My Ph.D Research Part2: Cryogenic Monolithic Interferometer for Phase-III TOBA

Satoru Takano Ando Lab Seminar 29.03.24.

Overview

- Cryogenics and monolithic interferometer are promised technologies for precision measurement, but none of the previous research combines them
- TOBA requires both of them
 - Cryogenic: reduce thermal noise
 - Monolithic interferometer: reduce readout noise from vibrations
- The realization of the cryogenic monolithic interferometer is
 essential for the development of Phase-III TOBA
- We demonstrated a prototype of the cryogenic monolithic headboard
 - Established a assembly method
 - Evaluate alignment drift
 - Investigate noise sources

Contents

- Motivation
- Previous research
- Design
- Assembly
- Evaluation

Setup of Phase-III TOBA

Active Vibration Isolation System

- Reduction of vibration • at the suspension point Cryogenic Suspension System Cooling TMs to 4K Reduction of vibration • High-Q suspension wire induced cryocooler **Optical System** Rotation measurement by interferometer
 - Monolithic interferometer

Design Sensitivity

29.03.2024

Monolithic Interferometer

Monolithic Interferometer

- Optics are glued on a base plate directly
 - Large common mode rejection ratio
 - Small drift in long time duration
 - No way to tune alignment after gluing

LISA Pathfinder reached displacement sensitivity to

3.5 x10⁻¹⁴ m/√Hz @ 0.1 Hz

(w/o TM motion)

- Limited by
 - Noise of Phasemeter
 - Thermal coupling of optics

LISA Mission Proposal

29. 03. 2024

Lab Seminar

Cryogenic Monolithic Interferometer

Requirement for readout noise: 6 x 10⁻¹⁶ //Hz (6 x 10⁻¹⁷ m//Hz)

More stringent than LPF

Have to reduce

- Shot noise
- Frequency noise
- Thermal coupling
- Readout noise (Phasemeter)

Solve these issues by cryogenic monolithic interferometer

Cryogenic Monolithic Interferometer

What we have to solve:

- Component selection
 - Cryogenic compatible items
 - □ Optics: fused silica → sllicon
 - Metals: have to avoid thermal failure
 - Detector: InGaAs not works for 1550nm at cry. temp. [Bajpai]
 - Bonding: HCB? Optical contact? Other glues?
 - Fiber injector: how to fabricate? What is suitable?
- Alignment drift
 - Few measurement data [Bajpai]

Demonstration of a prototype to test (some of) these issues

Setup for Demonstration

Simplification of the setup

- No suspended TM, fixed on OB
- OB suspension is 2-stage
- Laser light is introduced by optical fibers

Purpose

- Operation of monolithic interferometer at cryo. temp.
 - Evaluation of displacement noise
 - Alignment drift during the cooling

Conceptual Design

29.03.2024

Optical Layout

Parameters

Optical Design

29.03.2024

Lab Seminar

13/33

Suspension Chain

- Double-stage pendulum
- Supported by flexures

Design Sensitivity

Template Bonding

Position of optics are defined by a template

- Due to gravity optics glide on the bonding glue
- Stopped by projections on the template

Fine Stage Alignment

- Adjustable stages in 5 DoF (x, y, z, pitch, yaw)
- 3 manual (x, y, z),
 2 picomotors (pitch, yaw)

Alignment

Template Gluing → Fine alignment

Problems with Alignment

- In November 2022, tried the alignment first time
 - Maximum mode matching ratio is ~ 52%
 - Input beam seemed clipped at a mode matching lens
- Measured beam axis tilt & height by injecting laser backwards
 - One of input mirror (IM) tilts ~ 4 mrad
 - TM & the other IM tilt < 1mrad</p>

Beam Spot Simulation

Beam Shfting

· Decided to add a shifting plate to modify the incident beam

- Thorlabs WG80530, Φ12.7mm x t 3mm
- AR coating on both sides by Sigma-koki

After alignment

29.03.2024

Lab Seminar

Mode Matching Ratio

- Cavity scan by changing the laser frequency
- Designed mode matching ratio: ~ 99%

No problem about alignment

Installation

Supported by flexures

Cooling

Cooled down to 12 K in ~ 10 days

- Design: down to 9 K in 6 days
- Bad heat contact of the heatlinks?

2

1

3

4

5

6

Time [days]

7

8

11

10

9

Alignment Drift

Mode matching ratio:

- Cavity1: 95.9 % → 47.2 %
- Cavity2: 97.8 % → 74.8 %

• Drift of the input beams?

Beam Spot on Transmission Port

Monitored by QPDs on the transmission port

Beam Spot on Input port

- The beam spot drift is similar (20-40µm) for both cavity, but quite different behavior for refl power and mode matching
- Sudden jumps are also seen

29.03.2024

Lab Seminar

Beat note measurement

- Achieved 3 x 10⁻¹⁴ m/√Hz @ 0.1 Hz
- Frequency noise is suppressed as expected

29.03.2024

Lab Seminar

Seismic Noise Coupling

- 0.1 10 Hz: horizontal axis (x, y, yaw)
- Around 17 Hz: vertical axis (z)
- Around 50 Hz: vertical axis (z) + tilt (pit, roll)

29.03.2024

Conclusion

- We demonstrated the cryogenic monolithic interferometer
 - Full monolithic breadboard

First achievement

- Establishment of assembly scheme
 - Component investigation
 - Alignment procedure
- Operated at cryogenic temperatures
 - Keep enough alignment for locking the cavity
 - Stable locking, more than 1 day
- Achieved sensitivity: **3 x 10**-14 m/**/Hz @ 0.1 Hz**
 - Almost the same level as LPF
 - 500 worse than the target sensitivity

Outlook

- Issues for future
 - Alignment drift
 - Further investigation is necessary for improvement
 - Intense work for cryogenic fiber injector might be necessary
 - Vibration coupling
 - Vertical seismic isolation is necessary
 - Oshima-san will solve the issue?
 - Vibration from the coolers?
 - AVIT is essential for reduction of the noise
 - Cooling performance
 - Bad heat contact results in slower cooling speed
 - For future this may interrupt the experiment