Modulation-type Quadrature Interferometers

Yuka Oshima (D2) Department of Physics, University of Tokyo

Abstract

- I will introduce three kinds of modulation-type quadrature interferometers
- In the summary slide, we can fill in all the blanks in the table

Name of interferometers	University	Design & characteristics	Sensitivity	References
Deep phase modulation interferometer				
Deep frequency modulation interferometer				
Digitally enhanced heterodyne interferometer				

Why did I choose this topic?

- I summarized sensors (most of them were quadrature interferometers) developed by Univ. of Birmingham last year
- Nagano-san said "Sensors developed by AEI might be interesting for the next seminar"

Summary					
Sensors & references	Motivation	Design & characteristics	Sensitivity at 1 Hz	Discussion & status	
BOSEM L Carbone+ (2012)	Suspension control for aLIGO	Shadow sensor, coil- magnet actuator	2×10 ⁻¹⁰ m/√Hz	Currently used	
EUCLID S. M. Aston (2011)	Suspension control for aLIGO	Quadrature homodyne interferometer, polarizing optics, cat's eye retroreflector	4×10 ⁻¹² m/√Hz	Improved to HoQI	
ILIAD F. E. P. Arellano+ (2013)	G measurement with torsion pendulum	Same as EUCLID, Non-planar for angular measurement	5×10 ⁻¹³ m/√Hz	Not used for <i>G</i> measurement	
HoQI <u>S. J. Cooper+</u> (2018)	Suspension control for aLIGO	Simpler than EUCLID	2×10 ⁻¹³ m/√Hz	Replace BOSEM in the future	
QUIMETT					
HDMI <u>Slides</u>	AVIT for TOBA	No polarizing optics, dither	5×10 ⁻¹¹ m/√Hz	Mass-produced, not installed to AVIT	
Ando Lab Seminar Nov. 4, 2022 56 / 56					

My seminar slides on Nov. 4, 2022

• I sent an email to Nagano-san to get references, then he modified his comment "modulation-type quadrature interferometers might be interesting"

References

- $J_1 \cdots J_4$ method
 - V. S. Sudarshanam and K. Srinivasan, Optics Letters, 14, 140 (1989)
 - W. Jin+, Proc. SPIE 1267, Fiber Optic Sensors IV (1990)
 - <u>V. S. Sudarshanam & R. O. Claus, Journal of Modern Optics, 40,</u> <u>483 (1993)</u>
- Deep phase modulation interferometer
 - G. Heinzel+, Optics Express, 18, 19076 (2010)
 - <u>T. S. Schwarze+, Optics Express, 22, 18214 (2014)</u>
 - <u>M. Terán+, J. Phys.: Conf. Ser., 610, 012042 (2015)</u>
- Deep frequency modulation interferometer
 - ★ <u>O. Gerberding, Optics Express, 23, 14753 (2015)</u>
- Digitally enhanced heterodyne interferometer
 - ★ D. A. Shaddock, Optics Letters, 32, 3355 (2007)
 - <u>O. P. Lay+, Optics Letters, 32, 2933 (2007)</u>
 - ★ G. de Vine+, Optics Express, 17, 828 (2009)

- Review of quadrature interferometers
- $J_1 \cdots J_4$ method
- Deep phase modulation interferometer
- Deep frequency modulation interferometer
- Digitally enhanced heterodyne interferometer

- Review of quadrature interferometers
- $J_1 \cdots J_4$ method
- Deep phase modulation interferometer
- Deep frequency modulation interferometer
- Digitally enhanced heterodyne interferometer

Michelson interferometer

- The response of MI has non-linearity \rightarrow Small range
- We usually conduct feedback control to fix the operation point

Quadrature interferometer

- When we obtain the quadrature signals (sin and cos), the information of phase can be calculated
- Range: infinity (theoretically), >10 mm (experimentally)
- No need to FB control
- Sensitivity worse than FB control method due to ADC noise

Ando Lab Seminar June 16, 2023

8 / 30

Classification of quadrature interferometers

• Review of quadrature interferometers

• $J_1 \cdots J_4$ method

- Deep phase modulation interferometer
- Deep frequency modulation interferometer
- Digitally enhanced heterodyne interferometer

Overview

- Linear measurement over one fringe with spectral analysis and no feedback control
- Basic principle for deep phase/frequency modulation interferometer

Setup

- A Mach-Zehnder interferometer with two fibers
- One arm fiber was stripped of its jacket and bonded onto a piezoelectric polyvinylidene fluoride film
- Piezofilm was driven by an electric signal to produce predictable phase shifts

Principle

- Photodetector output can be expressed in three ways
 - Nominal

 $I(t) = A + B \cos[\varphi_0(t) + x \sin(w_s t + \varphi_s)],$

- Bessel functions φ_0 : interferometer phase *x*: modulation depth (signal) $I(t) = A + B\left(\int_{0}^{t} J_{0}(x) \cos \varphi_{0}(t) \right)$ + 2 $\sum_{n=1}^{\infty} J_{2n}(x) \cos \varphi_0(t) (\cos 2nw_s t \cos 2n\varphi_s)$ $-\sin 2nw_s t \sin 2n\varphi_s$ $- \left\{ 2 \sum_{n=1}^{\infty} J_{2n-1}(x) \sin \varphi_0(t) [\sin(2n-1)w_s t + 1] \right\}$ $\times \cos(2n-1)\varphi_s + \cos(2n-1)w_s t \sin(2n-1)\varphi_s] \bigg| \bigg|.$
- Fourier series ۲

$$I(t) = a_0 + \sum_{n=1}^{\infty} [a_n \cos(nw_s t) - b_n \sin(nw_s t)],$$

Ando Lab Seminar June 16, 20

 w_s : modulation frequency φ_s : modulation phase

Principle

 By comparing expressions with Bessel functions and Fourier series, we can derive

$$dd \begin{cases} a_{2n-1} = -2BJ_{2n-1}(x)\sin \varphi_0(t)\sin(2n-1)\varphi_{\rm S}, \\ b_{2n-1} = 2BJ_{2n-1}(x)\sin \varphi_0(t)\cos(2n-1)\varphi_{\rm S}, \end{cases}$$

even
$$\begin{cases} a_{2n} = 2BJ_{2n}(x)\cos\varphi_0(t)\cos 2n\varphi_S, \\ terms \\ b_{2n} = 2BJ_{2n}(x)\cos\varphi_0(t)\sin 2n\varphi_S, \\ (n = 1, 2, 3, ...). \end{cases}$$

 \rightarrow Bessel functions are extracted from Fourier transform

• Modulation depth is calculated from Bessel functions

$$x^{2} = \frac{24J_{2}(x)J_{3}(x)}{[J_{2}(x) + J_{4}(x)][J_{1}(x) + J_{3}(x)]}.$$

• Other parameters (φ_0, \cdots) are also calculated (later)

 $J_1 \cdots J_4$ method

Result

• $J_1 \cdots J_4$ method can measured phase up to 5 rad (= over one fringe) linearly

• Review of quadrature interferometers

• $J_1 \cdots J_4$ method

- Deep phase modulation interferometer
- Deep frequency modulation interferometer
- Digitally enhanced heterodyne interferometer

Overview

- Proposed and developed by AEI (+ Spain)
- Extension of $J_1 \cdots J_4$ method
- Phase modulation with depth of >5 rad \rightarrow "deep"
- Motivation: not clearly, but for LISA?
 - Experiment with LISA Pathfinder optical bench
 - Proceedings for LISA symposium
- Advantage: good sensitivity, large linear range, simple optics
- Disadvantage: complicated data analysis
 - Analysis for quadrature interferometers itself is already a bit complicated, but this is more complicated, I think
 - They use some algorithms (Levenberg-Marquardt, Nelder-Mead Simplex, etc.), but I will not explain today

Setup

- LISA Pathfinder optical bench
- Fiber-coupled Mach-Zehnder interferometer

Ando Lab Seminar June 16, 2023

18 / 30

Data analysis

- Output of PD was processed by FT $V_{\text{PD}}(t) = V_{\text{DC}}(\varphi) + \sum_{n=1}^{\infty} a_n(m,\varphi) \cos(n(\omega_{\text{m}}t + \psi))$ $a_n(m,\varphi) = kJ_n(m) \cos\left(\varphi + n\frac{\pi}{2}\right),$
 - m, φ, ψ, k was obtained by minimizing χ^2

$$\chi^{2} = \sum_{n=1}^{N} (\alpha_{n}(m, \varphi) - \tilde{\alpha}_{n}(m, \varphi))^{2},$$

$$n \psi = \arctan\left(\frac{\Im\{\alpha_{n}(m, \varphi)\}}{\Re\{\alpha_{n}(m, \varphi)\}}\right),$$

$$a_{n}(m, \varphi) = \alpha_{n}(m, \varphi) e^{-in\psi},$$

$$n = 1, 2, 3 \dots N,$$

$$u = 1, 2, 3 \dots N,$$

Fig. 2. Dependence of the harmonics amplitudes $a_n(m, \varphi)$ with respect to the interferometer phase φ with a modulation depth m = 6 rad.

 $\varphi/2\pi$

Modulation index, number of bins

- To measure the phase accurately, we should choose a suitable modulation index and number of bins for FFT
- For a deeper modulation, the signal power is distributed into more and higher harmonic bins
 → Deep phase modulation is required to extract the harmonic amplitudes for processing by numerical fit
- In this experiment, m = 9.7 and N = 10 were chosen

Fig. 3. Ideal resolution in φ as function of the modulation index *m* for N = 10, for the best and worst φ as well as the average for all $\varphi \in [0, 2\pi]$.

Fig. 4. Ideal resolution in φ as function of the modulation index *m* for different orders *N*, for the worst value of φ at each point of each curve.

Sensitivity

• All PDs on LPF optical bench are QPDs \rightarrow Both length and tilt can be measured

Fig. 6. Sensitivity of real optical pathlength measurements. Dashed curve with crosses: initial sensitivity prior to noise correction techniques. Dashed curve: sensitivity upon correction of DAQ frequency response. Solid curve: sensitivity reach after application of noise mitigation strategies -laser frequency noise and DAQ frequency response-.

20 pm/√Hz

Tilt

Fig. 7. Angular resolution obtained by applying a DWS algorithm to the phases extracted from individual cells of a quadrant photodetector.

10 nrad/ \sqrt{Hz}

- Review of quadrature interferometers
- $J_1 \cdots J_4$ method
- Deep phase modulation interferometer
- Deep frequency modulation interferometer
- Digitally enhanced heterodyne interferometer

Overview

- Proposed and simulated by Univ. of Maryland
- No experimental demonstration so far
- Almost the same as deep phase modulation, but frequency modulation instead of phase modulation
- Schnapp asymmetry ΔL is needed because of modulation with a laser source (= in front of BS)
 - Of course, phase modulation also requires Schnapp asymmetry if modulating in front of BS
- Effective modulation index $m = 2\pi\Delta f \Delta L/c$
 - Larger signal with longer ΔL (when $\Delta L < \lambda_{mod}$)

- Review of quadrature interferometers
- $J_1 \cdots J_4$ method
- Deep phase modulation interferometer
- Deep frequency modulation interferometer
- Digitally enhanced heterodyne interferometer

Overview

- Proposed and developed by Caltech
- Currently developed by ANU
- Motivation: not clearly, but for LISA?
 - Classified as a space technology on the ANU website
 <u>ANU Digital interferometry</u>
- Pseudo-random noise code \rightarrow "digitally enhanced"
- Advantage: good sensitivity, large linear range, simple optics, measurement of multiple test masses with one interferometer
- Disadvantage: complicated data analysis

Principle (intuitively)

- Pseudo-random noise (PRN) code: zero or π phase shift
- Demodulation taking into account the delay from EOM to PD
 - Single pass: EOM \rightarrow M1 \rightarrow M2 \rightarrow PD
 - One round-trip: EOM \rightarrow M1 \rightarrow M2 \rightarrow M1 \rightarrow M2 \rightarrow PD

		Matched decoding delay	Mismatched decoding delay	
	Conventional heterodyne			
	PRN encoding			
	Detected single-pass signal			
	PRN decoding			
	Decoded output			
Ando L	ab Seminar June	e 16, 2023	26 / 30	

Digitally enhanced

Principle (with formula)

signal

80

Principle (with formula)

PSD of simulated signal

AC output of PD

- $f_h = 50 \text{ MHz}$
- $f_{\rm chip} = 50$ Mchip/sec •
- M1-M2: 6 m, M2-M3: 3 m (ΔL should be $\geq c/2f_{chin}$) •

Ando Lab Seminar June 16, 2023

Demodulation signal for M1

28 / 30

100

Setup and results

Summary

Name of interferometers	University	Design & characteristics	Sensitivity	References
Deep phase modulation interferometer	AEI, Spain	Homodyne, phase modulation to one arm	2×10 ⁻¹¹ m/√Hz at 1 Hz	<u>G. Heinzel+ (2010)</u> <u>T. S. Schwarze+</u> <u>(2014)</u> <u>M. Terán+ (2015)</u>
Deep frequency modulation interferometer	Univ. of Maryland	Homodyne, freq. modulation to laser source	No experiment	<u>O. Gerberding</u> (2015)
Digitally enhanced heterodyne interferometer	Caltech, ANU	Heterodyne, PRN code phase modulation to one arm, multiple TMs measurement	5×10 ⁻¹² m/√Hz at 1 Hz	<u>D. A. Shaddock</u> (2007) <u>O. P. Lay+ (2007)</u> <u>G. de Vine+</u> (2009)