%% ABOUT THIS FILE % ---------------------------------------------------------------------- % PARAMETER LISTS % This code describes parameters about suspension system to be % modeled. The code is called from a model construction code. % ---------------------------------------------------------------------- % Type-B payload prototype for KAGRA % Coded by T. Sekiguchi on 2015/04/10 % ---------------------------------------------------------------------- %% PHYSICAL CONSTANTS g = 9.81; % Gravity constant %% MATERIALS % Maraging steel [Marval 18] E_maraging = 184e9; % Young's modulus [N/m^2] (by E. Hennes) P_maraging = 0.32; % Poisson ratio (by E. Hennes) G_maraging = E_maraging/P_maraging; % Shear modulus [N/m^2] d_maraging = 8.0e3; % Volume density [kg/m^3] T_maraging = 2.0e9; % Tensile strength [N/m^2] % Piano wire (typical) E_piano = 200e9; % Young's modulus [N/m^2] P_piano = 0.28; % Poisson ratio G_piano = E_piano/P_piano; % Shear modulus [N/m^2] d_piano = 7.8e3; % Volume density [kg/m^3] T_piano = 2.0e9; % Tensile strength [N/m^2] % Tungsten (typical) E_tungsten = 411e9; % Young's modulus [N/m^2] P_tungsten = 0.28; % Poisson ratio G_tungsten = E_tungsten/P_tungsten; % Shear modulus [N/m^2] d_tungsten = 19.3e3; % Volume density [kg/m^3] T_tungsten = 2.0e9; % Tensile strength [N/m^2] (*depends on diameter) %% GROUND groundname = {'GND'}; % Names of grounds inducing seismic excitation %% RIGID-BODY rigidbodyname = {'IR','IM','RM','TM'}; % Names of rigid bodies in the modeled suspension system % IR = intermediate recoil mass % IM = intermediate mass % RM = recoil mass % TM = test mass %% RIGID-BODY PARAMETERS % Mass of rigid bodies [kg] mIR = 8.4; mIM = 26.0; mRM = 13.4; mTM = 10.7; % Moment of inertia [kg*m^2] % around L(longitudinal), T(transversal) and V(vertical) axes % corresponding to R(roll), P(pitch) and Y(yaw) motions moiIR = [ 0.170 0 0 ; 0 0.159 0 ; 0 0 0.263 ; ]; moiIM = [ 0.187 0 0 ; 0 0.145 0 ; 0 0 0.247 ; ]; moiRM = [ 0.234 0 0 ; 0 0.190 0 ; 0 0 0.172 ; ]; moiTM = [ 0.083 0 0 ; 0 0.051 0 ; 0 0 0.051 ; ]; %% SUSPENSION WIRES, SPRINGS % Wires from GND to IR n_wGND2IR = 3; % Number of wires l_wGND2IR = 355e-3; % Wire length [m] d_wGND2IR = 2e-3; % Wire diameter [m] m_wGND2IR = mIR; % Total load on wires [kg] E_wGND2IR = E_maraging; % Young's modulus [N/m^2] G_wGND2IR = G_maraging; % Shear modulus [N/m^2] T_wGND2IR = T_maraging; % Tensile strength [N/m^2] Qp_wGND2IR = 1e3; % Q of pendulum mode Qs_wGND2IR = 1e3; % Q of stretch mode Qb_wGND2IR = 1e3; % Q of bending mode Qt_wGND2IR = 1e3; % Q of torsion mode h1_wGND2IR = -79.7e-3; % Vertical position of upper SP from upper body CoM [m] h2_wGND2IR = +60.5e-3; % Vertical position of lower SP from lower body CoM [m] r1_wGND2IR = 158e-3; % Horizontal distance btw upper SP and upper body CoM [m] r2_wGND2IR = 158e-3; % Horizontal distance btw lower SP and lower body CoM [m] % Wires from GND to IM n_wGND2IM = 1; % Number of wires l_wGND2IM = 585e-3; % Wire length [m] ln_wGND2IM = 26e-3; % Wire neck length [m] d_wGND2IM = 2.5e-3; % Wire diameter [m] dn_wGND2IM = 2.0e-3; % Wire neck diameter [m] m_wGND2IM = mIM+mRM+mTM; % Total load on wires [kg] E_wGND2IM = E_maraging; % Young's modulus [N/m^2] G_wGND2IM = G_maraging; % Shear modulus [N/m^2] T_wGND2IM = T_maraging; % Tensile strength [N/m^2] Qp_wGND2IM = 1e3; % Q of pendulum mode Qs_wGND2IM = 1e3; % Q of stretch mode Qb_wGND2IM = 1e3; % Q of bending mode Qt_wGND2IM = 1e3; % Q of torsion mode h1_wGND2IM = -5e-3; % Vertical position of upper SP from upper body CoM h2_wGND2IM = -19e-3; % Vertical position of lower SP from lower body CoM fsp_wGND2IM = 0.44; % Resonant frequency of vertical spring Bsp_wGND2IM = 1e-3; % Isolation saturation level due to CoP Qsp_wGND2IM = 5e1; % Q of spring % Wires from IM to RM n_wIM2RM = 4; % Number of wires l_wIM2RM = 587e-3; % Wire length [m] d_wIM2RM = 0.6e-3; % Wire diameter [m] m_wIM2RM = mRM; % Total load on wires [kg] E_wIM2RM = E_tungsten; % Young's modulus [N/m^2] G_wIM2RM = G_tungsten; % Shear modulus [N/m^2] T_wIM2RM = T_tungsten; % Tensile strength [N/m^2] Qp_wIM2RM = 1e3; % Q of pendulum mode Qs_wIM2RM = 1e3; % Q of stretch mode Qb_wIM2RM = 1e3; % Q of bending mode Qt_wIM2RM = 1e3; % Q of torsion mode h1_wIM2RM = 0e-3; % Vertical position of upper SP from upper body CoM h2_wIM2RM = 0e-3; % Vertical position of lower SP from lower body CoM w1_wIM2RM = 290e-3; % Transversal sepration of wires in upper SP w2_wIM2RM = 290e-3; % Transversal sepration of wires in upper SP d1_wIM2RM = 20e-3; % Longitudinal separation of wires in upper SP d2_wIM2RM = 20e-3; % Longitudinal separation of wires in upper SP % Wires from IM to TM n_wIM2TM = 4; % Number of wires l_wIM2TM = 587e-3; % Wire length [m] d_wIM2TM = 0.2e-3; % Wire diameter [m] m_wIM2TM = mTM; % Total load on wires [kg] E_wIM2TM = E_piano; % Young's modulus [N/m^2] G_wIM2TM = G_piano; % Shear modulus [N/m^2] T_wIM2TM = T_piano; % Tensile strength [N/m^2] Qp_wIM2TM = 1e4; % Q of pendulum mode Qs_wIM2TM = 1e4; % Q of stretch mode Qb_wIM2TM = 1e3; % Q of bending mode Qt_wIM2TM = 1e3; % Q of torsion mode h1_wIM2TM = 0e-3; % Vertical position of upper SP from upper body CoM h2_wIM2TM = 0e-3; % Vertical position of lower SP from lower body CoM w1_wIM2TM = 250e-3; % Transversal sepration of wires in upper SP w2_wIM2TM = 250e-3; % Transversal sepration of wires in upper SP d1_wIM2TM = 10e-3; % Longitudinal separation of wires in upper SP d2_wIM2TM = 10e-3; % Longitudinal separation of wires in upper SP