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 The mirage effect and how to measure absorption
 Measurement and theory at room temperature

e Some remarks for E.T.



The photodeflection technique
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High power laser beam incident on the sample

l absorption

Gradient of temperature

l thermorefractive coefficient

Gradient of refractive index

l eikonal equation

Deviation of the light
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The photodeflection technique
>-—

Chopper
f~200 - 1 kHz

Pump laser
A=1550 nm, 30W

Pump laser
A=1311 nm, 2 mW

Lockin amplifier

w ~ 300 pm

Silicon

Quadrant
detector




Why this technique ?

Long experience of this technique at LMA:
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« Excellent sensibility (down to 0.3 ppm on silica)
° o « Measure surface absorption or volume absorption
« Can derive 3D maps

)  Required a reference in absorption



Example of measurement
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On an absorption reference made of fused silica:
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(a straight line means the absorption is constant) 5



Example of measurement
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On a silicon sample:
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Absorption proportional to the square of the pump power ?



The simple absorption theory
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Free Carrier Absorption (FCA): light absorbed by free carrier

Photons Conduction
NN\ .
o © ¢ O Free carrier
Band gap
o © ¢ O o Ionized dopant
Valence
band

Resistivity — Doping level — Free carrier density — Absorption
10 kOhm.cm 4x10" cm™ 4x10" cm™ 6 ppm/cm

—» Solid theory
—»  Theory there but empirical relation’
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1 Electrooptical effects in silicon, Soref and Bennett, IEEE Journal of Quantum Electronics, Vol 23, p123 (1987)



Non linearities in silicon ?
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The steady state (simplified) theory |
i }

Two Photon Absorption (TPA):

Two photons are absorbed to create a electron-hole pair:

Conduction
band
2 Photons ® Q o & 4 Free carrier
W Band gap
~ ® o o0 Tonized dopant
Valence
band
Power absorbed: B: TPA coefficient
dl 0.8 cm/GW at 1550 nm
d_ — _5[2 I: Laser intensity
<

70 MW/m”~2 for 10W
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The steady state (simplified) theory i
O 1

When 2 photons are absorbed, creation of a electron-hole pair
Ne and N = density of free electron and hole.

Evolution of free carrier density:

dNe,h B Ne,h

_ 12 T: free carrier lifetime

dit 2hv T v Loms

At the equilibrium:
Ne, Np~1.6x10" /cm’

And the absorption is given by:
arca = (85N, +6.0N,) x 107 ppm/cm  0rea ~ 2300 ppm/cm

Absorption proportional to the square of the laser power! 15



Other non linear effect
-——

We are not directly measuring the absorption but the
gradient of refractive index

Other sources of deviation:

* Free Carrier Dispersion (FCD):
the refractive index depends of the free carrier
density:

An = —(8.0N, + 5.4N}) x 10™%2

« Kerr effect:
refractive index directly proportional to the laser power

An = CKerrPlase'r Ckerr = 4 x107M cm?/W

(negligible effect, except at very low temperature)
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Summary for silica and sapphire
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Linear absorption

Pump beam
@ 1550 nm
Temperature gradient
dn/dT
Gradient of
refractive index

Probe beam

@ 1311 nm

I Deflection

Quadrant Calibration

photodiode

» Bulk absorption in ppm/cm
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Summary for silicon

it }
: : Non linear absorption
Linear absorption
Pump beam (TPA)
CW 30W
Kerr
@ 1550 nm offect ¢
( Creation of
t free carrier
Temperature gradient L
loss:
dn/dT Free Carrier Absorption
(FCA)
Gradient of
Probe beam refractive index Free Carrier Dispersion
low power (FCD)
@ 1311 nm I Deflection

Quadrant Calibration

photodiode

» Bulk absorption in ppm/cm
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Evolution of the free carrier density
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More complicated than the previous calculation because of
the free carrier diffusion
(electrons do not stay where they are created)

ONe (7, t) 9 Nep(r,t) r2
e(% = D, ,V*N¢ p(r,1) — = . + A(t) exp —QE
Evolution Diffusion Recombination Source term
term term term (TPA)
De=306cm?/ s Dp=12cm?/ s

Model solved numerically for simple case: harmonic
excitation or step function

Essential to derive the absorption in silicon

19



Evolution of the free carrier density
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Steady state concentration With Gaussian illumination
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Evolution of the free carrier density
>
More complicated situation:
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Absorption depends on space and time!

Absorption [ppm/fcm]
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Back to the measurement
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Can we see the absorption changing ?
Record directly the raw deviation illuminated by a square wave
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A closer look to the response
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Change of the refractive index in response
to the change in free carrier density(FCD).
Proportional to the gradient of free carrier

Thermal response from

the change of absorption.
Proportional to the 23
amount of free carrier



Why did the simulation say ?
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Response of the deviation to a step function

Evolution over 0.2 ms

Experiment

Theory

Deviation [a.u.]

_3I | | | | | | | | |
100 120 140 160 180 200 220 240 260 280

Time [10 us]

1 1.5 2
Time [ms]
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Comparison of 2 different samples
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higher resistivity sample shows higher deviation!
6 I I I I I I I I
Very high resistivity sample (= 70 kOhm.cm)

== High resisitivity {10 kOhm.cm)

Deviation [mV]

_6 | | | | | | | |
0 50 100 150 200 250 300 350 400 450

Time [10 us]

High resistivity = high purity = long free carrier lifetime
High density of free carrier (they accumulate) —» higher absorption




And with calibrated data
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« Even at low power dominated by non linear effect (absorption

— Measurement (left scale)
- TPA absorption (right scale)

Dominated by TPA
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2

4 6

Laser power inside the sample [W]

power dependent)
« Absorption less than 10 ppm/cm

« At high power, absorption 6 times higher than expected from the
theory —» checking the reference in absorption and the theory.
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What about ET ?

-—_

Main tests done are done at room temperature with a small
beam.

For ET, large beam (9 cm) and low power (30W). Very low laser
intensity.

Non linear effects become negligible.

(example: two photon absorption =104 ppm/cm )

What about the (intensity independent) free carrier
concentration from the dopant ?

27



Free carrier freeze out ?
i 1
No ionised dopant (so no free carrier) or not ?
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Desired doping
Even at low temperature, all the dopant may be ionised

Plot from: Cryogenic operation of silicon power devices, Ranbir Singh, B. Jayant Baliga, Kluwer Academic
Publishers (1998)



What substrate absorption is desirable ?

¢ |
From ET design study:
Pprc = 65 W
Parm — 18 kW

Thickness mirror = 50 cm

If we suppose the current lowest coating absorption: 0.3 ppm,
we get 5 mW absorbed in the coating.
To have the same amount absorbed in the substrate: absorption

substrate ~2ppm/cm
(if all dopand ionized, resisitivity~ 30 kOhm.cm)

Comparison with Kagra*:
1 W absorbed by the coating and substrate
200 mW due to the radiation from hotter part

" Detector configuration of KAGRA-the Japanese cryogenic gravitational-wave detector, K. Somiya, Classical 29
and Quantum Gravity, Vol 29, p124007 (2012)



Improved cryogenic setup
o-—

« Some evidence of diffused light reaching the temperature sensor
« Pump power at 940 nm leaking from the 1550 nm laser
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Improved cryogenic setup
o-—

« Some evidence of diffused light reaching the temperature sensor
« Pump power at 940 nm leaking from the 1550 nm laser
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Conclusion
e i
At room temperature
* Non linear effect clearly visible even at low power
« Effect qualitatively well understood

« Lowest absorption measured: <10 ppm/cm but checking
the calibration

With ET parameters

* Non linear effects not an issue

« Would be good to derive the maximum acceptable absorption
« Currently improving our cryogenic setup

32
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