (8.34)

where a = a−/a+ = x is the unbalance of the amplitude of the CCSB and ρ = ρ−/ρ+ is

the unbalance of the filter cavity reflectivity of the CCSB. δαp(∆ωfc, a, ρ) becomes

δαp(∆ωfc, a, ρ) =
δα+ + aρδα−

2
. (8.35)

The first term in Equation (8.34) is the constant offset, the second term is the relative

phase noise between CC and LO, which does not include the phase noise coming from the

filter cavity (frequency-independent phase noise), the third term is the phase noise of the

CCSB coming from the filter cavity length noise (frequency-dependent phase noise at the

detuning frequency), and the fourth term is the phase noise coming from the relative phase

noise of the CCSB. The constant offset in Equation (8.34) should be removed to obtain

δϕsqz. δαp(∆ωfc, a, ρ) is the coupling from the CCFC loop which reshapes frequency-

dependent phase noise as explained in the following section.

8.1.5 Reshaping of frequency-dependent phase noise

The CC2 error signal calculated in Section 8.1.4 reshapes the frequency-dependent phase

noise, which originates from the filter cavity length noise. This is caused by the coupling
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between the CCFC and CC2 loops as shown in Figure 8.7.

FC length

CC2 phase

differential

common

common

FC error signal

CC2 error signal

Phase noise of CCSB 2⌦cc
<latexit sha1_base64="lEigyDw+d9fp2dXZIy2JeLYDCsE="></latexit>

⌦cc
<latexit sha1_base64="haTUItVd5lF0Y2E+qwEF2/NuNKg="></latexit>

common = Frequency-independent phase noise

common = Frequency-dependent phase noise at the detuning 
frequency

Filter cavity length control loop (CCFC)

Coherent control loop (CC2)

Figure 8.7: Coupling between CCFC and CC2 loops.

The fluctuation of the filter cavity length causes both differential and common phase

noise of the CCSB. The differential phase noise of the CCSB is the CCFC error signal,

while the common phase noise of the CCSB is the frequency-dependent phase noise at

the detuning frequency, which is the second term in Equation (8.34). This frequency-

dependent phase noise at the detuning frequency couples to the CC2 loop and is suppressed

by the CC2 feedback loop, while the frequency-dependent phase noise increases at high

frequencies. In this section, the calculation of the frequency-dependent phase noise with

the feedback of the CC2 loop is explained.

The frequency-dependent phase noise when the CCSB are off resonance of the filter

cavity can be calculated as Equation (5.53). However, with the CCFC scheme, the de-

tuning noise of the filter cavity (8.35) is fed back by the CC2 loop. As shown in Figure

8.6, this feedback from the CC2 loop is sent to the squeezer laser, which leads to a change

in the injection squeezing angle ϕ. Therefore, the frequency-dependent phase noise of N̂1

with feedback from the CC2 loop can be calculated as follows:

N̂1,avg(ϕ,∆ωfc,0)

=
1

2

{
N̂1(−δαp(∆ωfc,0 + δ∆ωfc, a, ρ),∆ωfc,0 + δ∆ωfc)

+ N̂1(−δαp(∆ωfc,0 − δ∆ωfc, a, ρ),∆ωfc,0 − δ∆ωfc)
}
. (8.36)

It should be noted that frequency-dependent phase noise δαp is low above the cavity pole

of the filter cavity ∼ 57 Hz, and it is assumed that the gain of the CC2 loop below the

cavity pole is large enough such that the feedback of the CC2 loop is perfect.

Figure 8.8 and 8.9 show quantum noise relative to the coherent vacuum with filter

cavity length noise δLfc = 1 pm and 3 pm. The frequency-dependent phase noise with
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the CCFC scheme and the conventional scheme are represented as purple and dotted

purple lines, which are almost overlapping in Figure 8.8. The parameters used in this

calculation are listed in Table 8.1. The unbalance of the filter cavity reflectivity for the

CCSB is ρ = 1.1 and the unbalance of the amplitude for the CCSB is a = 0.47 (g = 3.6).

As shown in Figure 8.8, the frequency-dependent phase noise with the CCFC scheme

and conventional schemes are low and almost the same with δLfc = 1 pm. However, as

indicated in Figure 8.9, the frequency-dependent phase noise with the CCFC scheme is

suppressed at low frequencies by the feedback from the CC2 loop, while it is increased at

high frequencies.
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Figure 8.8: Quantum noise relative to coherent vacuum with δLfc = 1 pm. The solid
purple and black lines represent the frequency-dependent phase noise and total noise with
the CCFC scheme, respectively. The dotted purple and black lines represent the frequency-
dependent phase noise and total noise with the conventional scheme, respectively. The
solid lines and dotted lines are almost overlapping because the effect of the frequency-
dependent phase noise is small with δLfc = 1 pm.

Effective phase noise at high frequencies with feedback from the CC2 loop (δαp in

Equation (8.36)) can be calculated from Equation (8.14) and (8.35) as follows:

|δαp(∆ωfc,0 ± δ∆ωfc, a, ρ)| =
δα(∆ωfc,0) + aρδα(−∆ωfc,0)

2

≃ 18 mrad

(
1064 nm

λ

)(
F

4360

)(
δLfc

1 pm

)
. (8.37)

The squeezing angle is affected by the misalignment of LO and CC. The squeezing angle

fluctuation at the OMC transmission, including the misalignment of the LO and CC, can
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Figure 8.9: Quantum noise relative to coherent vacuum with δLfc = 3 pm. The solid
purple and black lines represent the frequency-dependent phase noise and total noise with
the CCFC scheme, respectively. The dotted purple and black lines represent the frequency-
dependent phase noise and total noise with the conventional scheme, respectively. The
frequency-dependent phase noise with the CCFC scheme is reduced at low frequencies,
while it is increased at high frequencies compared with that with the conventional scheme.

be written as [73]

δϕalignment ≃
∑
ij

Aijρ
CC
ij ρ

LO
ij sinϕij , (8.38)

where Aij ∼ 1/100 is the attenuation factor of higher order modes caused by the OMC

and ρCC
ij and ρLOij are the relative amplitudes of the CC and LO TEM ij modes with

respect to the TEM 00 mode. ϕij = ϕLOij − ϕCC
ij and ϕLOij , ϕ

CC
ij are the relative phases of

the CC and LO TEM ij modes with respect to the TEM 00 mode. Considering only the

HG10/01 mode and assuming that |ρCC
ij |2 = |ρLOij |2 = 10−2 for i + j = 1, the squeezing

angle fluctuation will be δϕalignment ∼ O(10−4) rad, which is low enough compared with

the frequency-independent/dependent phase noise.

8.2 Noise Calculation

The requirements of length and alignment control for the filter cavity are δLfc = 1 pm and

|γ|2 = 0.01, respectively. In this section, it is shown that shot noise and PLL noise satisfy

these requirements. It is also illustrated that backscattering noise caused by the leaked

carrier from the interferometer to the filter cavity does not spoil the quantum noise above

10 Hz, where the quantum noise limits the GW sensitivity.
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8.2.1 Shot noise

Shot noise for length control

We assume that the power of the CC field after passing through the OPO is P+ = a2+ = 1

µW and the power of the lower CC sideband is P− = a2P+ = 0.22 µW. When the filter

cavity length signal is obtained at the OMC reflection, the junk light at the OMC reflection,

which includes higher order modes and other RF sidebands, contributes to the shot noise.

The shot noise of the CCSB and the junk light at the OMC reflection is written as

Pshot =
√
2ℏω0(ρ2+P+ + ρ2−P− + Pjunk) ≃

√
2ℏω0Pjunk, (8.39)

where it is assumed that the frequencies of the carrier, CCSB, and junk light are ap-

proximately the same and ρ2±P± ≪ Pjunk. This shot noise within the filter cavity control

bandwidth becomes the filter cavity length noise owing to the control loop. This shot noise

is the most fundamental limit for the filter cavity length signal. From Equation (8.15),

we can calculate the maximum power of the junk light at the OMC reflection so as not to

spoil the filter cavity length signal as follows,

ρ+ρ−
√
P+P−{δα(∆ωfc,0)− δα(−∆ωfc,0)} >

√
2ℏω0Pjunk∆f, (8.40)

Pjunk < 15
P+P−
ℏω0∆f

δL2
fc

λ2
F2

= 15 W

×
(

P+

1 µW

)2( F
4360

)2( δLfc

1 pm

)2(20 Hz

∆f

)
, (8.41)

where ∆f is the filter cavity length control bandwidth which is set by the requirement

of backscattering noise [65]. According to Equation (8.41) and assuming the parameters

listed in Table 8.1, Pjunk < 15 W should be satisfied so as not to spoil the filter cavity

length signal. This requirement is satisfied [74].

Shot noise for alignment control

In this section, we consider only the shot noise of the shift signal of the filter cavity. The

calculation for the tilt signal is entirely analogous. From Equation (8.25), we can calculate

the maximum power of the junk light at the OMC reflection so as not to spoil the filter

cavity alignment signal as follows:√
2

π

√
P+P−aWFS

δx

w0
>
√

2ℏω0Pjunk∆fWFS, (8.42)
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Pjunk < 0.056
P+P−

ℏω0∆fWFS

(
δx

w0

)2

= 660 W

×
(

P+

1 µW

)2((δx/w0)
2

0.01

)(
1 Hz

∆fWFS

)
, (8.43)

where aWFS = 0.42 is the maximum amplitude of the normalized WFS signal in Figure

8.4 and ∆fWFS is the filter cavity alignment control bandwidth. According to Equation

(8.43), Pjunk < 660 W should be satisfied so as not to spoil the filter cavity alignment

signal and this requirement is also satisfied.

8.2.2 Backscattering noise

The backscattering noise originates from the leaked carrier from the interferometer to the

filter cavity. The leaked carrier is injected into the filter cavity and scattered by the filter

cavity length noise and reinjected into the interferometer. Because this leaked carrier has

the same frequency as the squeezed field, the fluctuation of the leaked carrier must be lower

than the vacuum fluctuation so as not to spoil the quantum noise of the interferometer

[65]. Considering the safety factor (Csafe = 1/10) and the squeezing enhancement factor

(Csqz ≃ 1/2 for 6 dB of quantum noise enhancement),

δα(0)
√
Pleak < CsafeCsqz

√
2ℏω0, (8.44)

Pleak < 3.1× 10−10 W

×
(
4360

F

)2
(
10−16 m/

√
Hz

δLfc(f)

)2

, (8.45)

where δα(0) is the phase response of the carrier to the filter cavity length noise (8.14) and

Pleak is the power of the leaked carrier from the interferometer to the filter cavity. It is

assumed that δLfc(f) = 10−16 m/
√
Hz above 10 Hz, which can be realized in Advanced

LIGO [65]. As the carrier output from the interferometer is Pcarrier = 35 mW in Advanced

LIGO [65], the isolation factor of 81 dB is required from the output of the interferometer

to the filter cavity. Recently, a Faraday isolator with an isolation factor higher than 40

dB and less than 1 % of loss [67] has been developed. Using two Faraday isolators, an

isolation factor higher than 80 dB can be achieved with a loss less than 2 %, and the

backscattering noise can satisfy the requirement.

8.2.3 PLL noise

The PLL that controls the relative frequency between the squeezer laser and the CC laser

can cause the detuning noise. The PLL frequency noise reflected by the filter cavity can

be written as

SPLL,fc(f) =
SPLL(ϕ)f√
1 + (f/ffc)2

, (8.46)
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where ffc = 57.3 Hz is the filter cavity half bandwidth and SPLL(ϕ) = 5 µrad/
√
Hz is the

PLL phase noise within the PLL control bandwidth ∼ 40 kHz. The PLL phase noise has

been chosen such that the rms value of the PLL phase noise, δϕPLL = 1 mrad. The rms

value of the PLL frequency noise within the filter cavity control bandwidth is

δfPLL,fc =

√∫ ∆f

0
dfS2

PLL,fc(f)

= SPLL(ϕ)

√∫ ∆f

0
df

f2

1 + (f/ffc)2

= SPLL(ϕ)ffc

√(
∆f − ffc arctan

∆f

ffc

)
. (8.47)

The rms value of the PLL frequency noise is δfPLL,fc = 0.25 mHz, which corresponds to

the rms value of the filter cavity length noise δLPLL,fc = 2.7 × 10−16 m. Therefore, the

PLL noise satisfies the requirement.

8.3 Comparison to the other locking scheme

Other than the CCFC scheme, a filter cavity locking scheme using the resonant locking

field (RLF) has been demonstrated at MIT for the length control [68]. The configuration

of the CCFC and RLF schemes in GW detectors is shown in Figure 8.10. RLF is phase

locked to the CC field and detuned with respect to it to resonate inside the filter cavity.

RLF is injected into the OPO together with the CC field and shares the same optical path

with it, except that the RLF is resonant inside the filter cavity, while the CC field is not.

The filter cavity length signal is obtained from the beat note of the RLF and LO from the

interferometer at the OMC transmission.

Compared with the RLF scheme, the CCFC scheme has the advantage in that it uses

the already present CC field and does not require any modification of the optical setup.

However, the CCFC scheme is worse in terms of the shot noise level. Here, we compare

the SNR in the CCFC and RLF schemes in terms of shot noise.

SNR in the CCFC scheme in terms of the shot noise is

SNRCCFC ∼ PCC√
2ℏω0Pjunk

δαm, (8.48)

where PCC is the CC power at the OMC reflection and δαm is the relative phase change

of the CCSB by the filter cavity length noise.

SNR in the RLF scheme in terms of shot noise is

SNRRLF ∼
√
PLOAPRLF√
2ℏω0PLO

δαp =

√
APRLF√
2ℏω0

δαp, (8.49)

where PLO is the LO power from the interferometer at the OMC transmission, PRLF is the

RLF power before OMC, A ∼ 1/100 is the attenuation factor of the RLF by the OMC,
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Figure 8.10: Configuration of CCFC (left) and RLF (right) schemes in GW detectors.
The solid red, orange, purple, and dashed red lines represent the carrier field, CC field,
RLF, and squeezed fields, respectively. The CC and RLF are detuned by Ωcc and Ωrlf

with respect to the carrier, respectively.

and δαp is the common phase change of the CCSB by the filter cavity length noise.

The ratio of the SNRs in the CCFC and RLF schemes is

SNRCCFC

SNRRLF
∼ PCC√

PjunkAPRLF

∼ 1√
A

√
PCC

Pjunk
∼ 0.03, (8.50)

where we assumed that δαp ∼ δαm and PCC = PRLF = 1 µW, Pjunk = 100 mW which are

typical values in GW detectors. This ratio indicates that the SNR in the CCFC scheme is

worse than that in the RLF scheme by a factor of ∼ 30. Nevertheless, the shot noise level

in the CCFC scheme can satisfy the requirement, as it was calculated in Section 8.2.1.

8.4 Demonstration of CCFC lock with 300 m filter cavity

The CCFC lock was implemented for the length control of the 300 m filter cavity and an

improvement of the locking accuracy of the filter cavity was demonstrated. In this section,

the experimental result of the CCFC lock for a 300 m filter cavity is described.

8.4.1 Experimental setup

The experimental setup for the demonstration of the CCFC lock is shown in Figure 8.11.

The setup is almost the same as that for the frequency-dependent squeezing measurement,

but a 50:50 BS is added to the IR reflection path of the filter cavity to pick off the CCSB
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at the expense of introducing an additional loss of 50 %. In the real GW detectors, the

CCSB can be obtained at the OMC reflection without introducing the pick off mirror as

explained in Section 8.1.3. The CCSB are detected with RFPD and demodulated at 14

MHz to obtain the CCFC error signal. The CCFC error signal is added to the filter cavity

green error signal and fed back to the main laser frequency. The block diagram of the

CCFC and green locks is shown in Figure 8.12. We set the green pump power to 42 mW

to obtain a large enough CCFC error signal. The 42 mW of pump power corresponds to

15.8 dB of generated squeezing with 80.6 mW of the OPO threshold.
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Figure 8.11: Schematic of the experimental setup for CCFC lock. The setup is almost the
same as that for the frequency-dependent squeezing measurement, but we put a 50:50 BS
in the IR reflection path of the filter cavity to pick off the CCSB. The CCSB are detected
with RFPD and demodulated at 14 MHz to obtain the CCFC error signal. The CCFC
error signal is added to the filter cavity green error signal and fed back to the main laser
frequency.
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Figure 8.12: Block diagram of CCFC lock and green locks. Information of the filter in
this block diagram is summarized in Table 7.2. The IR filter for the CCFC lock has a first
order low pass filter with a cut off frequency of 30 Hz and gain of 500.

8.4.2 Frequency tuning of CC PLL

In the CCFC lock, the CC PLL frequency has to be tuned so that either of CCSB is on

resonance in the filter cavity and the separation frequency of the CCSB is 2∆ωfc,0 = 108

Hz as shown in Figure 8.1. We measured the CC separation frequency as a function of the

CC PLL frequency by changing the AOM frequency and looking at CCSB transmission

from the filter cavity. The measured CC separation frequency is shown in Figure 8.13.
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Figure 8.13: Relation between CC frequency separation and CC PLL frequency.
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From the fitting of the measurement, the relation between the CC separation frequency

and the CC PLL frequency is

CC separation frequency (Hz) = a× CC PLL frequency (MHz) + b, (8.51)

a = −1907605± 36859, b = 13347486± 257882.

In principle, we can estimate the optimal CC PLL frequency for the optimal CC separation

frequency 2∆ωfc,0 = 108 Hz from this relationship. However, the error of the fitting

parameters is very large with respect to 108 Hz, and it is impossible to extract the optimal

CC PLL frequency from Equation (8.51) with good enough precision.

To fine-tune the CC PLL frequency, we have to check the shape of the CCFC error

signal. After a certain amount of tuning of the CC PLL frequency, we set the CC PLL

frequency to 6.99701259 MHz for the CCFC lock. The PLL frequencies for the CC1/CCFC

and CC2 demodulation are also tuned accordingly. The PLL settings for the CCFC lock

are listed in Table 8.2. The binary number in the PLL settings is used for fine tuning of

the PLL frequencies.

Table 8.2: PLL setting for CCFC lock.

Channel Frequency (MHz) Binary number

CC PLL/CC2 demod 6.99701259 11 10010101 00011100 11001000
CC1/CCFC demod 13.99402518 111 00101010 00111001 10010001

8.4.3 CCFC error signal

In Section 8.1, we derived the theoretical CCFC error signal (8.11) and (8.12). In this

calculation, we demodulated the beat notes of the CCSB (8.10) by sin (2Ωcct− α−(∆ωfc,0))

and assumed that ϕpump = δϕpump ≪ 1. In general, the demodulation phase α−(∆ωfc,0)

and the pump phase δϕpump can assume any value. In this case, the CCFC error signal

(8.11) can be written as

PCCFC = −a+a−ρ+(∆ωfc)ρ−(∆ωfc) sin (α+(∆ωfc)− α−(∆ωfc) + ϕdm,CCFC − ϕpump),

(8.52)

where ϕdm,CCFC is an arbitrary CCFC demodulation phase and ϕpump is an arbitrary pump

phase. For the case of ϕdm,CCFC = α−(∆ωfc,0)+δϕdm,CCFC and ϕpump = π, the theoretical

CCFC error signal (8.52) for different demodulation phases δϕdm,CCFC is shown in Figure

8.14.
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Figure 8.14: Theoretical CCFC error signal normalized with respect to a+a− for different
demodulation phases δϕdm,CCFC. The horizontal axis is the filter cavity detuning normal-
ized with respect to the optimal detuning ∆ωfc,0. The dashed black line represents the
optimal detuning.

The mode mismatch between the CCSB and the filter cavity affects the CCFC error

signal. The CCFC error signal with mode mismatch normalized with respect to a+a− can

be written as

PCCFC/(a+a−) = (1− amm)
2ρ+ρ− sin (α+ − α− + α−,0 + δϕdm,CCFC)

+ (1− amm)ammρ+ sin (α+ + α−,0 + δϕdm,CCFC)

+ (1− amm)ammρ− sin (−α− + α−,0 + δϕdm,CCFC)

+ a2mm sin (α−,0 + δϕdm,CCFC), (8.53)

where amm (≥ 0) is the amplitude of mode mismatch between the CCSB and the filter

cavity.

We measured the CCFC error signal by scanning the filter cavity with AOM. The

measured CCFC error signals with different demodulation phases are shown in Figure

8.15. The measured data was fitted with the theoretical CCFC error signal (8.53). The

fitting parameters are the demodulation phase δϕdm,CCFC, CC detuning with respect to

the carrier ∆ωfc,0, and starting time of the scan. The mode matching is fixed to 90%,

which corresponds to amm = 0.05. The amplitude of the measured CCFC error signal is

normalized with respect to 28 mV, which corresponds to a+a− in Equation (8.52). This

amplitude can be measured from the CCFC error signal when the CCSB are off resonance

of the filter cavity (α+(∆ωfc) = α−(∆ωfc) = 0, ρ+(∆ωfc) = ρ−(∆ωfc) = 1) and the green

pump phase ϕpump is scanned.
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Figure 8.15: Measured CCFC error signals normalized with respect to 28 mV for different
demodulation phases δϕdm,CCFC. The horizontal axis is the filter cavity detuning normal-
ized with respect to the optimal detuning 54 Hz. The dashed black lines represent the
fitting of the CCFC error signals. The fitting parameters are the demodulation phase
δϕdm,CCFC, the CC detuning with respect to carrier ∆ωfc,0, and the starting time. The
mode matching is fixed to 90% which corresponds to amm = 0.05. The solid black line
represents the optimal detuning.

The measured CCFC error signal is consistent with the theoretical one. The blue curve

in Figure 8.15, which is close to in-phase (δϕdm,CCFC = 90 deg), crosses zero around the

optimal detuning at 54 Hz. Using this in-phase signal, we can lock the filter cavity around

the optimal detuning as well as adjust the detuning by changing the CC PLL frequency

or the CCFC demodulation phase. In real GW detectors, this tuning will be done by

optimizing the sensitivity of the GW detectors.

8.4.4 Open-loop transfer function of CCFC lock

To measure the open-loop transfer function of the CCFC lock, a signal was injected before

the IR filter, as shown in Figure 8.12, and the transfer function was measured between the

points before and after the signal injection point. This transfer function corresponds to

GCCFC

1 +GGR
, (8.54)

where GCCFC and GGR are open-loop transfer functions of the CCFC and green locks,

respectively. Because GGR is known, we can obtain the information on GCCFC from this

measurement.

The measured GCCFC/(1 + GGR) and estimated open-loop transfer function of the

CCFC lock from it are shown in Figure 8.16.
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Figure 8.16: Measured GCCFC/(1 + GGR) and estimated open-loop transfer function of
CCFC lock. The UGF of the CCFC lock is about 6 kHz. The crossover frequency of the
CCFC and green lock is about 1.7 kHz.

8.4.5 Locking accuracy of CCFC lock

The IR locking accuracy with the CCFC lock is obtained from the in-loop CCFC error

signal. The measured locking accuracy of the CCFC lock is shown in Figure 8.17. The

IR locking accuracy with the CCFC lock is improved below 400 Hz as compared with the

green lock. The IR locking accuracy (rms) with the CCFC lock is improved from 3.2 Hz

to 0.7 Hz, which corresponds to a filter cavity length noise of 0.75 pm and satisfies the

target value of 1 pm.

8.4.6 Frequency-dependent squeezing with CCFC lock

The frequency-dependent squeezing was measured using the with CCFC lock for different

homodyne angles. The measured spectra using the CCFC lock are shown in Figure 8.18.

The average of the fitted cavity detuning in Figure 8.18 was about 94 Hz, which corre-

sponds to the squeezing rotation frequency of about 94 ×
√
2 = 133 Hz. The squeezing

level at high frequencies is ∼ 1.5 dB due to a large optical loss from the BS, which is used

to pick off the CCFC error signal. The detuning fluctuation obtained from the measure-

ment is about 10 Hz and this value might be better than that without the CCFC lock,

which is shown in Figure 7.8. Further investigation of the detuning fluctuation and the

reproducibility of the measurement shown in Figure 8.18 is a future work.

Although the detuning fluctuation with the CCFC lock might be better than that

without the CCFC lock, the detuning fluctuation still exists even with the CCFC lock.

One possibility for this fluctuation might be the alignment fluctuation of the filter cavity.
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Figure 8.17: IR locking accuracy of CCFC lock. The black and red curves are IR locking
accuracy with green lock and CCFC lock, respectively. The black curve is the same as
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lock. It should be noted that the IR lock accuracy with the green lock (black curve) is an
out-of-loop measurement, while the IR locking accuracy with the CCFC lock (red curve)
is an in-loop measurement.

The alignment fluctuation may introduce a certain offset in the CCFC error signal and

change the zero crossing point of the CCFC error signal. Auto alignment of the filter cavity

is expected to stabilize the detuning fluctuation caused by the alignment fluctuation.

Table 8.3: Squeezing degradation parameters with CCFC lock.

Parameter Current

Filter cavity losses 120 ± 30 ppm
Propagation losses 68 %± 1%

Mode-mismatch squeezer-filter cavity 6 %± 1%
Mode-mismatch squeezer-local oscillator 2 %± 1%
Frequency-independent phase noise (rms) 30 ± 5 mrad

Filter cavity length noise (rms) 1 ± 0.5 pm
Generated squeezing 15.8 ± 0.1 dB

8.5 Conclusion

In this chapter, I suggested a new length and alignment control scheme of a filter cavity

with coherent control sidebands, which are already used to control the squeezing angle.

This scheme ensures accurate length and alignment of the filter cavity with respect to

the squeezed vacuum field because the CCSB are copropagating fields at almost the same
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Figure 8.18: Noise spectra of the frequency-dependent squeezing with CCFC lock for dif-
ferent homodyne angles. Each curve has been fitted, assuming the degradation parameters
listed in Table 8.3, to extract the homodyne angle and cavity detuning. Each spectrum
has a resolution of 1 Hz and is averaged 50 times, leading to an acquisition time of 50 s. It
should be noted that this measurement was done before the detuning was optimized and
therefore the cavity detuning obtained from this measurement is a bit different from the
optimal detuning.

frequency as the squeezed field. I implemented the new control scheme in 300 m filter

cavity for the length control and demonstrated that the new control scheme improved the

locking accuracy of the filter cavity from 3.4 pm to 0.75 pm, which satisfies the target

value of 1 pm. Frequency-dependent squeezing with the filter cavity length control by the

CCFC lock was also realized. The detuning fluctuation was about 10 Hz, which might be

better than that without the CCFC lock.

The current squeezing level in the CCFC scheme is limited by losses. A loss of 50 % is

introduced from the BS to pick off the CCFC error signal, and this loss can be avoided in

the real GW detectors becase the CCFC error signal can be obtained at the OMC reflection

without introducing the pick-off BS. In the future, alignment control of the filter cavity

using the CCFC scheme will be implemented to improve the mode matching between

the squeezer and the filter cavity. This implementation is also expected to stabilize the

detuning fluctuation, which enables the stable operation of the filter cavity. The CCFC

scheme developed in this chapter will be tested in the real GW detectors in the near future.
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Chapter 9

Conclusion

The sensitivity of GW detectors is designed to be limited by quantum noise. The quantum

noise originates from the quantum vacuum field entering from an output port of the

interferometer. The quantum noise is composed of shot noise and radiation pressure noise.

The shot noise originates from the phase fluctuation of the vacuum field and dominates at

high frequencies of the detector sensitivity, while the radiation pressure noise originates

from the amplitude fluctuation of the vacuum field and dominates at low frequencies. The

sensitivity of current GW detectors is dominated by shot noise at high frequencies. To

reduce the shot noise, the frequency-independent squeezing, whose phase quadrature is

squeezed, has been injected into the interferometer and the shot noise reduction by ∼3 dB

has been achieved in Advanced LIGO and Advanced Virgo. However, the increase of the

radiation pressure noise due to the frequency-independent squeezing has been observed in

Advanced LIGO and Advanced Virgo.

To reduce the shot noise and radiation pressure noise simultaneously, the frequency-

dependent squeezing which is phase squeezed at high frequencies and amplitude squeezed

at low frequencies is required. The most promising way to realize the frequency-dependent

squeezing is reflecting the frequency-independent squeezed vacuum field off an optical

cavity called the filter cavity. In the past, the squeezing angle rotation using rigid, meter-

scale filter cavities has been realized in the MHz and kHz regions. However, frequency-

dependent squeezing with a rotation frequency below 100 Hz, which is required in GW

detectors, has not yet been demonstrated.

In this thesis, we developed the first frequency-dependent squeezed vacuum source with

a rotation frequency below 100 Hz by using a 300 m filter cavity which can fit for Advanced

LIGO and Advanced Virgo. It is shown that our frequency-dependent squeezed vacuum

source can realize the broadband quantum noise reduction in GW detectors. For further

quantum noise reduction, it is necessary to stabilize the filter cavity length fluctuation, the

alignment fluctuation, and the detuning fluctuation. In this measurement, the filter cavity

was controlled with an auxiliary green field whose frequency is as twice as the squeezing

frequency. As the optical path and the frequency for the green field and the squeezed field

are different, the filter cavity control with the auxiliary green field does not ensure the

filter cavity length and alignment for the squeezed field.
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To solve this problem, I suggested a new control scheme of the filter cavity using co-

herent control sidebands which are already used to control the squeezing angle. As the

coherent control sidebands have the same optical path and almost the same frequency

as the squeezed field, the control of the filter cavity with the coherent control sidebands

ensures the filter cavity length and alignment for the squeezed field. I succeeded in control-

ling the length of the 300 m filter cavity with the new control scheme and demonstrated

that the new control scheme reduced the filter cavity length fluctuation from 3.4 pm to

0.75 pm which satisfies the target value of 1 pm. Using this new control scheme, the

frequency-dependent squeezing with a rotation frequency around 100 Hz also has been

realized.

Frequency-dependent squeezed vacuum source with the several hundred-meter-long fil-

ter cavities is planned to be installed in current GW detectors such as Advanced LIGO,

Advanced Virgo, and KAGRA in the near future. The new control scheme for the filter

cavity developed in this thesis could be integrated in these detectors. Using these tech-

nologies, the sensitivity of the current GW detectors will be improved at all frequencies

and the detection range will be improved by ∼50 %, which increases the detection rate by

more than three times. The result in this thesis is also a big step toward for the sensitivity

improvement of the future third-generation GW detectors such as the Einstein Telescope

and Cosmic Explorer, which require even longer filter cavities and the higher squeezing

levels. Therefore, the result in this thesis will be significant for the development of GW

astronomy.

143



144



Appendix A

Auto alignment

For the stable operation of the filter cavity, it is essential to control the angles of the filter

cavity mirrors. The auto alignment of the filter cavity can be achieved using a wave front

sensing (WFS) technique [70]. In this appendix, the theory of WFS and the experiment

of WFS with the green field in TAMA are presented.

A.1 Wave front sensing

A filter cavity input beam, which includes the Hermite-Gaussian (HG) 10 mode can be

written as

Ein =
(
U00 U10

)( a0

a1

)
E0e

iωt, (A.1)

where a0 and a1 are the amplitudes of the HG 00 and 10 modes, respectively.

We recall the HG mode expression [76]:

Umn(x, y, z) = Um(x, z)Un(y, z) exp[−ikz + i(m+ n+ 1)η(z)], (A.2)

where

Um(x, z) =

(
2

πw2(z)

)1/4
√

1

2mm!
Hm

(√
2x

w(z)

)
exp

[
−
(

x

w(z)

)2

− i
kx2

2R(z)

]
, (A.3)

where Hm is the m-th order Hermite polynomial, w(z) is the beam radius, η(z) is the

Gouy phase, and R(z) is the beam radius of curvature:

w(z) = w0

√
1 + z2/z20 , (A.4)

η(z) = arctan (z/z0), (A.5)

R(z) = z(1 + z20/z
2), (A.6)

z0 = kw2
0/2, (A.7)

where z0 is the Rayleigh range and w0 is the beam radius at the waist position.
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A filter cavity mode that has a shift δx and a tilt δθ with respect to the input beam

can be written as

Efc =
(
U00 U10

)
M(γ)

(
a0

a1

)
E0e

iωt, (A.8)

M(γ) =

(
1 γ

−γ∗ 1

)
, (A.9)

where

γ = δx/w0 + iδθ/θ0. (A.10)

Here θ0 = λ/(πw0) is the beam divergence, and the first order of γ is considered.

The reflection matrix for an optimally aligned filter cavity can be written as

Ralign
fc =

(
rc0 0

0 rc1

)
, (A.11)

where rc0 and rc1 are the cavity reflectivities for the HG 00 and HG 10 mode, respectively:

rc0 = rI −
t2IrEe

−iϕ

1− rIrEe−iϕ
, (A.12)

rc1 = rI −
t2IrEe

−i(ϕ+ηrt)

1− rIrEe−i(ϕ+ηrt)
. (A.13)

Here ϕ is the round-trip phase for the HG 00 mode and ηrt is the round-trip Gouy phase:

ϕ =
2Lω

c
, ηrt = arctan(2L/z0). (A.14)

The reflection matrix of a misaligned filter cavity in the first order of γ, γr can be written

as

Rmis
fc (γ, γr) = M∗(γr)R

align
fc M(γ)

=

(
rc0 rc0γ + rc1γ

∗
r

−(rc0γr + rc1γ
∗) rc1

)
, (A.15)

where we define:

γr = δx′/w0 + iδθ′/θ0, (A.16)

where δx′ and δθ′ are the shift and tilt of the promptly reflected beam axis with respect

to the cavity axis.

Assuming that a0 = 1, a1 = 0 for the input beam, the beam reflected from a misaligned

filter cavity can be written as

Eref = [U00rc0 − U10(rc0γr + rc1γ
∗)]E0e

iωt = [U00rc0 − U10C]E0e
iωt, (A.17)
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where, for compactness, we defined

C = rc0γr + rc1γ
∗. (A.18)

This can be generalized to the case of a sideband:

Eref = [U00rs0 − U10(rs0γr + rs1γ
∗)]E0e

i(ω+Ω)t = [U00rs0 − U10S]E0e
i(ω+Ω)t, (A.19)

where rs0 and rs1 are the cavity reflectivities for the HG 00 and HG 10 modes of the

sideband and

S = rs0γr + rs1γ
∗. (A.20)

It is useful to introduce a compact form that ”hides” the spatial modes:

Ec
ref = [U00rc0 − U10C]E0e

iωt = rcE0e
iωt, (A.21)

Es
ref = [U00rc0 − U10S]E0e

i(ω+Ω)t = rsE0e
i(ω+Ω)t, (A.22)

to recall the usual expression for the in-phase PDH signal (3.38):

P I
demod = P0J0(β)J1(β)Im(rcr

∗
s − r∗crs), (A.23)

and

rcr
∗
s − r∗crs = [U00rc0 − U10C][U00rs0 − U10S]

∗ − [U00rc0 − U10C]
∗[U00rs0 − U10S]

= U00U
∗
00(rc0r

∗
s0 − r∗c0rs0) + U00U

∗
10(rs0C

∗ − rc0S
∗) + U∗

00U10(r
∗
c0S − r∗s0C)

+U10U
∗
10(CS

∗ − C∗S). (A.24)

The first term is the usual PDH signal, which is spatially symmetric and cancelled out in

the WFS. For the same reason, the fourth term, which contains only the HG10 modes,

will cancel out. Therefore, we retain only the terms that mix the HG00 and HG10 modes.

By defining U = U00U
∗
10, the WFS signal is

W = U [rs0(r
∗
c0γ

∗
r + r∗c1γ)− rc0(r

∗
s0γ

∗
r + r∗s1γ)]

+ U∗[r∗c0(rs0γr + rs1γ
∗)− r∗s0(rc0γr + rc1γ

∗)]

= −(rc0rs1 − rc1rs0)(Uγ − U∗γ∗)

= −(rc0rs1 − rc1rs0)

[
(U − U∗)

δx

w0
+ (U + U∗)i

δθ

θ0

]
. (A.25)

Here, we assumed that all the reflectivities are real numbers. Using Equation (A.3), it can

be proven that

U − U∗ = −2iU∗
1U

∗
0U0U0 sin η, (A.26)

U + U∗ = 2U∗
1U

∗
0U0U0 cos η. (A.27)
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Equation (A.23) will become

P I
demod = P0J0(β)J1(β)ImW

= 2P0J0(β)J1(β)U
∗
1U

∗
0U0U0(rc0rs1 − rc1rs0)

[
δx

w0
sin η − δθ

θ0
cos η

]
.(A.28)

The WFS signal is obtained by considering the difference between the two halves of the

QPD. It can be proven that:∫ ∫
dxdy{U∗

1U
∗
0U0U0(x > 0)− U∗

1U
∗
0U0U0(x < 0)} =

√
2

π
. (A.29)

Finally, we can write the WFS signal as follows:

P I
WFS,demod =

√
8

π
P0J0(β)J1(β)(rc0rs1 − rc1rs0)

[
δx

w0
sin η − δθ

θ0
cos η

]
. (A.30)

The relation between the cavity axis shift, tilt and input, end mirror misalignment, δθI

and δθE can be expressed as follows:(
δx

δθ

)
=

1

RI +RE − L

(
RI(RE − LE) RE(RI − LI)

RI −RE

)(
δθI

δθE

)
, (A.31)

where RI and RE are the input and end mirror radius of curvature, respectively, and LI

and LE are the distances between the waist and the input and end mirrors:

LI =
L(L−RE)

2L−RI −RE
, (A.32)

LE =
L(L−RI)

2L−RI −RE
. (A.33)

Using the values listed in Table A.1 for the TAMA filter cavity, we find that:(
δx

δθ

)
=

(
224 217

0.75 −0.76

)(
δθI

δθE

)
. (A.34)

This yields

δx = 224 δθI + 217 δθE ,

δθ = 0.75 δθI − 0.76 δθE .

When the carrier is on resonance and the sidebands are located far from the resonance,

we have

rc0 = 0.61, rc1 = rs0 = rs1 ≃ 1. (A.35)
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Table A.1: Filter cavity parameters for wavefront sensing with green field.

Parameter Symbol Real value

Length L 300 m
Input mirror radius of curvature RI 438 m
End mirror radius of curvature RE 445 m
Input mirror transmissivity (532 nm) TI 0.7%
End mirror transmissivity (532 nm) TE 2.9%
Finesse (532 nm) F 172
Modulation depth β 0.185 rad
Modulation Frequency Ω 78 MHz
Beam radius at waist (532 nm) w0 0.0059 m
Beam divergence (532 nm) θ0 2.85 · 10−5 m
Rayleigh range (532 nm) z0 209 m
Round-trip Gouy phase (532 nm) ηrt 1.236 rad
Power on WFS P0 2.7 mW

This means that the WFS for the misalignment of the input mirror is

PI [W] =

√
8

π
P0J0(β)J1(β)(rc0rs1 − rc1rs0)

(
224

w0
sin η − 0.75

θ0
cos η

)
δθI

= (3.4 sin η − 2.4 cos η)δθI , (A.36)

and that for the end mirror is

PE [W] =

√
8

π
P0J0(β)J1(β)(rc0rs1 − rc1rs0)

(
217

w0
sin η +

0.76

θ0
cos η

)
δθE

= (3.3 sin η + 2.4 cos η)δθE . (A.37)

The WFS signal as a function of the Gouy phase is shown in Figure A.1.

A.2 Experimental setup

Becase there was not enough space to accommodate the optics for auto alignment, a second

layer optical table was constructed on the optical bench as shown in Figure A.2.

Two QPDs are placed with 90 degree of Gouy phase separation. The input and end

mirrors of the filter cavity are controlled with WFS signals from the two QPDs. There is

also a QPD for the green field at the filter cavity transmission, which is used to control the

pointing of the injection green field. The pointing signal is fed back to a steering mirror

at the BS chamber.
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Figure A.1: WFS signal as a function of the Gouy phase for the green field. The blue
and red curves are the WFS signals for the input and end mirrors of the filter cavity,
respectively.

Figure A.2: Second layer optical table for auto alignment.

A.3 QPD centering loop

For WFS, it is necessary to center the beam in the QPD. To achieve this, a beam centering

system was developed in TAMA [77]. The QPD DC signals are used to extract the pitch

and yaw motion of the beam and fed back to actuators called galvo. The galvo has two

galvanometer scanners mounted orthogonally, each of which is used to rotate a small mirror

as shown in Figure A.3.
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Figure A.3: Galvo actuator for auto alignment.

Using the beam centering system, we successfully locked the QPD centering loops for

pitch and yaw in the both QPDs. The servo for the beam centering system can measure

the closed-loop transfer function by measuring ADD OUT/ADD IN in the servo [77].

The open-loop transfer function can be obtained from the closed-loop transfer function by

using the following formula:

GOL = −1 +
1

GCL
, (A.38)

where GOL andGCL are the open- and closed-loop transfer functions.

The measured open-loop transfer function of the QPD centering loop is shown in Figure

A.4. It should be noted that the UGF can be increased up to around 2 kHz.
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Figure A.4: Open-loop transfer function of the beam centering system. The UGF is 800
Hz and the phase margin is 30 deg.

A.4 WFS loop

Currently, the WFS loop is working and the filter cavity alignment for the green field is

stabilized by WFS. A characterization of the WFS loop is ongoing.
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Appendix B

List of devices

In this appendix, the list of devices used in this experiment is summarized. Table B.1 and

B.2 are lists of EOM and PD.

Table B.1: List of EOM.
type function name manufacturer

resonant (15.2 MHz) SHG/IRMC (15.2 MHz) Model 4003 New focus
resonant (78 MHz) FC/GRMC (78 MHz) EO-78K3-VIS Qubig
resonant (87.6 MHz) OPO (87.6 MHz) EO-88K3-NIR Qubig

Table B.2: List of photo detector.

type function name manufacturer

resonant (15.2 MHz) SHG/IRMC (15.2 MHz), 8880 (TAMA PD) Clear-pulse
CC1/CCFC (14 MHz)

broadband FC/GRMC (78 MHz), PD100-NIR Qubig
broadband OPO (87.6 MHz) PDA05CF2 Thorlabs
broadband MZ PDA100A-EC Thorlabs
broadband PLL DET01CFC(/M) Thorlabs
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