%% ABOUT THIS FILE % ---------------------------------------------------------------------- % PARAMETER LISTS % This code describes parameters about suspension system to be % modeled. The code is called from a model construction code. % ---------------------------------------------------------------------- % Type-B1 prototype for KAGRA % Coded by T. Sekiguchi on 2015/05/04 % ---------------------------------------------------------------------- % MODIFICATION done by T Sekiguchi on 2015/07/29 % * F0-F1 Lower suspension point height: -15.0 -> -13.5 % * F1-F2 Upper suspension point height: -30.0 -> -24.6 % * F1-F2 Lower suspension point height: -10.0 -> + 2.5 % * F2-IM Upper suspension point height: -5.0 -> -12.5 % * F2-IR Upper suspension point height: -78.9 -> -87.1 % ---------------------------------------------------------------------- %% PHYSICAL CONSTANTS g = 9.81; % Gravity constant %% MATERIALS % Maraging steel [Marval 18] E_maraging = 184e9; % Young's modulus [N/m^2] (by E. Hennes) P_maraging = 0.32; % Poisson ratio (by E. Hennes) G_maraging = E_maraging/2/(1+P_maraging); % Shear modulus [N/m^2] d_maraging = 8.0e3; % Volume density [kg/m^3] T_maraging = 2.0e9; % Tensile strength [N/m^2] Q_maraging = 1.0e4; % Quality factor % Piano wire (typical) E_piano = 200e9; % Young's modulus [N/m^2] P_piano = 0.28; % Poisson ratio G_piano = E_piano/2/(1+P_piano); % Shear modulus [N/m^2] d_piano = 7.8e3; % Volume density [kg/m^3] T_piano = 2.0e9; % Tensile strength [N/m^2] Q_piano = 1.0e4; % Quality factor % Tungsten (typical) E_tungsten = 411e9; % Young's modulus [N/m^2] P_tungsten = 0.28; % Poisson ratio G_tungsten = E_tungsten/2/(1+P_tungsten); % Shear modulus [N/m^2] d_tungsten = 19.3e3; % Volume density [kg/m^3] T_tungsten = 2.0e9; % Tensile strength [N/m^2] (*depends on diameter) Q_tungsten = 1.0e4; % Quality factor %% GROUND groundname = {'GND'}; % Names of grounds inducing seismic excitation %% RIGID-BODY rigidbodyname = {'F0','MD','F1','BF','IR','IM','RM','TM'}; % Names of rigid bodies in the modeled suspension system % F0 = filter 0 (top filter) % MD = magnetic damper % F1 = filter 1 (standard filter) % F2 = filter 2 (bottom filter) % IR = intermediate recoil mass % IM = intermediate mass % RM = recoil mass % TM = test mass %% RIGID-BODY PARAMETERS % Mass of rigid bodies [kg] mF0 = 554.0; mMD = 18.0; mF1 = 112.7; mF2 = 106.9; mIR = 8.3; mIM = 26.1; mRM = 13.2; mTM = 10.7; % Moment of inertia [kg*m^2] % around L(longitudinal), T(transversal) and V(vertical) axes % corresponding to R(roll), P(pitch) and Y(yaw) motions moiF0 = [ 97.5 0 0 ; 0 97.5 0 ; 0 0 191.4 ; ]; moiMD = [ 0.717 0 0 ; 0 0.717 0 ; 0 0 1.493 ; ]; moiF1 = [ 4.68 0.61 0 ; 0.61 4.55 0 ; 0 0 7.87 ; ]; moiF2 = [ 4.10 0 0 ; 0 4.01 0 ; 0 0 6.75 ; ]; moiIR = [ 0.170 0 0 ; 0 0.159 0 ; 0 0 0.263 ; ]; moiIM = [ 0.187 0 0 ; 0 0.145 0 ; 0 0 0.247 ; ]; moiRM = [ 0.234 0 0 ; 0 0.190 0 ; 0 0 0.172 ; ]; moiTM = [ 0.083 0 0 ; 0 0.051 0 ; 0 0 0.051 ; ]; % Rotation of RM % rotang = 50e-3; % 50 [mrad] (2.9 [deg]) % rotPRM = [ % cos(rotang) 0 sin(rotang); % 0 1 0 ; % -sin(rotang) 0 cos(rotang); % ]; % moiRM = rotPRM'*moiRM*rotPRM; %% INVERTED PENDULUM % IP from GND to F0 f_ipGND2F0 = 80e-3; % Resonant frequency [Hz] m_ipGND2F0 = mF0+mMD+mF1+mF2+mIR+mIM+mRM+mTM; % Total load [kg] l_ipGND2F0 = 480e-3; % Length of legs [m] r_ipGND2F0 = 610e-3; % Distance between leg and center [m] B_ipGND2F0 = 1e-4; % Saturation level due to CoP Q_ipGND2F0 = 3e3; % Quality factor kt_ipGND2F0 = 80; % Additional torsion stiffness [Nm/rad] %% DAMPER % Damper between MD and F1 pos_dampMD = [0 0 -10e-3]; % damping point on MD pos_dampF1 = [0 0 +180e-3]; % damping point on F1 mat_dampMDF1 = diag([50,50,125,1.5,1.5,1.2]); % damping coefficient matrix %% SUSPENSION WIRES, SPRINGS % Wires from F0 to MD n_wF02MD = 3; % Number of wires l_wF02MD = 955e-3; % Wire length [m] d_wF02MD = 2e-3; % Wire diameter [m] m_wF02MD = mMD; % Total load on wires [kg] E_wF02MD = E_maraging; % Young's modulus [N/m^2] G_wF02MD = G_maraging; % Shear modulus [N/m^2] T_wF02MD = T_maraging; % Tensile strength [N/m^2] Q_wF02MD = Q_maraging; % Quality factor h1_wF02MD = -80e-3; % Vertical position of upper SP from upper body CoM [m] h2_wF02MD = +17e-3; % Vertical position of lower SP from lower body CoM [m] r1_wF02MD = 290e-3; % Horizontal distance btw upper SP and upper body CoM [m] r2_wF02MD = 290e-3; % Horizontal distance btw lower SP and lower body CoM [m] % Wires from F0 to F1 n_wF02F1 = 1; % Number of wires l_wF02F1 = 1280e-3; % Wire length [m] ln_wF02F1 = 26.5e-3; % Wire neck length [m] d_wF02F1 = 4.5e-3; % Wire diameter [m] dn_wF02F1 = 3.0e-3; % Wire neck diameter [m] m_wF02F1 = mF1+mF2+mIM+mIR+mRM+mTM; % Total load on wires [kg] E_wF02F1 = E_maraging; % Young's modulus [N/m^2] G_wF02F1 = G_maraging; % Shear modulus [N/m^2] T_wF02F1 = T_maraging; % Tensile strength [N/m^2] Q_wF02F1 = Q_maraging; % Quality factor h1_wF02F1 = 120e-3; % Vertical position of upper SP from upper body CoM h2_wF02F1 = -13.5e-3; % Vertical position of lower SP from lower body CoM fsp_wF02F1 = 0.33; % Resonant frequency of vertical spring Bsp_wF02F1 = 1e-3; % Isolation saturation level due to CoP Qsp_wF02F1 = 5e1; % Q of spring % Wires from F1 to F2 n_wF12F2 = 1; % Number of wires l_wF12F2 = 513.4e-3; % Wire length [m] ln_wF12F2 = 26.5e-3; % Wire neck length [m] d_wF12F2 = 4.5e-3; % Wire diameter [m] dn_wF12F2 = 2.5e-3; % Wire neck diameter [m] m_wF12F2 = mF2+mIR+mIM+mRM+mTM; % Total load on wires [kg] E_wF12F2 = E_maraging; % Young's modulus [N/m^2] G_wF12F2 = G_maraging; % Shear modulus [N/m^2] T_wF12F2 = T_maraging; % Tensile strength [N/m^2] Q_wF12F2 = Q_maraging; % Quality factor h1_wF12F2 = -24.6e-3; % Vertical position of upper SP from upper body CoM h2_wF12F2 = 2.5e-3; % Vertical position of lower SP from lower body CoM fsp_wF12F2 = 0.38; % Resonant frequency of vertical spring [Hz] Bsp_wF12F2 = 1e-3; % Isolation saturation level due to CoP Qsp_wF12F2 = 3e1; % Q of spring % Wires from F2 to IR n_wF22IR = 3; % Number of wires l_wF22IR = 355e-3; % Wire length [m] d_wF22IR = 2e-3; % Wire diameter [m] m_wF22IR = mIR; % Total load on wires [kg] E_wF22IR = E_maraging; % Young's modulus [N/m^2] G_wF22IR = G_maraging; % Shear modulus [N/m^2] T_wF22IR = T_maraging; % Tensile strength [N/m^2] Q_wF22IR = Q_maraging; % Quality factor h1_wF22IR = -87.1e-3; % Vertical position of upper SP from upper body CoM [m] h2_wF22IR = +60.5e-3; % Vertical position of lower SP from lower body CoM [m] r1_wF22IR = 158e-3; % Horizontal distance btw upper SP and upper body CoM [m] r2_wF22IR = 158e-3; % Horizontal distance btw lower SP and lower body CoM [m] % Wires from F2 to IM n_wF22IM = 1; % Number of wires l_wF22IM = 585e-3; % Wire length [m] ln_wF22IM = 26.5e-3; % Wire neck length [m] d_wF22IM = 2.5e-3; % Wire diameter [m] dn_wF22IM = 2.0e-3; % Wire neck diameter [m] m_wF22IM = mIM+mRM+mTM; % Total load on wires [kg] E_wF22IM = E_maraging; % Young's modulus [N/m^2] G_wF22IM = G_maraging; % Shear modulus [N/m^2] T_wF22IM = T_maraging; % Tensile strength [N/m^2] Q_wF22IM = Q_maraging; % Quality factor h1_wF22IM = -12.5e-3; % Vertical position of upper SP from upper body CoM h2_wF22IM = -18.5e-3; % Vertical position of lower SP from lower body CoM fsp_wF22IM = 0.44; % Resonant frequency of vertical spring Bsp_wF22IM = 1e-3; % Isolation saturation level due to CoP Qsp_wF22IM = 5e1; % Q of spring % Wires from IM to RM n_wIM2RM = 4; % Number of wires l_wIM2RM = 587e-3; % Wire length [m] d_wIM2RM = 0.6e-3; % Wire diameter [m] m_wIM2RM = mRM; % Total load on wires [kg] E_wIM2RM = E_tungsten; % Young's modulus [N/m^2] G_wIM2RM = G_tungsten; % Shear modulus [N/m^2] T_wIM2RM = T_tungsten; % Tensile strength [N/m^2] Q_wIM2RM = Q_tungsten; % Quality factor h1_wIM2RM = 0e-3; % Vertical position of upper SP from upper body CoM h2_wIM2RM = 0e-3; % Vertical position of lower SP from lower body CoM w1_wIM2RM = 145e-3; % Transversal sepration of wires in upper SP w2_wIM2RM = 145e-3; % Transversal sepration of wires in upper SP d1_wIM2RM = 10e-3; % Longitudinal separation of wires in upper SP d2_wIM2RM = 10e-3; % Longitudinal separation of wires in upper SP % Wires from IM to TM n_wIM2TM = 4; % Number of wires l_wIM2TM = 587e-3; % Wire length [m] d_wIM2TM = 0.2e-3; % Wire diameter [m] m_wIM2TM = mTM; % Total load on wires [kg] E_wIM2TM = E_piano; % Young's modulus [N/m^2] G_wIM2TM = G_piano; % Shear modulus [N/m^2] T_wIM2TM = T_piano; % Tensile strength [N/m^2] Q_wIM2TM = Q_piano; % Quality factor h1_wIM2TM = 0e-3; % Vertical position of upper SP from upper body CoM h2_wIM2TM = 0e-3; % Vertical position of lower SP from lower body CoM w1_wIM2TM = 125e-3; % Transversal sepration of wires in upper SP w2_wIM2TM = 125e-3; % Transversal sepration of wires in lower SP d1_wIM2TM = 5e-3; % Longitudinal separation of wires in upper SP d2_wIM2TM = 5e-3; % Longitudinal separation of wires in lower SP