Gravitational Wave Detectors on the Moon

Yuka Oshima (M2)

Department of Physics, University of Tokyo

Abstract

- Four proposals to detect GWs in 1 mHz 10 Hz on the Moon (I found, perhaps more)
- I will introduce one of them in detail and the other three quickly

Main

LGWA: Lunar Gravitational-Wave Antenna

GLOC: Gravitational-wave Lunar Observatory for Cosmology

LION: Laser Interferometer On the mooN

LSGA: Lunar Seismic and Gravitational Antenna

Today's papers

J. Harms+, ApJ 910, 1 (2021)

P. Amaro-Seoane+, Class. Quantum Grav. 38, 125008 (2021)

K. Jani & A. Loeb, arXiv:2007.08550 (2020)

S. Katsanevas+, <u>Ideas for exploring the Moon</u> <u>with a large European lander</u>

Why did I choose this topic?

- → Because this is a hot topic for me these days
- Jan Harms: the author of LGWA
 - A professional of Newtonian noise
 - The author of earthquake alert with GW detectors
 - I found out about him when I was writing the DC1 application
 - I also watched his record talk about LGWA in **GWADW2021**

Low freq. GW detectors on the Moon

- Binary mergers with massive and intermediatemass black holes would undergo within in 1 mHz
 10 Hz
- GW detector on the Moon is one of the candidates

LGWA:

Moon as Weber bar

- Weber's idea: monitor vibrational eigenmodes of an elastic body excited by GWs
- He developed the first resonant bar detector at a laboratory in 1960s (range: kHz)
- He also pointed out that we can detect GWs in mHz band by monitoring vibrations of the Earth or Moon

His Lunar Surface Gravimeter experiment by Apollo 17

had a technical failure

Evaluation of GW detectors

 It is useful to divide the detector into a response body and a readout system in order to assess the quality of GW detectors

GW detectors

Response body

: affected by a passing GW

e.g.) a laser beam, suspended test masses, an elastic body

Readout system

: translate the GW signal into a human-readable form

e.g.) photo detectors, seismometers

How strongly does the body respond to GWs?

How sensitive is the readout system to changes in the response body?

Response of the Moon

GW strain amplitude Effective baseline
$$\xi(f) = \frac{1}{2} \overset{\downarrow}{h}(f) \sum_{n=0}^{\infty} \overset{\downarrow}{L_n} \frac{-f^2}{f_n^2 - f^2 + i f_n^2/Q_n}$$
 Seismometer Mode freq. Quality factor

Note:

- ξ is not the surface displacement, but the difference of surface displacement and direct seismometer test mass displacement
- L_n , f_n , Q_n depend strongly on the internal structure of the Moon

$$\xi=10^{-13}$$
 m when $h=10^{-21}$, $L_n=10^6$ m, $Q_n=200$ (Similar to LISA with $L=10^9$ m)

The Moon becomes softer to tidal forces with increasing freq.

→ The differential motion of the Moon reduces at high freq.

Seismometers

SEIS experiment of the Mars Insight mission: the best seismic sensor outside the Earth

- Atmospheric disturbances and thermal noise can be reduced by 10 times on the Moon
- Do not need to monitor vertical displacement
 → The stiffness of the mass suspensions can be reduced, leading to lower suspension resonance frequency
- Change capacitive readout to optomechanical or cryomagnetic readout

Sensitivity

Readout noise

Response to GWs

$$\xi(f) = \frac{1}{2}h(f)\sum_{n=0}^{\infty} L_n \frac{-f^2}{f_n^2 - f^2 + if_n^2/Q_n}$$

LGWA noise spectral density

Characteristics of the Moon

Merits:

- Very large
- Lacks an atmosphere, natural vacuum chambers
- Much lower seismic activity than on the Earth (later)
- Natural cryostats (later)

Difficulties:

- Dust called regolith
- The closet object to the Earth, but need to launch detectors (later)

Small seismic vibration

Four natural seismic events on the Moon

- Deep moonquakes produced by tides
- Shallow moonquakes
- Thermal quakes
- Meteoroid impact (dominant)

12,500 such events in 9 years

Seismic energy is smaller than on the Earth by 10⁻⁴ – 10⁻⁸

Constant seismic noise on the Moon is three orders of magnitude lower than on the Earth

Natural cryostats

- Permanently shadowed regions at the south pole of the Moon
 - → Can be used as natural cryostats for seismometers

Average surface temperatures at the lunar south pole

Note:

- 400 K during lunar days
- -50 ℃ at south pole on the Earth

Below 100 K

Proposed NASA missions

 Artemis program: to land humans to the Moon, specifically the lunar south pole region in 2024

- Lunar Geophysical Network: to deploy a global network of instruments on the Moon to understand the internal structure
- Commercial Lunar Payload Services: allows rapid lunar delivery services from American companies

Phase 1 & 2

Plans of LGWA are divided into phase 1 and 2

Phase 1:

- Four seismometers to form a kilometer-scale array
- To identify seismic events and subtract them from the data (similar technique to Newtonian-noise cancellation)

Phase 2:

- Additional seismometers on the opposite side of the Moon
- Seismic correlations would be minimal and GW correlations would be maximal between phase 1 and 2 seismometers
 - → To observe stochastic GW backgrounds

Recent development

From Harms's slide in GWADW

Test Facility at LNGS

LGWA seismometer

 Similar to cryo-concept by J van Heijningen

Seismic platform

- Test LGWA seismometer on Earth
- Mechanics similar to LIGO HAM ISI

Vacuum chamber

Inertial reference

Inertial reference system for seismic platform

Option (A): 6D inertial reference concept by C Mow-Lowry

Seismometers, e.g., concept by C Collette

Tiltmeters, e.g., concept by E Calloni

May 17, 2021

GWADW 2021: J Harms

inertial

6

Option (B):

Suite of 1D

references

Science goals

- Massive black holes (later)
- Galactic binaries (later)
- Lunar geophysics (later)
- Test of general relativity

Note: a unique temporal evolution of its antenna pattern due to the Moon's rotation with a period of 27.3 days

Massive black holes

Reference inspiral spectra

Detection range

Total source-frame mass

- Massive black hole binary mergers can be detectable
- Multi-messenger observation is possible if binary massive black holes interact with accretion disks

Galactic binaries

Estimated GW amplitude from known short-period binaries in the Galaxy

Predicted detection number of double white dwarfs per year

- Probability of coincident detection with SN Ia is low
- But it would be useful for SN Ia progenitor identification

Lunar geophysics

587-km RADIUS

ZONE OF THE

PARTIAL MELT (LOWER MANTLE)

> 350-km RADIUS FLUID OUTER CORE

160-km RADIUS SOLID INNER CORE (assuming 10% of the core has crystallized)

MIDDLE MANTLE

UPPER MANTLE

ANORTHOSITIC CRUST (~50 km)

Targets:

- Seismic background from meteoroid impact
- Origin of thermal moonquakes
- Moon's internal structure →

Comparison of several seismic velocity models

DEEP MOONQUAKES

SOURCE REGION

SHALLOW MOONQUAKES

560 km DISCONTINUITY (?)

GLOC:

Gravitational-wave Lunar Observatory for Cosmology

&

LION:

Laser Interferometer On the mooN

Triangle interferometer

 Both detectors consist of a triangular interferometer with arm length of 40 km

LION: parameters

The author of LION made a table about interferometer

parameters

How is the mirror delivered to the Moon?

Parameter	Value	
Laser power	50 W	
Wavelength	2000 nm	
Arm length	40 km	
Seismic	Earth surface/1000	
Test mass	1267/1267/698/707 kg	
ITM radius of curvature	34 km	
ETM radius of curvature	36 km	
Suspension length	3.54/2.05/1.66/2.50 m	
Temperature	70 K	
Signal recycling cavity length	55 m	
Squeezing		
Initial squeezing level	15 dB	
Filter cavity length	8.94 km	
Filter cavity detuning	-2.3 Hz	
Mirror transmittance		
End test mass	5 ppm	
Input test mass	1.2%	
Power recycling mirror	3%	
Signal recycling mirror	2%	
Filter cavity input mirror	0.17%	
Filter cavity end mirror	5 ppm	

Juggled interferometer

GLOC LION

 Test masses can avoid seismic noise and suspension thermal noise by repeatedly free falling, "juggling"

D. Friedrich+, Class. Quantum Grav. 31, 245006 (2014)

before detrend

→ Sensitivity would be limited by shot noise and

Displacement signal [a.u.]

Future work:

- To keep alignment of test masses
- To detect continuous signals in the initially discontinuous data

Modified data

Initial data

Strain sensitivity

• Both detectors have the sensitivity of 10^{-23} / $\sqrt{\text{Hz}}$ at 1 Hz and 10^{-24} / $\sqrt{\text{Hz}}$ at 10 Hz

 Both detectors have the detection range within red shift ~100

GLOC: cosmological reach

GLOC can survey 70 % of the observable volume of

our universe

LSGA:

Lunar Seismic and Gravitational Antenna

LSGA

Plan 1: Weber bar

- Use the Moon as Weber bar
- Measure the displacement with two 50 km long fiber optics cables

Plan 2: Michelson interferometer

LSGA

- Michelson interferometer with 10 km arms
- The author pointed out natural cryostats and vacuum chambers as advantages and dust as a disadvantage

Seismic Station broad band

Target sensitivity: 10^{-16} m/ $\sqrt{\text{Hz}}$, 10^{-21} / $\sqrt{\text{Hz}}$

Optical Sensor line

Summary

- I introduce four proposals to detect GWs in 1 mHz
 10 Hz on the Moon
- They have interesting characteristics and sciences, but of course we have many items to be developed

Detector's name	Principle	Sensitivity	My comments	
LGWA: Lunar Gravitational-Wave Antenna	Moon as Weber bar and seismometers	10 ⁻²⁰ /√Hz @1 Hz	Most feasible and interesting	
GLOC: Gravitational-wave Lunar Observatory for Cosmology	Triangular interferometer	10 ⁻²⁴ /√Hz @ 10 Hz	Almost the	
LION: Laser Interferometer On the mooN	Triangular interferometer	10 ⁻²⁴ /√Hz @ 10 Hz	same	
LSGA: Lunar Seismic and Gravitational Antenna	Moon as Weber bar and fiber optics, or Michelson interferometer	10 ⁻²⁰ /√Hz @ 1 Hz	Plans are not concrete yet	