RESULTS OF INJECTION TEST ON 15,16 FEB.

Shimoda Tomofumi

Overview of injection test

- target : simple pendulum with a photosensor
- coupling function measurement (linear transfer) & noise budget
 - magnetic (large coil)
 - acoustic (speaker)
 - shaking (hit with screw drivers)
- nonlinear correlation analysis

Setup

pendulum

PSD without injection

Coupling function measurement (injection)

injection signal (magnetic, acoustic)

2. broad band (random: 3-30Hz for mag/ 3-300Hz for aco)

Coupling function (magnetic)

Coupling function (acoustic)

injection (acceleration)

Coupling function (acceleration)

Noise budget

Noise budget of pendulum

Noise budget of accelerometer

acoustic wave to acceleration

coupling function from microphone to accelerometer during speaker injection

accelerometer noise

sound wave directly shakes the frame

 \rightarrow (acc.) \propto (force from sound)

(in case of indirect shaking : (acc.) \propto (pend. motion) \propto (force from sound)/f²)

speaker vibration is not dominant during the injection

if it is dominant...

 \rightarrow actual (acc.)/(sound) is less than measured coupling function (Kistler)/(mic.)

 \rightarrow estimated noise (Kistler)/(mic.)×(sound PSD) will exceed accelerometer noise level

Noise budget of microphone

summary of linear analysis

 acoustic acceleration on the frame seems to be the dominant noise source @ 30-300Hz

problems

- decoupling of sensor signals
 - (e.g.) Does the microphone actually measure acoustic fluctuations? or limited by other noise?
- better sensors (especially, microphone & accelerometer) are required to investigate lower frequency band
 - use seismometers?

Nonlinear injection

method

- change the position of the photosensor
 - enlarge the nonlinearity of the photosensor
- inject sinusoidal wave
 - nonlinear signal will appear at harmonic frequencies

injection

- 47Hz acoustic wave
 - Amplifier gain = 12dB, 18dB, 22dB
- Harmonic acoustic waves appear due to the nonlinearity of the speaker

nonlinear signal of the PS

compare with linear transfer of acoustic harmonics

nonlinear signal of the photosensor exists

(offset from the magenta line) = (nonlinearity of the photosensor)

... why (c) is linear? (point (a) should be linear instead of (c))

summary of nonlinear injection

- nonlinear signals of the photosensor are observed
 - let's do nonlinear correlation analysis !!
- point (c) somehow shows linear response while (a) shows nonlinearity
 - due to nonlinearity of the microphone?
 - response of the photosensor was locally linear at (c) and nonlinear at (a)?

