Cryogenic Monolithic Interferometer

Satoru Takano Ando Lab Mid-term Seminar 2023 25.04.23.

Overview

- There years I have developed a cryogenic monolithic interferometer
- Now it's close to an end (I should have finished earlier...)
- Looking back to the current achievement and issues

Contents

- Cryogenic Monolithic Interferometer
 - Design
 - Alignment
 - Bonding
 - Evaluation
- Future Plan

Cryogenic Monolithic Interferometer

Cryogenic Monolithic Interferometer

Monolithic Interferometer

- Optics are glued on a base plate directly
 - Large common mode rejection ratio
 - Small drift in long time duration
 - No way to tune alignment after gluing

LISA Pathfinder reached displacement sensitivity to **3.5 x10**⁻¹⁴ m/**J**Hz @ **0.1 Hz**

Limited by noise of Phase Meter

In my research: Cryogenic Monolithic Interferometer

- Fused silica is not suitable for cryo. temp.
 - Construct (almost) all-silicon monolithic interferometer
- Target sensitivity: 10⁻¹⁵ / JHz (3 x10⁻¹⁶ m/ JHz)
 - Limited by shot noise

Setup for My Research

Simplification of the setup

- No suscended TM, fixed on OB
- OB suspension is 2-stage
- Laser light is introduced by optical fibers

Purpose

- Operation of monolithic interferometer at cryo. temp.
- Evaluation of displacement noise
- Evaluation of CMRR by using AVIT
- Limited by shot noise at 0.1 Hz

Optical Design

25.04.2023

Optical Layout

Parameters

- Target: 10⁻¹⁶ m/√Hz @ 0.1Hz (differential)
- Would be limited by shot noise

Power	20 mW	
Length	55 mm	
Front Mirror Curvature	200 mm	
End Mirror Curvature	∞	
Front Mirror Reflectivity	99.5%	
End Mirror Reflectivity	99.8%	
Finesse	1045	
FSR	2.7 GHz	
FWHM	3 MHz	

Optical Design

10/23

Template Bonding

Position of optics are defined by a template

- Due to gravity optics glide on the bonding glue
- Stopped by projections on the template

Fine Stage Alignment

- Adjustable stages in 5 DoF (x, y, z, pitch, yaw)
- 3 manual (x, y, z),
 2 picomotors (pitch, yaw)

Alignment

Temporary Gluing → Used LOCTITE 401, not Stycast1260

Midterm Seminar 2023

Problems with Alignment

- In November 2022, tried the alignment first time
 - Maximum mode matching ratio is ~ 52%
 - Input beam seemed clipped at a mode matching lens
- Measured beam axis tilt & height by injecting laser backwards
 - One of input mirror (IM) tilts ~ 4 mrad
 - TM & the other IM tilt < 1mrad</p>

Beam Spot Simulation

Current Status

- Aligned both cavity again
 - Better cavity: mode matching raito > 99 %
 - $\circ\,$ When bonding I made a mistake and now ~ 95 $\%\,$
 - Worse cavity: mode matching ratio < 90 %</p>
 - Improved from the previous trial (found that there are some pit-yaw coupling in the fine tuning stage)
 - Limited by clipping at the lens
 - When clipping transmitted light changes from pure Hermite-gaussian to Ince-Gaussian
 - Finally mode matching ratio is ~ 85 % (drifted during the bonding)

QPD Bonding

 Temporary I glued on QPDs to monitor incident and transmission beam

- Noticed that there is no way to align beams on QPD in Y
- Need to consider how to do it

Cavity Transmission

Installed in the vacuum chamber

Cavity Transmission

- Scanning in laser frequency
- Found slow oscillation in ~ 12 h
- What causes this?

25.04.2023

Future Plan: Beam Shfting

- Beam clipping plobrem
- Shifting plate to modify the incident beam

Considering to put AR coating on both sides by Sigma-koki

Beam Shift Simulation

25.04.2023

Midterm Seminar 2023

300

250

300

250

Time Line

25.04.2023

Summary

Development of Cryogenic monolithic interferometer

- Construction scheme established
 - How to align mirrors?
 - How to bond them?
- Faced some problems
 - How to compensate mirror tilts?
 - How to align beam spot on QPDs?
 - What causes transmission fluctuation?

Goal is close.

End

Research Items

Research items:

- Investigation of components
- Can survive under cryo. temp. or not
- Good physical property (CTE, Q value, ...) under cryo. temp.
- Alignment procedure
- How to solve previous issues
- How to bond
- Noise evaluation
- Measurement electronics
- Environmental coupling
- Laser source related

Bonding

• Bonding candidates

	Hydro Catalytic Bonding	Optical Contact	Ероху	UV curing
Toughness	0	0	Ο	Δ
Stability	0	Ο	Ο	Δ
Handling	few weeks for full cure	Difficult to Detachable	Ο	Ο
Cryo. temp.	0	0	case by case	unknown

• Tested epoxy and UV-curing glues

Cooling Test

Silicon blocks are glued by:

- Stycast 1266
- DP190

And cooled to 4 K

UV curing glues were broken after heating up to room temp.

Epoxy

DP190 was also broken after a few cooling & heating cycles

I chose Stycast 1266

NOA63
NOA81
UV curing

Bonding Material

- Bonding test with materials
- Silicon, aluminum, IC-DX(invar, specialized in low temp.

	SIlicon	Aluminum	IC-DX
Silicon	0	×	0
Aluminum	-	0	not tested
IC-DX	-	-	not tested

- Aluminum silicon: silicon cracked
 - Thermal contraction difference is large?
 - Silicon is more fragile than aluminum
- IC-DX silicon: silicon survived
 - Thermal contraction difference is small?

PD Selection

- Some types of PD were put in the cryostat and cooled to 4 K
- Laser light was introduced by a optical fiber
- Measured the output voltage
- PDs: FGA21, FD10D (Thorlabs), G12180-010A (Hamamatsu)

Results

25.04.2023

Results

- Cutoff wavelength of the PD response
- FGA21, G12180-010A: ~ 1650 nm
- FD10D: 2500 nm
- Cutoff frequency is shifted to the shorter wavelength during the cooling?

QPD

- For normal PDs I adopted FD10D
- How about QPDs?
 - Couldn't find out QPDs with cutoff wavelength similar to FD10D
 - Ordered such QPDs to Hamamatsu Photonics
- I tested its response at some temperatures (down to 4 K)
 - Confirmed that the response is similar to that of FD10D

Fiber Collimator

- During the PD response measurement I used a fixed focus collimator F260APC-1550 (Thorlabs)
- After some cooling-heating cycles, I noticed that the shape of the output beam got ugly

- I changed the collimator to other fixed focus collimators, and similarly the output shape changed
 - Changed the collimator type to pigtail ones
 - Tested them by cooling, and so far they looks good

The Current Status

- A half of template bonding was done
- The remained part will be done in a couple of days

- Suspension will be installed during next week
 - Cooling start

Extra Photos

Lens & cavity mirror bonding

TM Support

HR side

AR side

25.04.2023

Midterm Seminar 2023

Collimator Bonding

