Active Vibration Isolation for TOBA – From the Past To the Future –

Satoru Takano Ando Lab Seminar 2023/07/07

Overview of Phase-III TOBA

Basic Concept of AVIT

AVIT (Active Vibration Isolation Table):

- Reduction of seismic vibration
 - Coupling from horizontal vibration
 - ▶ 10⁻⁷ m/√Hz @ 0.1 Hz
 - Nonlinear coupling
 - ▶ 10⁻¹⁰ m/√Hz @ 1 Hz
 - Reduction of vibration induced by cooler

Measure motion at the suspension point by seismometer & tilt meter

Feedback the signal to actuators to cancel out the motion

Seismic Vibration Isolation

Why is seismic vibration isolation necessary?

Horizontal-yaw coupling noise

Classification of horizontal-yaw coupling (T. Shimoda, 2027)

Linear & Nonlinear Coupling

- Linear coupling: seismic translation x coupling factor
 Coupling factor: required as 10-8 rad/m for Phase-III TOBA
 Need to tune tilt angle of TMs in this order
- Nonlinear coupling: cross term of resonant peak of pendulum mode and tilt motion induced by seismic translation
 - Need to reduce seismic vibration around resonant frequency of the pendulum modes (~ 1 Hz)

Vibration Isolation from Heatlink

Vibration induced by heatlinks:

Vibration @ heatlink stage

- Relative motion btw IM and heatlinks
- Torques on IM due to asymmetry (5%)
- Rotation of IM
- Common TMs
- No isolation 1
- With isolatio

Requirements for AVIT

How to Control: Sensors

Sensors: 6 inertial sensors and 6 local sensors

- Inertial sensor
 - Measure displacement from the inertial frame
 - Now using geophone (a kind of speedometer)
 - Bad sensitivity below its resonance frequency (~ 1 Hz)
- Local sensor
 - Measure displacement between the support frame and AVIT
 - Reflective-type photosensor
 - Used in frequency where inertial sensor can't see displamecent

How to Control: Actuators

Actuators

- Piezoelectric actuators (PZTs)
- Range of each PZTs: ~ 90 µm
- Range in translational DoF: 90 μ m x $\sqrt{2}$ ~ 60 μ m
- 6 PZTs in hexapod configuration

How to Control: Servo System

Diagram of the control loop

Filter Design

- Overall filter: blending filter + servo filter
- Blending filter
 - Mix an inertial sensor signal and a local sensor signal
 - Designed to be unity gain and no phase change

Servo filter

Lowpass filter @ 0.1 Hz + DC gain Boost (2 Hz pole & 30 Hz zero)

Current Performance

- Done on 2019/05/30
- Different vacuum chamber, no suspensions, no cryostat,

Current Performance of AVIT

Problems

Mainly two problems

- Low frequency (< 0.7 Hz): Tilt-horizontal coupling (x, y)
- High frequency (>10 Hz): Mechanical resonance modes

Tilt-Horizontal Coupling

Tilt-horizontal coupling

- Inertial sensor cannot distinguish tilt and translation motion
- Actuated in x (y)
 - Simultaneously moves in pit/roll
- Coupling gets larger in low frequency (~f⁻²)
- Makes feedback loop unstable

How to mitigate it?

- Feedforward (diagonalization)
 - Mix actuator DoF
- Active control
 - Measure tilt independently
 - Local sensor / Tiltmeter

07. 07. 2023

Mitigation of Tilt Horizontal Coupling

- Mix translation and tilt motion
- Finally coupling was reduced by < 10 %

07. 07. 2023

Mechanical Resonance Modes

Parasitic resonance in actuator response

- Mechanical resonance modes of the supporting frame
 - Actuator kicks these modes
 - Resonance-dip pair appear

Evolution of Frames

2018 Dec.

- Master Thesis
- Resonance modes
 - x: 5 Hz
 - o y: 6 Hz
 - o z: 17 Hz

2019 Apr.

- Best Performance
- Resonance modes
 - x: 13 Hz
 - o y: 14 Hz
 - o z: 32 Hz

2019 Jul.

- With Suspension
- Resonance modes
 - x: 15 Hz
 - o y: 18 Hz
 - z: 11 Hz

1st Frame

- Terrible Frame
 - Apparently weak structure
- Original chamber frame
 - Basically same as that of Phase-II TOBA
- Used in my master thesis

07. 07. 2023

2nd Frame

- After submitting my thesis, I designed and installed this new frame
 - Stiffer support
 - No caster

Installed to TOBA Main Chamber

- Installed to TOBA main chamber with suspensions and the cryostat
- Basically same frame as 2nd one, but some parts were omitted due to accessibility
- Q value of parasitic resonances got higher than before

	х	у	
f1 (Hz)	13.5	13.8	
Q1	9	13	
f2 (Hz)	15.1	15.2	
Q2	10	16	

	Х	У
f1 (Hz)	15.4	18.4
Q1	67	101
f2 (Hz)	16.7	19.1
Q2	182	2000

 New resonance mode appeared in z

What I Will Do in Thesis

My plan in my Ph.D Thesis

- Controlling AVIT with the cooler running
 - Demonstrating the heatlink vibration isolation
 - Discuss some difference with/without the cooler running
- Vibration isolation performance: achieve the current best level
 - Check parasitic resonances again \rightarrow modify filter design
 - Identify system response
 - With a student from Fuculty of Engineering
 - Establish how to prepare and operate AVIT

Some New Ideas

- From now I'll show some ideas for AVIT
 - Some are not considered well. Maybe wrong.
- Ideas:
- Feedforward mitigation in low frequency
- Active damping of mechanical resonance mode
- Suspended inertial sensor

Feedforward in Low Frequency

- Below 1Hz there are large coherence between geophone signals on AVIT and seismometer signals on the floor
- Is it necessary to reduce vibration by feedback?
- Is feedforward enough for low frequency region?
- In GW community actually this is called **sensor corrention**

Online Subtraction

I tried subtracting seismometer signals from geophone signals
 online

Active Damping of Mechanical Resonance

How to damp resonance mode of the support frame?

- Add damper to the frame
- Make the frame more lossy material
- Damp resonance actively?
- I put a geophone on the frame (not AVIT) and fedback its signal around resonance frequency to PZT actuators

Active Damping

- Increasing gain...
 - Peak: damped
 - Dip: not changed

07.07.2023

Not sure whether it works

when I close main control loops...

Suspended Inertial Sensor

- Actually not my idea...
- From this paper:

"Modeling and experiment of the suspended seismometer concept for attenuating the contribution of tilt motionin horizontal measurements"

- Suspend a inertial sensor to reduce tilt-horizontal coupling
- They could reduce the tilt coupling, but translational coupling is band-limited

Band-limited Response

Summary

- For years I have worked on development of AVIT
- Currently the performance is limited by:
 - low frequency: tilt-horizontal coupling
 - high frequency: mechanical resonance mode
- I attacked there problems, but not fully solved. Need more improvements
- My plan about AVIT in my thesis:
 - Operate with cooler running
 - Measure difference with/without the cooler
 - Reproduce the current best sensitivity
- I also showed some new ideas
 - Not sure they will work or not
- If you are interested in AVIT, take over my research...