\relax \ifx\hyper@anchor\@undefined \global \let \oldcontentsline\contentsline \gdef \contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}} \global \let \oldnewlabel\newlabel \gdef \newlabel#1#2{\newlabelxx{#1}#2} \gdef \newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}} \AtEndDocument{\let \contentsline\oldcontentsline \let \newlabel\oldnewlabel} \else \global \let \hyper@last\relax \fi \providecommand*\HyPL@Entry[1]{} \HyPL@Entry{0<>} \HyPL@Entry{1<>} \citation{BW Report} \@writefile{toc}{\contentsline {chapter}{\numberline {1}Introduction}{3}{chapter.1}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} \@writefile{toc}{\contentsline {section}{\numberline {1.1}Requirements}{3}{section.1.1}} \@writefile{lof}{\contentsline {figure}{\numberline {1.1}{\ignorespaces bKAGRA Target Sensitivity in the BRSE mode}}{4}{figure.1.1}} \newlabel{bKAGRA Target Sensitivity BRSE}{{1.1}{4}{bKAGRA Target Sensitivity in the BRSE mode\relax }{figure.1.1}{}} \@writefile{lof}{\contentsline {figure}{\numberline {1.2}{\ignorespaces bKAGRA Target Sensitivity in the DRSE mode}}{4}{figure.1.2}} \newlabel{bKAGRA Target Sensitivity DRSE}{{1.2}{4}{bKAGRA Target Sensitivity in the DRSE mode\relax }{figure.1.2}{}} \citation{BW Report} \@writefile{toc}{\contentsline {chapter}{\numberline {2}Optical Configuration}{5}{chapter.2}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} \@writefile{toc}{\contentsline {section}{\numberline {2.1}Overview}{5}{section.2.1}} \@writefile{lof}{\contentsline {figure}{\numberline {2.1}{\ignorespaces Schematic of the main interferometer and the naming convention of IFO parameters}}{5}{figure.2.1}} \newlabel{IFO diagram}{{2.1}{5}{Schematic of the main interferometer and the naming convention of IFO parameters\relax }{figure.2.1}{}} \citation{JGW-G1100599} \@writefile{lot}{\contentsline {table}{\numberline {2.1}{\ignorespaces Arm cavity parameters}}{6}{table.2.1}} \newlabel{Arm cavity parameters}{{2.1}{6}{Arm cavity parameters\relax }{table.2.1}{}} \@writefile{toc}{\contentsline {section}{\numberline {2.2}Arm Cavity Parameters}{6}{section.2.2}} \@writefile{toc}{\contentsline {subsubsection}{g-factor}{6}{section*.2}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.2.1}Arm Cavity Higher Order Mode Resonances}{6}{subsection.2.2.1}} \@writefile{lof}{\contentsline {figure}{\numberline {2.2}{\ignorespaces HOM power in the arm cavity relative to the TEM00 power. The mode number is defined as $n+m$ for TEMnm modes.}}{7}{figure.2.2}} \newlabel{HOM Power in AC}{{2.2}{7}{HOM power in the arm cavity relative to the TEM00 power. The mode number is defined as $n+m$ for TEMnm modes}{figure.2.2}{}} \@writefile{toc}{\contentsline {subsubsection}{g-factor}{7}{section*.3}} \@writefile{lof}{\contentsline {figure}{\numberline {2.3}{\ignorespaces Resonance curves of HOMs taking into account the diffraction loss. The HOMs are expanded by the Laguerre-Gaussian basis. $\mr {LG}(p,l)$ corresponds to the mode number $2p+l$.}}{8}{figure.2.3}} \newlabel{HOM Finesse}{{2.3}{8}{Resonance curves of HOMs taking into account the diffraction loss. The HOMs are expanded by the Laguerre-Gaussian basis. $\mr {LG}(p,l)$ corresponds to the mode number $2p+l$}{figure.2.3}{}} \@writefile{lof}{\contentsline {figure}{\numberline {2.4}{\ignorespaces The maximum HOM power ratio in the AC as a function of ITM ROC error for the negative g-factors. The ROC is swept by $\pm $1\% around the nominal value.}}{8}{figure.2.4}} \newlabel{HOM Power in AC ITM ROC error negative-g}{{2.4}{8}{The maximum HOM power ratio in the AC as a function of ITM ROC error for the negative g-factors. The ROC is swept by $\pm $1\% around the nominal value}{figure.2.4}{}} \@writefile{lof}{\contentsline {figure}{\numberline {2.5}{\ignorespaces The maximum HOM power ratio in the AC as a function of ETM ROC error for the positive g-factors. The ROC is swept by $\pm $1\% around the nominal value.}}{9}{figure.2.5}} \newlabel{HOM Power in AC ETM ROC error negative-g}{{2.5}{9}{The maximum HOM power ratio in the AC as a function of ETM ROC error for the positive g-factors. The ROC is swept by $\pm $1\% around the nominal value}{figure.2.5}{}} \@writefile{lof}{\contentsline {figure}{\numberline {2.6}{\ignorespaces The maximum HOM power ratio in the AC as a function of ITM ROC error for the positive g-factors. The ROC is swept by $\pm $1\% around the nominal value.}}{9}{figure.2.6}} \newlabel{HOM Power in AC ITM ROC error positive-g}{{2.6}{9}{The maximum HOM power ratio in the AC as a function of ITM ROC error for the positive g-factors. The ROC is swept by $\pm $1\% around the nominal value}{figure.2.6}{}} \@writefile{lof}{\contentsline {figure}{\numberline {2.7}{\ignorespaces The maximum HOM power ratio in the AC as a function of ETM ROC error for the positive g-factors. The ROC is swept by $\pm $1\% around the nominal value.}}{10}{figure.2.7}} \newlabel{HOM Power in AC ETM ROC error positive-g}{{2.7}{10}{The maximum HOM power ratio in the AC as a function of ETM ROC error for the positive g-factors. The ROC is swept by $\pm $1\% around the nominal value}{figure.2.7}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.2.2}RF Sidebands Resonances in the Arm Cavities}{10}{subsection.2.2.2}} \newlabel{RFSB frequency fine adjustment}{{2.2.2}{10}{RF Sidebands Resonances in the Arm Cavities\relax }{subsection.2.2.2}{}} \@writefile{toc}{\contentsline {subsubsection}{Fine Adjustment of the RF Sideband Frequencies}{10}{section*.4}} \@writefile{lof}{\contentsline {figure}{\numberline {2.8}{\ignorespaces Ratio of the SB reflection phases by the arm cavities. We want to set it to 8/3, which is indicated by the green line.}}{11}{figure.2.8}} \newlabel{RFSB Refl phase ratio}{{2.8}{11}{Ratio of the SB reflection phases by the arm cavities. We want to set it to 8/3, which is indicated by the green line}{figure.2.8}{}} \@writefile{toc}{\contentsline {subsubsection}{HOM Resonances of the RF Sidebands}{11}{section*.5}} \@writefile{lof}{\contentsline {figure}{\numberline {2.9}{\ignorespaces Relative position of the RFSBs in the FSR of the arm cavities.}}{12}{figure.2.9}} \newlabel{RFSB Refl phase FSR}{{2.9}{12}{Relative position of the RFSBs in the FSR of the arm cavities}{figure.2.9}{}} \@writefile{lof}{\contentsline {figure}{\numberline {2.10}{\ignorespaces Positions of the RF SBs and the HOMs in the FSR of the arm cavities. The colorful sharp peaks represent the resonant curves of the HOMs. The mode number is printed at the top of each resonance. The vertical lines are the positions of the RF SBs and their harmonics. The numbers associated with the lines indicate the harmonic order. The black lines are the f1 harmonics, whereas the red lines are the f2 harmonics.}}{12}{figure.2.10}} \newlabel{RFSB HOM FSR}{{2.10}{12}{Positions of the RF SBs and the HOMs in the FSR of the arm cavities. The colorful sharp peaks represent the resonant curves of the HOMs. The mode number is printed at the top of each resonance. The vertical lines are the positions of the RF SBs and their harmonics. The numbers associated with the lines indicate the harmonic order. The black lines are the f1 harmonics, whereas the red lines are the f2 harmonics}{figure.2.10}{}} \citation{PI Braginsky} \@writefile{lof}{\contentsline {figure}{\numberline {2.11}{\ignorespaces Figure of merit of the overlap between the RF SB harmonics and the HOMs when the ITM ROC is swept. g-factor is negative.}}{13}{figure.2.11}} \newlabel{RFSB HOM FOM ITM negative-g}{{2.11}{13}{Figure of merit of the overlap between the RF SB harmonics and the HOMs when the ITM ROC is swept. g-factor is negative}{figure.2.11}{}} \@writefile{toc}{\contentsline {subsubsection}{g-factor and the RF SB resonances}{13}{section*.6}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.2.3}Parametric Instability}{13}{subsection.2.2.3}} \@writefile{lof}{\contentsline {figure}{\numberline {2.12}{\ignorespaces Figure of merit of the overlap between the RF SB harmonics and the HOMs when the ETM ROC is swept. g-factor is negative.}}{14}{figure.2.12}} \newlabel{RFSB HOM FOM ETM negative-g}{{2.12}{14}{Figure of merit of the overlap between the RF SB harmonics and the HOMs when the ETM ROC is swept. g-factor is negative}{figure.2.12}{}} \@writefile{lof}{\contentsline {figure}{\numberline {2.13}{\ignorespaces Figure of merit of the overlap between the RF SB harmonics and the HOMs when the ITM ROC is swept. g-factor is positive.}}{14}{figure.2.13}} \newlabel{RFSB HOM FOM ITM positive-g}{{2.13}{14}{Figure of merit of the overlap between the RF SB harmonics and the HOMs when the ITM ROC is swept. g-factor is positive}{figure.2.13}{}} \citation{Sidles Sigg} \@writefile{lof}{\contentsline {figure}{\numberline {2.14}{\ignorespaces Figure of merit of the overlap between the RF SB harmonics and the HOMs when the ETM ROC is swept. g-factor is positive.}}{15}{figure.2.14}} \newlabel{RFSB HOM FOM ETM positive-g}{{2.14}{15}{Figure of merit of the overlap between the RF SB harmonics and the HOMs when the ETM ROC is swept. g-factor is positive}{figure.2.14}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.2.4}Angular Instability by the Radiation Pressure}{15}{subsection.2.2.4}} \citation{BW Report} \@writefile{lof}{\contentsline {figure}{\numberline {2.15}{\ignorespaces Maps of the maximum parametric gain as functions of the ROCs of the test masses. Left: positive g-factor, Right: negative g-factor. The ROCs are swept by $\pm $2\% of their nominal values. White areas correspond to $R_\mr {max}<1$.}}{16}{figure.2.15}} \newlabel{PI Plots}{{2.15}{16}{Maps of the maximum parametric gain as functions of the ROCs of the test masses. Left: positive g-factor, Right: negative g-factor. The ROCs are swept by $\pm $2\% of their nominal values. White areas correspond to $R_\mr {max}<1$}{figure.2.15}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.2.5}Conclusion on g-factors}{16}{subsection.2.2.5}} \@writefile{toc}{\contentsline {section}{\numberline {2.3}Recycling Cavities}{16}{section.2.3}} \@writefile{toc}{\contentsline {subsubsection}{Overview}{16}{section*.7}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.3.1}Reflectivities}{16}{subsection.2.3.1}} \@writefile{lot}{\contentsline {table}{\numberline {2.2}{\ignorespaces Recycling cavity parameters}}{17}{table.2.2}} \newlabel{Recycling cavity parameters}{{2.2}{17}{Recycling cavity parameters\relax }{table.2.2}{}} \@writefile{lot}{\contentsline {table}{\numberline {2.3}{\ignorespaces Folding parameters. See Figure \ref {IFO diagram} for the meaning of the parameters.}}{17}{table.2.3}} \newlabel{Folding parameters}{{2.3}{17}{Folding parameters. See Figure \ref {IFO diagram} for the meaning of the parameters}{table.2.3}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.3.2}Length and RF SB frequencies}{18}{subsection.2.3.2}} \@writefile{toc}{\contentsline {subsubsection}{Constraints}{18}{section*.8}} \@writefile{toc}{\contentsline {subsubsection}{SRCL linear range}{18}{section*.9}} \@writefile{lof}{\contentsline {figure}{\numberline {2.16}{\ignorespaces SRCL error signals for three different values of $R_\mr {m}$. The horizontal axis is the detuning of the SRC in terms of the one-way phase shift. The vertical axis is the signal from the POP port demodulated at the f1 frequency. The vertical line shows the operation point of DRSE (3.5$^\circ $). }}{19}{figure.2.16}} \newlabel{SRCL Sweep}{{2.16}{19}{SRCL error signals for three different values of $R_\mr {m}$. The horizontal axis is the detuning of the SRC in terms of the one-way phase shift. The vertical axis is the signal from the POP port demodulated at the f1 frequency. The vertical line shows the operation point of DRSE (3.5$^\circ $)}{figure.2.16}{}} \@writefile{toc}{\contentsline {subsubsection}{Selected Length and Frequencies}{19}{section*.10}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.3.3}Radius of Curvature of the RC mirrors}{20}{subsection.2.3.3}} \@writefile{toc}{\contentsline {section}{\numberline {2.4}Output mode-cleaner system}{20}{section.2.4}} \citation{ROC Error} \@writefile{lof}{\contentsline {figure}{\numberline {2.17}{\ignorespaces Output mode-cleaner system.}}{21}{figure.2.17}} \newlabel{fig:OMCsystem}{{2.17}{21}{Output mode-cleaner system}{figure.2.17}{}} \@writefile{lof}{\contentsline {figure}{\numberline {2.18}{\ignorespaces {\it Left}: Signal loss due to the differential RoC errors of the test masses, and {\it Right}: Shot noise increase due to the junk light caused by the differential RoC errors of the test masses.}}{22}{figure.2.18}} \newlabel{fig:HOM}{{2.18}{22}{{\it Left}: Signal loss due to the differential RoC errors of the test masses, and {\it Right}: Shot noise increase due to the junk light caused by the differential RoC errors of the test masses}{figure.2.18}{}} \@writefile{lot}{\contentsline {table}{\numberline {2.4}{\ignorespaces Amount of the light in each mode at the dark port before the OMC.}}{22}{table.2.4}} \newlabel{tab:HOM}{{2.4}{22}{Amount of the light in each mode at the dark port before the OMC}{table.2.4}{}} \@writefile{lot}{\contentsline {table}{\numberline {2.5}{\ignorespaces Amount of the light in each mode at the dark port after the OMC.}}{22}{table.2.5}} \newlabel{tab:HOM2}{{2.5}{22}{Amount of the light in each mode at the dark port after the OMC}{table.2.5}{}} \@writefile{lof}{\contentsline {figure}{\numberline {2.19}{\ignorespaces Frequency margin to the closest resonance of any higher order modes up to the 8th mode. The black, red, orange, green and blue curves correspond to the OMC length of 90, 80, 70, 60, and 50\nobreakspace {}cm, respectively. The horizontal line at the center indicates the suppression rate of 45\nobreakspace {}dB.}}{23}{figure.2.19}} \newlabel{fig:modes}{{2.19}{23}{Frequency margin to the closest resonance of any higher order modes up to the 8th mode. The black, red, orange, green and blue curves correspond to the OMC length of 90, 80, 70, 60, and 50~cm, respectively. The horizontal line at the center indicates the suppression rate of 45~dB}{figure.2.19}{}} \@writefile{lot}{\contentsline {table}{\numberline {2.6}{\ignorespaces Setup parameters of the output mode-cleaner system.}}{23}{table.2.6}} \newlabel{tab:OMCsetup}{{2.6}{23}{Setup parameters of the output mode-cleaner system}{table.2.6}{}} \@writefile{toc}{\contentsline {chapter}{\numberline {3}Length Sensing and Control Scheme}{24}{chapter.3}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} \newlabel{bKAGRA LSC}{{3}{24}{Length Sensing and Control Scheme\relax }{chapter.3}{}} \@writefile{lof}{\contentsline {figure}{\numberline {3.1}{\ignorespaces RF sideband resonant conditions and signal ports. POP is drawn at the transmission of PR3 to avoid congestion of the diagram. However, POP is actually planned to be picked up from the back of PR2 because the beam size is much smaller there. }}{24}{figure.3.1}} \newlabel{Signal Ports}{{3.1}{24}{RF sideband resonant conditions and signal ports. POP is drawn at the transmission of PR3 to avoid congestion of the diagram. However, POP is actually planned to be picked up from the back of PR2 because the beam size is much smaller there}{figure.3.1}{}} \citation{Optickle} \citation{LSC Code} \@writefile{lot}{\contentsline {table}{\numberline {3.1}{\ignorespaces RF Sideband Frequencies}}{25}{table.3.1}} \newlabel{RF Sideband Frequencies}{{3.1}{25}{RF Sideband Frequencies\relax }{table.3.1}{}} \@writefile{toc}{\contentsline {section}{\numberline {3.1}Overview}{25}{section.3.1}} \@writefile{toc}{\contentsline {section}{\numberline {3.2}Simulation Conditions}{25}{section.3.2}} \@writefile{toc}{\contentsline {subsubsection}{Arm Cavity Asymmetry}{25}{section*.11}} \newlabel{Arm Cavity Asymmetry}{{3.2}{25}{Arm Cavity Asymmetry\relax }{section*.11}{}} \@writefile{toc}{\contentsline {subsubsection}{PD}{26}{section*.12}} \@writefile{toc}{\contentsline {section}{\numberline {3.3}Signal Name Convention}{26}{section.3.3}} \@writefile{toc}{\contentsline {section}{\numberline {3.4}Signal Extraction Ports}{26}{section.3.4}} \citation{Ohmae Thesis} \citation{Ohmae Thesis} \@writefile{lot}{\contentsline {table}{\numberline {3.2}{\ignorespaces Normalized Sensing Matrix of LSC in the case of BRSE. Each row is normalized by the diagonal element. The interferometer response was evaluated at 100\tmspace +\thinmuskip {.1667em}Hz to create this matrix.}}{27}{table.3.2}} \newlabel{Sensing Matrix LSC SDM BRSE}{{3.2}{27}{Normalized Sensing Matrix of LSC in the case of BRSE. Each row is normalized by the diagonal element. The interferometer response was evaluated at 100\,Hz to create this matrix}{table.3.2}{}} \@writefile{lot}{\contentsline {table}{\numberline {3.3}{\ignorespaces Normalized Sensing Matrix of LSC in the case of DRSE. Each row is normalized by the diagonal element. The interferometer response was evaluated at 100\tmspace +\thinmuskip {.1667em}Hz to create this matrix.}}{27}{table.3.3}} \newlabel{Sensing Matrix LSC SDM DRSE}{{3.3}{27}{Normalized Sensing Matrix of LSC in the case of DRSE. Each row is normalized by the diagonal element. The interferometer response was evaluated at 100\,Hz to create this matrix}{table.3.3}{}} \@writefile{lot}{\contentsline {table}{\numberline {3.4}{\ignorespaces Shot noise matrix of LSC in the case of BRSE. The numbers represent the displacement equivalent shot noise [$\mr {m/\sqrt {Hz}}$]. The interferometer response was evaluated at 100\tmspace +\thinmuskip {.1667em}Hz to create this matrix.}}{27}{table.3.4}} \newlabel{Shot noise matrix LSC SDM BRSE}{{3.4}{27}{Shot noise matrix of LSC in the case of BRSE. The numbers represent the displacement equivalent shot noise [$\mr {m/\sqrt {Hz}}$]. The interferometer response was evaluated at 100\,Hz to create this matrix}{table.3.4}{}} \@writefile{lot}{\contentsline {table}{\numberline {3.5}{\ignorespaces Shot noise matrix of LSC in the case of DRSE. The numbers represent the displacement equivalent shot noise [$\mr {m/\sqrt {Hz}}$]. The interferometer response was evaluated at 100\tmspace +\thinmuskip {.1667em}Hz to create this matrix.}}{28}{table.3.5}} \newlabel{Shot noise matrix LSC SDM DRSE}{{3.5}{28}{Shot noise matrix of LSC in the case of DRSE. The numbers represent the displacement equivalent shot noise [$\mr {m/\sqrt {Hz}}$]. The interferometer response was evaluated at 100\,Hz to create this matrix}{table.3.5}{}} \@writefile{lot}{\contentsline {table}{\numberline {3.6}{\ignorespaces Normalized Sensing Matrix of LSC for BRSE using the f3 sideband. Each row is normalized by the diagonal element. The interferometer response was evaluated at 100\tmspace +\thinmuskip {.1667em}Hz to create this matrix.}}{28}{table.3.6}} \newlabel{Sensing Matrix LSC NRS}{{3.6}{28}{Normalized Sensing Matrix of LSC for BRSE using the f3 sideband. Each row is normalized by the diagonal element. The interferometer response was evaluated at 100\,Hz to create this matrix}{table.3.6}{}} \@writefile{toc}{\contentsline {section}{\numberline {3.5}Loop Noise}{28}{section.3.5}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.5.1}Servo loop model}{28}{subsection.3.5.1}} \citation{LoopNoise} \@writefile{lof}{\contentsline {figure}{\numberline {3.2}{\ignorespaces Block diagram of the feedback loops. The real DOF vector $\mathaccentV {vec}17E{x}$ contains the displacement of each mirror and other dynamic degrees of freedom in the interferometer, such as laser frequency and intensity. It is converted to the vector $\mathaccentV {vec}17E{e}$ of the error signals in the canonical DOFs by the detector matrix $D$. All the matrices in the figure are frequency dependent.}}{29}{figure.3.2}} \newlabel{Fig:Feedback Diagram}{{3.2}{29}{Block diagram of the feedback loops. The real DOF vector $\vec {x}$ contains the displacement of each mirror and other dynamic degrees of freedom in the interferometer, such as laser frequency and intensity. It is converted to the vector $\vec {e}$ of the error signals in the canonical DOFs by the detector matrix $D$. All the matrices in the figure are frequency dependent}{figure.3.2}{}} \newlabel{Loop Noise Formula}{{3.1}{29}{Servo loop model\relax }{equation.3.5.1}{}} \newlabel{Define G}{{3.2}{29}{Servo loop model\relax }{equation.3.5.2}{}} \@writefile{lot}{\contentsline {table}{\numberline {3.7}{\ignorespaces Control Loop UGFs}}{29}{table.3.7}} \newlabel{Control Loop UGFs}{{3.7}{29}{Control Loop UGFs\relax }{table.3.7}{}} \@writefile{lof}{\contentsline {figure}{\numberline {3.3}{\ignorespaces Loop Noise Coupling: BRSE}}{30}{figure.3.3}} \newlabel{Loop Noise Coupling: BRSE, SDM}{{3.3}{30}{Loop Noise Coupling: BRSE\relax }{figure.3.3}{}} \@writefile{lof}{\contentsline {figure}{\numberline {3.4}{\ignorespaces Loop Noise Coupling: DRSE}}{30}{figure.3.4}} \newlabel{Loop Noise Coupling: DRSE, SDM}{{3.4}{30}{Loop Noise Coupling: DRSE\relax }{figure.3.4}{}} \citation{AD829_Data_Sheet} \@writefile{toc}{\contentsline {subsection}{\numberline {3.5.2}Feed forward}{31}{subsection.3.5.2}} \@writefile{lof}{\contentsline {figure}{\numberline {3.5}{\ignorespaces Loop Noise Coupling with Feed Forward: BRSE}}{31}{figure.3.5}} \newlabel{Loop Noise Coupling FF: BRSE, SDM}{{3.5}{31}{Loop Noise Coupling with Feed Forward: BRSE\relax }{figure.3.5}{}} \@writefile{toc}{\contentsline {section}{\numberline {3.6}PD Dynamic Range}{31}{section.3.6}} \newlabel{PD Dynamic Range}{{3.6}{31}{PD Dynamic Range\relax }{section.3.6}{}} \@writefile{lof}{\contentsline {figure}{\numberline {3.6}{\ignorespaces Loop Noise Coupling with Feed Forward: DRSE}}{32}{figure.3.6}} \newlabel{Loop Noise Coupling FF: DRSE, SDM}{{3.6}{32}{Loop Noise Coupling with Feed Forward: DRSE\relax }{figure.3.6}{}} \@writefile{lof}{\contentsline {figure}{\numberline {3.7}{\ignorespaces PD noise coupling: BRSE.}}{33}{figure.3.7}} \newlabel{PD Noise BRSE}{{3.7}{33}{PD noise coupling: BRSE}{figure.3.7}{}} \@writefile{lof}{\contentsline {figure}{\numberline {3.8}{\ignorespaces PD noise coupling: DRSE.}}{33}{figure.3.8}} \newlabel{PD Noise BRSE}{{3.8}{33}{PD noise coupling: DRSE}{figure.3.8}{}} \@writefile{lof}{\contentsline {figure}{\numberline {3.9}{\ignorespaces PD noise coupling with feed forward: BRSE.}}{34}{figure.3.9}} \newlabel{PD Noise BRSE FF}{{3.9}{34}{PD noise coupling with feed forward: BRSE}{figure.3.9}{}} \@writefile{lof}{\contentsline {figure}{\numberline {3.10}{\ignorespaces PD noise coupling with feed forward: DRSE.}}{34}{figure.3.10}} \newlabel{PD Noise DRSE FF}{{3.10}{34}{PD noise coupling with feed forward: DRSE}{figure.3.10}{}} \@writefile{toc}{\contentsline {chapter}{\numberline {4}Noise Requirements}{35}{chapter.4}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} \newlabel{Chapter: Noise Requirements}{{4}{35}{Noise Requirements\relax }{chapter.4}{}} \@writefile{toc}{\contentsline {section}{\numberline {4.1}Mirror Displacement Noise}{35}{section.4.1}} \newlabel{Displacement Noise Requirement}{{4.1}{35}{Mirror Displacement Noise\relax }{section.4.1}{}} \@writefile{toc}{\contentsline {section}{\numberline {4.2}Laser Noises}{35}{section.4.2}} \@writefile{lof}{\contentsline {figure}{\numberline {4.1}{\ignorespaces Displacement noise requirements for auxiliary mirrors: BRSE}}{36}{figure.4.1}} \newlabel{Displacement Noise Requirent for Each Mirror: BRSE, SDM}{{4.1}{36}{Displacement noise requirements for auxiliary mirrors: BRSE\relax }{figure.4.1}{}} \@writefile{lof}{\contentsline {figure}{\numberline {4.2}{\ignorespaces Displacement noise requirements for auxiliary mirrors: DRSE}}{36}{figure.4.2}} \newlabel{Displacement Noise Requirent for Each Mirror: DRSE, SDM}{{4.2}{36}{Displacement noise requirements for auxiliary mirrors: DRSE\relax }{figure.4.2}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.2.1}Frequency stabilization servo}{37}{subsection.4.2.1}} \@writefile{lof}{\contentsline {figure}{\numberline {4.3}{\ignorespaces Conceptual diagram of the frequency stabilization system}}{37}{figure.4.3}} \newlabel{FSS Concept}{{4.3}{37}{Conceptual diagram of the frequency stabilization system\relax }{figure.4.3}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.2.2}Frequency noise requirement}{37}{subsection.4.2.2}} \@writefile{lof}{\contentsline {figure}{\numberline {4.4}{\ignorespaces Laser frequency noise requirement at the output of the MC: BRSE}}{38}{figure.4.4}} \newlabel{Laser freq noise requirement BRSE}{{4.4}{38}{Laser frequency noise requirement at the output of the MC: BRSE\relax }{figure.4.4}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.2.3}Intensity noise}{38}{subsection.4.2.3}} \@writefile{toc}{\contentsline {section}{\numberline {4.3}RF Oscillator Noises}{38}{section.4.3}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.3.1}Phase Noise}{38}{subsection.4.3.1}} \@writefile{lof}{\contentsline {figure}{\numberline {4.5}{\ignorespaces Laser frequency noise requirement at the output of the MC: DRSE}}{39}{figure.4.5}} \newlabel{Laser freq noise requirement DRSE}{{4.5}{39}{Laser frequency noise requirement at the output of the MC: DRSE\relax }{figure.4.5}{}} \@writefile{lof}{\contentsline {figure}{\numberline {4.6}{\ignorespaces Displacement noise requirement for the MC suspension: BRSE}}{39}{figure.4.6}} \newlabel{MC disp requirement BRSE}{{4.6}{39}{Displacement noise requirement for the MC suspension: BRSE\relax }{figure.4.6}{}} \@writefile{lof}{\contentsline {figure}{\numberline {4.7}{\ignorespaces Displacement noise requirement for the MC suspension: DRSE}}{40}{figure.4.7}} \newlabel{MC disp requirement DRSE}{{4.7}{40}{Displacement noise requirement for the MC suspension: DRSE\relax }{figure.4.7}{}} \@writefile{lof}{\contentsline {figure}{\numberline {4.8}{\ignorespaces Relative Intensity Noise (RIN) requirement: BRSE}}{40}{figure.4.8}} \newlabel{RIN Req BRSE}{{4.8}{40}{Relative Intensity Noise (RIN) requirement: BRSE\relax }{figure.4.8}{}} \@writefile{lof}{\contentsline {figure}{\numberline {4.9}{\ignorespaces Relative Intensity Noise (RIN) requirement: DRSE}}{41}{figure.4.9}} \newlabel{RIN Req DRSE}{{4.9}{41}{Relative Intensity Noise (RIN) requirement: DRSE\relax }{figure.4.9}{}} \@writefile{lof}{\contentsline {figure}{\numberline {4.10}{\ignorespaces SSB Phase noise requirements: BRSE}}{41}{figure.4.10}} \newlabel{SSB Req BRSE}{{4.10}{41}{SSB Phase noise requirements: BRSE\relax }{figure.4.10}{}} \@writefile{lof}{\contentsline {figure}{\numberline {4.11}{\ignorespaces SSB Phase noise requirements: DRSE}}{42}{figure.4.11}} \newlabel{SSB Req DRSE}{{4.11}{42}{SSB Phase noise requirements: DRSE\relax }{figure.4.11}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.3.2}Amplitude Noise}{42}{subsection.4.3.2}} \@writefile{toc}{\contentsline {section}{\numberline {4.4}Scattered Light Noise}{42}{section.4.4}} \@writefile{lof}{\contentsline {figure}{\numberline {4.12}{\ignorespaces RF oscillator amplitude noise requirements: BRSE}}{43}{figure.4.12}} \newlabel{RF AM Req BRSE}{{4.12}{43}{RF oscillator amplitude noise requirements: BRSE\relax }{figure.4.12}{}} \@writefile{lof}{\contentsline {figure}{\numberline {4.13}{\ignorespaces RF oscillator amplitude noise requirements: DRSE}}{43}{figure.4.13}} \newlabel{RF AM Req DRSE}{{4.13}{43}{RF oscillator amplitude noise requirements: DRSE\relax }{figure.4.13}{}} \citation{Yamamoto SCL} \@writefile{lof}{\contentsline {figure}{\numberline {4.14}{\ignorespaces Scattered light requirements for the carrier: BRSE}}{44}{figure.4.14}} \newlabel{SCL Req Carrier BRSE}{{4.14}{44}{Scattered light requirements for the carrier: BRSE\relax }{figure.4.14}{}} \@writefile{lof}{\contentsline {figure}{\numberline {4.15}{\ignorespaces Scattered light requirements for the f1 RFSB: BRSE}}{45}{figure.4.15}} \newlabel{SCL Req f1 BRSE}{{4.15}{45}{Scattered light requirements for the f1 RFSB: BRSE\relax }{figure.4.15}{}} \@writefile{lof}{\contentsline {figure}{\numberline {4.16}{\ignorespaces Scattered light requirements for the f2 RFSB: BRSE}}{45}{figure.4.16}} \newlabel{SCL Req f2 BRSE}{{4.16}{45}{Scattered light requirements for the f2 RFSB: BRSE\relax }{figure.4.16}{}} \@writefile{lof}{\contentsline {figure}{\numberline {4.17}{\ignorespaces Scattered light requirements for the carrier: DRSE}}{46}{figure.4.17}} \newlabel{SCL Req Carrier DRSE}{{4.17}{46}{Scattered light requirements for the carrier: DRSE\relax }{figure.4.17}{}} \@writefile{lof}{\contentsline {figure}{\numberline {4.18}{\ignorespaces Scattered light requirements for the f1 RFSB: DRSE}}{46}{figure.4.18}} \newlabel{SCL Req f1 DRSE}{{4.18}{46}{Scattered light requirements for the f1 RFSB: DRSE\relax }{figure.4.18}{}} \@writefile{lof}{\contentsline {figure}{\numberline {4.19}{\ignorespaces Scattered light requirements for the f2 RFSB: DRSE}}{47}{figure.4.19}} \newlabel{SCL Req f2 DRSE}{{4.19}{47}{Scattered light requirements for the f2 RFSB: DRSE\relax }{figure.4.19}{}} \@writefile{lot}{\contentsline {table}{\numberline {4.1}{\ignorespaces Light power in the various parts of the interferometer: BRSE}}{47}{table.4.1}} \newlabel{Power in the IFO BRSE}{{4.1}{47}{Light power in the various parts of the interferometer: BRSE\relax }{table.4.1}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.4.1}Light power in the interferometer}{47}{subsection.4.4.1}} \@writefile{lof}{\contentsline {figure}{\numberline {4.20}{\ignorespaces Coupling coeffcients of scattered light for the carrier: BRSE}}{48}{figure.4.20}} \newlabel{SCL Coupling Carrier BRSE}{{4.20}{48}{Coupling coeffcients of scattered light for the carrier: BRSE\relax }{figure.4.20}{}} \@writefile{lof}{\contentsline {figure}{\numberline {4.21}{\ignorespaces Coupling coeffcients of scattered light for the f1 RFSB: BRSE}}{48}{figure.4.21}} \newlabel{SCL Coupling f1 BRSE}{{4.21}{48}{Coupling coeffcients of scattered light for the f1 RFSB: BRSE\relax }{figure.4.21}{}} \@writefile{lof}{\contentsline {figure}{\numberline {4.22}{\ignorespaces Coupling coeffcients of scattered light for the f2 RFSB: BRSE}}{49}{figure.4.22}} \newlabel{SCL Coupling f2 BRSE}{{4.22}{49}{Coupling coeffcients of scattered light for the f2 RFSB: BRSE\relax }{figure.4.22}{}} \@writefile{lof}{\contentsline {figure}{\numberline {4.23}{\ignorespaces Coupling coeffcients of scattered light for the carrier: DRSE}}{49}{figure.4.23}} \newlabel{SCL Coupling Carrier DRSE}{{4.23}{49}{Coupling coeffcients of scattered light for the carrier: DRSE\relax }{figure.4.23}{}} \@writefile{lof}{\contentsline {figure}{\numberline {4.24}{\ignorespaces Coupling coeffcients of scattered light for the f1 RFSB: DRSE}}{50}{figure.4.24}} \newlabel{SCL Coupling f1 DRSE}{{4.24}{50}{Coupling coeffcients of scattered light for the f1 RFSB: DRSE\relax }{figure.4.24}{}} \@writefile{lof}{\contentsline {figure}{\numberline {4.25}{\ignorespaces Coupling coeffcients of scattered light for the f2 RFSB: DRSE}}{50}{figure.4.25}} \newlabel{SCL Coupling f2 DRSE}{{4.25}{50}{Coupling coeffcients of scattered light for the f2 RFSB: DRSE\relax }{figure.4.25}{}} \@writefile{lot}{\contentsline {table}{\numberline {4.2}{\ignorespaces Light power in the various parts of the interferometer: DRSE}}{51}{table.4.2}} \newlabel{Power in the IFO DRSE}{{4.2}{51}{Light power in the various parts of the interferometer: DRSE\relax }{table.4.2}{}} \citation{Sidles Sigg} \@writefile{toc}{\contentsline {chapter}{\numberline {5}Alignment Sensing and Control Scheme}{52}{chapter.5}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} \newlabel{ASC}{{5}{52}{Alignment Sensing and Control Scheme\relax }{chapter.5}{}} \@writefile{toc}{\contentsline {section}{\numberline {5.1}Overview}{52}{section.5.1}} \@writefile{toc}{\contentsline {section}{\numberline {5.2}Soft and Hard Modes}{52}{section.5.2}} \@writefile{lof}{\contentsline {figure}{\numberline {5.1}{\ignorespaces The transfer functions from the torque on the test mass to angle of the test mass(top: pitch, lower: yaw). The blue curve shows the mechanical transfer function in the absence of radiation pressure. The green and red curve show the opto-mechanical transfer functions of the soft mode and hard mode.}}{53}{figure.5.1}} \newlabel{ASC_optomech_negative}{{5.1}{53}{The transfer functions from the torque on the test mass to angle of the test mass(top: pitch, lower: yaw). The blue curve shows the mechanical transfer function in the absence of radiation pressure. The green and red curve show the opto-mechanical transfer functions of the soft mode and hard mode}{figure.5.1}{}} \@writefile{lot}{\contentsline {table}{\numberline {5.1}{\ignorespaces Resonant frequencies under radiation pressure. $i$ represents the instability.}}{54}{table.5.1}} \newlabel{ASC_resonantfrequencies}{{5.1}{54}{Resonant frequencies under radiation pressure. $i$ represents the instability}{table.5.1}{}} \@writefile{toc}{\contentsline {section}{\numberline {5.3}Simulation Conditions}{54}{section.5.3}} \@writefile{toc}{\contentsline {section}{\numberline {5.4}Signal Extraction Ports}{54}{section.5.4}} \@writefile{toc}{\contentsline {section}{\numberline {5.5}Angular noise coupling to DARM}{54}{section.5.5}} \@writefile{toc}{\contentsline {subsection}{\numberline {5.5.1}Structure of the ASC model}{54}{subsection.5.5.1}} \@writefile{lof}{\contentsline {figure}{\numberline {5.2}{\ignorespaces Normalized WFS sensing matrix. Each row is normalized by the diagonal element. SR2 is not controlled by the WFS.}}{55}{figure.5.2}} \newlabel{ASC_WFSSensingMatrix}{{5.2}{55}{Normalized WFS sensing matrix. Each row is normalized by the diagonal element. SR2 is not controlled by the WFS}{figure.5.2}{}} \@writefile{lof}{\contentsline {figure}{\numberline {5.3}{\ignorespaces Structure of the ASC model.}}{55}{figure.5.3}} \newlabel{ASC_ASCstructure}{{5.3}{55}{Structure of the ASC model}{figure.5.3}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {5.5.2}Simulation results}{56}{subsection.5.5.2}} \@writefile{lot}{\contentsline {table}{\numberline {5.2}{\ignorespaces ASC control loop UGFs}}{57}{table.5.2}} \newlabel{ASC_controlUGFs}{{5.2}{57}{ASC control loop UGFs\relax }{table.5.2}{}} \@writefile{lof}{\contentsline {figure}{\numberline {5.4}{\ignorespaces Angular noise coupling to DARM (top: pitch, lower: yaw). The dotted line shows bKAGRA design sensitivity.}}{57}{figure.5.4}} \newlabel{ASC_A2DARM}{{5.4}{57}{Angular noise coupling to DARM (top: pitch, lower: yaw). The dotted line shows bKAGRA design sensitivity}{figure.5.4}{}} \@writefile{toc}{\contentsline {chapter}{\numberline {6}Lock Acquisition Scheme}{58}{chapter.6}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} \@writefile{toc}{\contentsline {section}{\numberline {6.1}Overview}{58}{section.6.1}} \@writefile{toc}{\contentsline {section}{\numberline {6.2}Green Laser Pre-Lock}{58}{section.6.2}} \newlabel{Green Laser Pre-Lock}{{6.2}{58}{Green Laser Pre-Lock\relax }{section.6.2}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {6.2.1}Overview}{58}{subsection.6.2.1}} \citation{Tatsumi Green} \@writefile{lof}{\contentsline {figure}{\numberline {6.1}{\ignorespaces Conceptual configuration of the green laser pre-lock. Green lasers are injected from the back of PR2 and SR2. Two green lasers are phase locked to the main laser with a frequency offset of about 100\tmspace +\thinmuskip {.1667em}MHz.}}{59}{figure.6.1}} \newlabel{Green Lock Schematic}{{6.1}{59}{Conceptual configuration of the green laser pre-lock. Green lasers are injected from the back of PR2 and SR2. Two green lasers are phase locked to the main laser with a frequency offset of about 100\,MHz}{figure.6.1}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {6.2.2}Noise Analysis}{59}{subsection.6.2.2}} \@writefile{toc}{\contentsline {subsection}{\numberline {6.2.3}Third Harmonics Demodulation}{60}{subsection.6.2.3}} \newlabel{Third Harmonics Demodulation}{{6.2.3}{60}{Third Harmonics Demodulation\relax }{subsection.6.2.3}{}} \@writefile{lof}{\contentsline {figure}{\numberline {6.2}{\ignorespaces THD MICH error signal with various CARM offset. Signal port is REFL, demodulated at $3\times f1$ in Q-phase.}}{60}{figure.6.2}} \newlabel{THD MICH error signal with various CARM offset}{{6.2}{60}{THD MICH error signal with various CARM offset. Signal port is REFL, demodulated at $3\times f1$ in Q-phase}{figure.6.2}{}} \@writefile{lof}{\contentsline {figure}{\numberline {6.3}{\ignorespaces THD PRCL error signal with various CARM offset. Signal port is REFL, demodulated at $3\times f2$ in I-phase.}}{61}{figure.6.3}} \newlabel{THD PRCL error signal with various CARM offset}{{6.3}{61}{THD PRCL error signal with various CARM offset. Signal port is REFL, demodulated at $3\times f2$ in I-phase}{figure.6.3}{}} \@writefile{lof}{\contentsline {figure}{\numberline {6.4}{\ignorespaces THD SRCL error signal with various CARM offset. Signal port is REFL, demodulated at $3\times f1$ in I-phase.}}{61}{figure.6.4}} \newlabel{THD SRCL error signal with various CARM offset}{{6.4}{61}{THD SRCL error signal with various CARM offset. Signal port is REFL, demodulated at $3\times f1$ in I-phase}{figure.6.4}{}} \@writefile{toc}{\contentsline {section}{\numberline {6.3}Non-Resonant Sideband for Lock Acquisition}{62}{section.6.3}} \newlabel{Non-Resonant Sideband for Lock Acquisition}{{6.3}{62}{Non-Resonant Sideband for Lock Acquisition\relax }{section.6.3}{}} \@writefile{lof}{\contentsline {figure}{\numberline {6.5}{\ignorespaces NRS MICH error signal with various CARM offset. Signal port is REFL, demodulated at $|f3-f1|$ in Q-phase.}}{62}{figure.6.5}} \newlabel{NRS MICH error signal with various CARM offset}{{6.5}{62}{NRS MICH error signal with various CARM offset. Signal port is REFL, demodulated at $|f3-f1|$ in Q-phase}{figure.6.5}{}} \@writefile{lof}{\contentsline {figure}{\numberline {6.6}{\ignorespaces NRS PRCL error signal with various CARM offset. Signal port is REFL, demodulated at $|f3-f2|$ in I-phase.}}{63}{figure.6.6}} \newlabel{NRS PRCL error signal with various CARM offset}{{6.6}{63}{NRS PRCL error signal with various CARM offset. Signal port is REFL, demodulated at $|f3-f2|$ in I-phase}{figure.6.6}{}} \@writefile{lof}{\contentsline {figure}{\numberline {6.7}{\ignorespaces NRS SRCL error signal with various CARM offset. Signal port is REFL, demodulated at $|f3-f1|$ in I-phase.}}{63}{figure.6.7}} \newlabel{NRS SRCL error signal with various CARM offset}{{6.7}{63}{NRS SRCL error signal with various CARM offset. Signal port is REFL, demodulated at $|f3-f1|$ in I-phase}{figure.6.7}{}} \citation{KAGRA svn layout} \citation{Wedge Error Aso} \@writefile{toc}{\contentsline {chapter}{\numberline {7}Optical Layout}{64}{chapter.7}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} \newlabel{Optical Layout}{{7}{64}{Optical Layout\relax }{chapter.7}{}} \@writefile{toc}{\contentsline {section}{\numberline {7.1}Basic design}{64}{section.7.1}} \@writefile{toc}{\contentsline {section}{\numberline {7.2}Wedge angle error tolerance}{64}{section.7.2}} \@writefile{toc}{\contentsline {section}{\numberline {7.3}Tunnel Slope}{64}{section.7.3}} \citation{ROC Error} \@writefile{toc}{\contentsline {chapter}{\numberline {8}Installation/Adjustment Procedure}{66}{chapter.8}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} \@writefile{toc}{\contentsline {chapter}{\numberline {9}iKAGRA}{67}{chapter.9}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} \@writefile{toc}{\contentsline {section}{\numberline {9.1}Overview}{67}{section.9.1}} \@writefile{toc}{\contentsline {section}{\numberline {9.2}Changes from bKAGRA}{67}{section.9.2}} \@writefile{toc}{\contentsline {subsection}{\numberline {9.2.1}Mirrors}{67}{subsection.9.2.1}} \@writefile{toc}{\contentsline {subsection}{\numberline {9.2.2}Optical Layout}{67}{subsection.9.2.2}} \@writefile{lof}{\contentsline {figure}{\numberline {9.1}{\ignorespaces Differences between the iKAGRA and bKAGRA optical configurations/layouts.}}{68}{figure.9.1}} \newlabel{iKAGRA OptLayout Change}{{9.1}{68}{Differences between the iKAGRA and bKAGRA optical configurations/layouts}{figure.9.1}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {9.2.3}Mode Matching}{68}{subsection.9.2.3}} \@writefile{lot}{\contentsline {table}{\numberline {9.1}{\ignorespaces Length sensing ports of iKAGRA}}{69}{table.9.1}} \newlabel{iKAGRA sensing ports}{{9.1}{69}{Length sensing ports of iKAGRA\relax }{table.9.1}{}} \@writefile{lof}{\contentsline {figure}{\numberline {9.2}{\ignorespaces Input mode matching of iKAGRA, mapped by changing the positions of the IMMT mirrors from the optimized ones for bKAGRA.}}{69}{figure.9.2}} \newlabel{iKAGRA IMMT}{{9.2}{69}{Input mode matching of iKAGRA, mapped by changing the positions of the IMMT mirrors from the optimized ones for bKAGRA}{figure.9.2}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {9.2.4}Interferometer Control}{69}{subsection.9.2.4}} \@writefile{toc}{\contentsline {chapter}{\numberline {A}Recycling Cavity Length Determination Algorithm}{70}{appendix.A}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} \newlabel{RCL Algorithm}{{A}{70}{Recycling Cavity Length Determination Algorithm\relax }{appendix.A}{}} \@writefile{toc}{\contentsline {chapter}{\numberline {B}SRCL non-linearity}{71}{appendix.B}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} \newlabel{SRCL non-linearity}{{B}{71}{SRCL non-linearity\relax }{appendix.B}{}} \@writefile{toc}{\contentsline {chapter}{\numberline {C}Mixed PM and AM for f1}{72}{appendix.C}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} \newlabel{PM + AM for f1}{{C}{72}{Mixed PM and AM for f1\relax }{appendix.C}{}} \@writefile{toc}{\contentsline {chapter}{\numberline {D}Terminology}{73}{appendix.D}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} \newlabel{Appendix Terminology}{{D}{73}{Terminology\relax }{appendix.D}{}} \@writefile{lot}{\contentsline {table}{\numberline {D.1}{\ignorespaces Terminology}}{73}{table.D.1}} \newlabel{Terminology Table}{{D.1}{73}{Terminology\relax }{table.D.1}{}} \@writefile{toc}{\contentsline {chapter}{\numberline {E}Contributors}{74}{appendix.E}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} \bibcite{BW Report}{1} \bibcite{JGW-G1100599}{2} \bibcite{PI Braginsky}{3} \bibcite{Shibata PI}{4} \bibcite{Sidles Sigg}{5} \bibcite{Somiya OMC}{6} \bibcite{KAGRA svn layout}{7} \bibcite{Optickle}{8} \bibcite{LSC Code}{9} \bibcite{Ohmae Thesis}{10} \bibcite{LoopNoise}{11} \bibcite{AD829_Data_Sheet}{12} \bibcite{Yamamoto SCL}{13} \bibcite{Tatsumi Green}{14} \bibcite{Wedge Error Aso}{15} \bibcite{ROC Error}{16}