Newtonian Noise Measurement by Torsion Bar Antenna

<u>Satoru Takano</u>, Tomohumi Shimoda, Ching Pin Ooi, Yuta Miyazaki, Yuta Michimura, Masaki Ando

The Univ. of Tokyo

16/02/19 The 1st Kagra-Virgo-3G Detectors Workshop @ Perugia

Contents

- Newtonian Noise
- Torsion Bar Antenna (TOBA)
- NN measurement by TOBA
- Development plan of TOBA
- Summary

Newtonian Noise

Newtonian noise: comes from local gravity gradient fluctuation

 Seismic waves body wave surface wave etc. Atmospheric fluctuation temperature fluctuation infrasound waves 6 etc. Moving masses))

Seismic NN

- Seismic waves:
- body wave
 - oP-wave: compressional wave
 - oS-wave: shear wave
 - propagate though media

- surface waves
 - oRayleigh wave
 - propagates on the surface of media
- can be divided by surface and bulk contribution

https://earthquake.usgs.gov/learn/glossary/images/rayleigh_web.jpg

NN in KAGRA

NN in ET

16.02.2019

Torsion Bar Antenna (TOBA)

TOBA : TOrsion-Bar Antenna

- Gravity gradiometer using two suspended torsion pendulums
- Resonant frequency ~ mHz
- Target sensitivity h ~ $10^{-19} / \sqrt{Hz} @ 0.1 Hz$ with 10 m bars

Seismic NN in different scale

Response from Rayleigh waves to NN (arm: x direction)

Seismic NN in different scale

- Rayleigh wave length: $\lambda \sim 30$ m @ 10 Hz (v ~ 300 m/s)
- TOBA: L ~ 10 m KAGRA, Advanced Virgo: L ~ 3km

 more sensitive FT: L ~ 10 km

NN measurement by TOBA

- Direct measurement of NN (S/N ~ 10^3 at f < 0.1 Hz)
 - test of NN models
 - demonstration of NN mitigation

16.02.2019

NN constraint in KAGRA

- Set upper limit 10⁻²¹ @ 10 Hz
- Can be used as physical environmental monitor

TOBA development plan

- Final plan: 10⁻¹⁹ / √Hz @ 0.1 Hz
 - 10 m masses
 - measurement of NN with high S/N
 - detection of GW at low frequency (f ~ 0.1 Hz)

Schematic of 35 cm Prototype

Cryogenic

- Test masses are cooled to 4 K in 4 weeks
- Shields are installed
- Silicon wire is under considering
- Cooling test will be done (using CuBe wires)

Active Vibration Isolation

- Seismometers + Hexapod actuator (PZTs)
- Isolation ratio ~ $10^2 @ 0.1 1 \text{ Hz}$
- Currently achieved 10 @ 1 Hz

Summary

- TOBA can measure NN with high S/N
 - ▶ S/N ~ 10³ in f < 0.1 Hz
 - put upper limit 10⁻²¹ @ 10 Hz on NN of KAGRA
- Currently a small prototype is developing
 - 35 cm scale
 - May be able to measure NN
- Future works
 - How to identify NN from measurement
 - How to cancel NN