Axion Search, Sensitive Angular Sensor & Torsion-Bar GW Antenna

Yuka Oshima Ph.D. student, University of Tokyo

Self introduction

Yuka Oshima (大島 由佳)

Ph.D. student at Ando Group, Department of Physics, University of Tokyo

I got my master's degree this March

							-		-	
Year	2016	2017	2018	2019	2020	2021	2022	2023	2024	
My grade	Undergraduate student			Graduate student at Ando Group, Univ. of Tokyo						
	at Univ. of Tokyo				Master course		Ph.D. course			
Му	Axion dark matter search with a ring cavity									
research topic	Wavefront sensor with a coupled cavity									
	Torsion-bar GW antenna									
June 8, 2022	Universit	ty of Trent	0						2 / 23	

- 1. Axion dark matter search with a ring cavity
 - Since my undergraduate student

- 2. Wavefront sensor with a coupled cavity
 - For my master thesis (done)

- 3. Torsion-bar GW antenna
 - For my Ph.D. thesis (plans)

Contents

- 1. Axion dark matter search with a ring cavity
 - Since my undergraduate student

- 2. Wavefront sensor with a coupled cavity
 - For my master thesis (done)

- 3. Torsion-bar GW antenna
 - For my Ph.D. thesis (plans)

Axion search with laser interferometers

- Need to search for dark matter in a wider mass range
- Axions can be searched with laser interferometers
- Our project "DANCE": Dark matter Axion search with riNg Cavity Experiment I. Obata, T. Fujita, Y. Michimura, PRL 121, 161301 (2018) Dark matter mass [eV] 10^{10} 1020 10-20 10-10 10^{30} 10^{40} 10^{50} 10^{60} 10° 1070 Light Ultralight Composite material / Heavy particle **Primordial BH** particle Subaru Telescope XENON1T LHC Laser interferometers CMB DANCE **KAGRA**

Signal amplification with cavities

- Axion-photon coupling makes linear polarization rotate
- Rotation angle is too small to be observed

• Laser light runs between mirrors many times in a cavity \rightarrow The rotation angle can be amplified \uparrow

Laser

Bow-tie ring cavity

• Rotated direction is inverted in a linear cavity \rightarrow Rotation effect is cancelled out

- by several orders of magnitude
- DANCE Act-1 has moderate parameters but can go beyond CAST limits

Current status of DANCE Act-1

- Finished assembly and evaluation of the optics
- Acquired data for two weeks in May 2021
- Data analysis is ongoing with theoretical researchers

Y. Michimura+, J. Phys.: Conf. Ser. 1468 012032 (2020)
Y. Oshima+, J. Phys.: Conf. Ser. 2156 012042 (2021)
H. Fujimoto+, J. Phys.: Conf. Ser. 2156 012182 (2021)

 Current sensitivity is much worse than target sensitivity, but the first result is expected this year

1. Axion dark matter search with a ring cavity

• Since my undergraduate student

- 2. Wavefront sensor with a coupled cavity
 - For my master thesis (done)

- 3. Torsion-bar GW antenna
 - For my Ph.D. thesis (plans)

Comparison of angular sensors

 Sensitive angular sensors are needed for GW detectors, especially for the rotation of TOBA (later)

Wavefront sensor

- <u>WaveFront Sensor (WFS)</u>: angular sensor with an optical cavity
- HG10 is generated by mirror tilt
- Detect interference between HG00 and HG10
- Take the difference between left and right signals

• HG00 and HG10 do not resonate simultaneously due to Gouy phase

 \rightarrow HG10 is not amplified in the cavity June 8, 2022 University of Trento

Coupled wavefront sensor

 Coupled wavefront sensor (Coupled WFS): <u>wavefront sensor</u> with a <u>coupled</u> cavity

 HG00 and HG10 can resonate simultaneously due to Gouy phase compensation by the auxiliary cavity
 → HG10 is amplified in the main cavity
 → Coupled WFS signal is larger than WFS signal

Experimental demonstration

- Goal: Evaluate signal amplification
 - Compare the signal intensity of WFS and Coupled WFS

Design of coupled cavity

- Parameters are designed to enable phase compensation
 - Reflectivity and loss of the auxiliary cavity are important \rightarrow HR coating is facing the auxiliary cavity
- The main cavity is folded to monitor the transmitted light
- Mirrors are fixed to a spacer to stabilize the alignment

Results of signal amplification

Angular excitation for front mirror as a test mass
 → Signal amplification

Contents

1. Axion dark matter search with a ring cavity

• Since my undergraduate student

- 2. Wavefront sensor with a coupled cavity
 - For my master thesis (done)

- 3. Torsion-bar GW antenna
 - For my Ph.D. thesis (plans)

TOBA: <u>TOrsion-Bar</u> <u>Antenna</u>

• Originally proposed by Prof. Ando in 2010

M. Ando+, <u>PRL 105, 161101 (2010)</u>

- Ground-based GW detector for low freq.
- Aim to detect the torsional rotation of test masses suspended horizontally
- The resonant frequency of torsional motion is low \rightarrow Good sensitivity in low freq. even on the ground
 - Inexpensive
 - Easy to maintain
 - Science on the ground

Science of TOBA

<u>Astrophysics</u>

- Intermediate mass BH binary merger
- Within ~1 Mpc (Phase-III)
- Within ~10 Gpc (Final)

- GW stochastic background
- $\Omega_{GW} \sim 10^{-7}$ (Final)

Geophysics

- Newtonian noise
- First direct detection

J. Harms+ PRD 88, 122003 (2013)

- Earthquake early warning

Development roadmap of TOBA

My Ph.D. thesis Phase-III Final Phase-II Phase-I Technical Principle test GW observation demonstration 10^{-19} / \sqrt{Hz} (Target) $10^{-8} / \sqrt{Hz}$ (Established) $10^{-15} / \sqrt{Hz}$ (Target) 35 cm bars 10 m bars ~ 20 cm bars Cryo. Temp. (4 K) Cryo. Temp. (4 K) Room temp.

T. Shimoda+, Int. J. Mod. Phys. D 29, 1940003 (2020)

Configuration of Phase-III TOBA

Cryogenic suspension Torsion pendulums at 4 K

June 8, 2022 University of Trento

Optical readout

Detect the rotation of the pendulums Plan to introduce **Coupled WFS** 21/23

Design sensitivity of Phase-III TOBA

Summary

- My research topics so far
 - Axion dark matter search with a ring cavity
 - Wavefront sensor with a coupled cavity
- My research topic for a Ph.D. course
 - Development of Phase-III TOBA overall

Thank you for listening.

I am looking forward to learning a lot from your lab!!

JSR Felowship This research is supported by JSR Fellowship, the University of Tokyo

Extra slides

Phase compensation with aux. cavity

- HG00 and HG10 receive different when reflected at the auxiliary cavity
 - \rightarrow Gouy phase of the main cavity can be canceled

Aux. cavity cannot compensate Gouy phase

Robustness to cavity loss

26 / 23

Simulation for Coupled WFS

• Complicated configuration of Coupled WFS \rightarrow Calculation with simulation software FINESSE

Simulation with FINESSE

• No analytical solution for linear range

 \rightarrow Use interferometer simulation software FINESSE

• Calculate Coupled WFS signal with increasing misalignment

Linear range of Coupled WFS

Beam jitter noise of Coupled WFS

 HG10 generated by mirror tilt is amplified in the cavity and goes out to the reflection port

 HG10 in beam jitter is also resonant in the cavity, but the amount in the incident and reflected light is the same (not amplified)

 \rightarrow Good S/N ratio for beam jitter noise

Evaluation of cavities

	Quantities	Design values [*]	Measured values	
Main cavity	Finesse	225 – 667	200 ± 20	
	Gouy phase [deg]	12.1 - 12.3	12.1 ± 1.0	
	Mode-match ratio [%]	_	87 ± 2	
Auxiliary cavity	Finesse	$(3.14 - 5.23) \times 10^3$	$(4.1 \pm 0.2) \times 10^3$	
	Gouy phase [deg]	9.25 – 9.71	9.54 ± 0.04	
	Mode-match ratio [%]	_	94 ± 2	

% Calculated from Layertec spec values

- Measured finesse of aux. cavity is consistent with design
- Measured Gouy phase is consistent with design \rightarrow Phase compensation is possible
- Measured finesse of main cavity is smaller than design \rightarrow Loss in AR coating is the cause
- Mode match ratio is large enough

Introduced loss to main cavity 31 / 23

Control method of a coupled cavity

- PDH technique with two modulation frequencies
 - 15 MHz for the main cavity
 - 3.5 MHz for the auxiliary cavity
- Hierarchical control for the main cavity
 - To prevent transmitting disturbances from the main cavity to the aux. cavity through laser freq.

Results of cavity locking

Transmitted light with CCD

 Cavities were successfully locked to HG00 and HG10 simultaneously

Simulation for Coupled WFS

• Complicated configuration of Coupled WFS \rightarrow Calculation with simulation software FINESSE

