%% ABOUT THIS FILE % ---------------------------------------------------------------------- % Parameters setup for control model % Type-A with Dummy Payload for KAGRA % Coded by K. Okutomi on 2016/07/13 % ---------------------------------------------------------------------- %% CONSTANTS pp=2*pi; %% ACTUATOR NORMALIZATION % Normalize the actuators using local sensors at 0 Hz % F0 (Normalized with LVDT signals) gain_actLF0 = 1./0.0049; gain_actTF0 = 1./0.0050; gain_actYF0 = 1./0.0092; % GAS (Normalzed with LVDT signals) gain_actGASF0 = 1.; gain_actGASF1 = 1.; gain_actGASF2 = 1.; gain_actGASF3 = 1.; gain_actGASBF = 1.; % BF gain_actLBF = 1./0.0073; gain_actTBF = 1./0.0074; gain_actVBF = 1./0.0029; gain_actRBF = 1./0.0155; gain_actPBF = 1./0.0155; gain_actYBF = 1./5.1460*1.333; %% BLENDING FILTERS % This part constructs filters for blending LVDT and geophone signals. % Blending filters are constructed from polynominal expression of a Laplace % transformed equation (s+w0)^n, where w0 is the blending frequency and n % is an arbitrary (odd) integer. % BLENDING FREQUENCY: 50 mHz % f_blend = 0.05; % w_blend = f_blend*pp; % COEFFICIENTS LIST OF POLYNOMINAL EXPRESSION OF (s+w0)^n % n_blend = 7; % 7th order blending % nbd = (n_blend+1)/2; % cf_poly = zeros(1,n_blend+1); % for n=0:n_blend; cf_poly(n+1)=nchoosek(n_blend,n)*w_blend^(n); end % BLENDING FILTERS % blend_HP = tf([cf_poly(1:nbd),zeros(1,nbd)],cf_poly); % blend_LP = tf(cf_poly(nbd+1:n_blend+1),cf_poly); % BLENDING FILTERS (ZPK EXPRESSION) % blend_LP = myzpk([0.075+1i*0.0581;0.075-1i*0.0581],[0.3;0.3;0.3;0.3;0.3],66.97); % blend_HP = myzpk([0.75+1i*0.581;0.75-1i*0.581;0;0;0],[0.3;0.3;0.3;0.3;0.3],1); % GEOPHONE RESPONSES % georesp = zpk([-2.13+1i*5.19;-2.13-1i*5.19],[0;0],1); % vel2disp = zpk([],0,1); % BLENDING FILTERS WITH GEOPHONE RESPONSES % blend_LVDT = blend_LP; % blend_GEO = minreal(blend_HP*georesp*vel2disp); % PLOT 1 % freq1=logspace(-3,2,1001); % mybodeplot({blend_LP,blend_HP,blend_LP+blend_HP},freq1,... % {'Low-Pass','High-Pass','Sum'},'Blending filter'); % export_fig('figure/typeB1proto_blending_150618.pdf') % PLOT 2 % freq1=logspace(-3,2,1001); % mybodeplot({blend_LVDT,blend_GEO},freq1); %% SERVO FILTER % GENERAL SERVO % damping servo with 300 Hz cutoff % dampflt = myzpk(0,[3e2,3e2],9e4*pp); % damping servo with 10 Hz cutoff % dampflt = myzpk(0,[1e1,1e1],100); % DC + damping servo with G=400 at 0.1 mHz % dcdampflt = myzpk([1e-1;1e-1],[1e-4;1e1],10)... % * myzpk([],[20;20],(20*pp)^2); % IP SERVO % ipservoflt = myzpk([0.05;0.08],[1e-4;1e1;1e1],3*(1e1*pp)^2); % ipservo = myzpk([0.067], [3., 3.], 300*pp); ipservo = myzpk([0.], [3., 3.], 300*pp); ipservoY = myzpk([0], [1.e0, 1.e0], 10*pp); % SERVO FILTER F0 servoLF0 = ipservo; servoTF0 = ipservo; servoYF0 = ipservoY; % SERVO FILTER GAS servoGASF0 = 0; servoGASF1 = 0; servoGASF2 = 0; servoGASF3 = 0; servoGASBF = 0; % SERVO FILTER GAS servoLBF = 0; servoTBF = 0; servoVBF = 0; servoRBF = 0; servoPBF = 0; servoYBF = 0; %% GAIN gainLF0 = -1; gainTF0 = -1; gainYF0 = 0; gainGASF0 = 0; gainGASF1 = 0; gainGASF2 = 0; gainGASF3 = 0; gainGASBF = 0; gainLBF = 0; gainTBF = 0; gainVBF = 0; gainRBF = 0; gainPBF = 0; gainYBF = 0;