Optickle 1 tickle

Overall

Transfer Matrix

Optickle 1 convertOptics

Number Of...
Nopt $=$ optics
Ndrv $=$ drives
NInk $=$ links
Nprb $=$ probes
Nrf $=$
RF components
Naf $=$ audio frequencies
Nfld $=$ Nlnk * Nrf $=$ RF fields

Optickle 1 convertLinks

\[

\]

prbList

For each optic...
Nin = inputs x Nrf
Nout = outputs x Nrf
$\mathrm{Nd}=$ drives

mln
Nrf x Nfld

mPrb
Nrf x Nrf
:---:
Nrf x Nrf

mln = selects all RF components of input field $\mathrm{mPrb}=$ complex values with magnitude 1 for

RF mixes that contribute to the signal $\mathrm{mPrbQ}=$ same as mPrb , but rotated by 90 dg

mapList

mln = selects input fields mOut = maps output fields mDOF = selects drives

Optickle 1 Optic. getMatrices

Number Of...
For each optic...
Nin = inputs x Nrf
Nout = outputs x Nrf $\mathrm{Nd}=$ drives

Transfer from audio SBs at each input to each drive variable (e.g., via radiation pressure). This is done for each RF component. Optics which do not mix RF components are block diagonal with Nrf blocks.

Field transfer from optic inputs to optic outputs.
This is done for each RF component. Optics which do not mix RF components are block diagonal with Nrf blocks. mOpt is used to compute DC fields, as well as audio SB transfer.

Transfer from drives to audio SBs at each output to due to DC fields at each input. This is done for each RF component. Optics which do not mix RF components are block diagonal with Nrf blocks.

Transfer from each independent quantum noise source to audio SBs at each output. This is done for each RF component. Optics which do not mix RF components are block diagonal with Nrf blocks.

