DANCE Act-1 and Coupled WFS for TOBA

Yuka Oshima (M2)

Department of Physics, University of Tokyo

Contents

DANCE Act-1

- Principle
- Experiment & Sensitivity
- Future plans

Coupled WFS for TOBA

- Principle
- Plans of experimental setups

Timeline of Fujimoto-kun & me

What I did so far

(FY2021)

Ando Lab Midterm Seminar Apr. 26, 2021

★: Lab seminar & Journal club

• : Educational outreach activities

Contents

DANCE Act-1

- Principle
- Experiment & Sensitivity
- Future plans

Coupled WFS for TOBA

- Principle
- Plans of experimental setups

Axion search with laser interferometers

- Need to search for dark matter in wider mass range
- Ultralight dark matter can be searched with laser interferometers
- DANCE (Dark matter Axion search with riNg Cavity Experiment) focuses on axion dark matter

Rotation of linear polarization

 Axion-photon coupling causes phase velocity difference between left- and right-handed photons

$$c_{\rm L/R} = \sqrt{1 \pm \frac{g_{a\gamma}a_0m_a}{k}} \sin(m_at + \delta_\tau)$$
 Coupling constant Axion field Axion mass

Phase velocity difference of circular polarizations makes
 linear polarization rotate

Bow-tie cavity to amplify the signal

Polarization rotation is too small for short optical path

- A linear cavity can amplify polarization rotation
- But rotated direction is inverted in a linear cavity

 A bow-tie cavity prevents linear polarization from inverting rotated direction

Design sensitivity of DANCE

- DANCE will improve the current limits
 by several orders of magnitude without magnet field
- I started DANCE Act-1 from Apr. 2019

Contents

DANCE Act-1

- Principle
- Experiment & Sensitivity
- Future plans

Coupled WFS for TOBA

- Principle
- Plans of experimental setups

Progress of experiment

Ver. Nov. 2020 (Apr. 2019 – Nov. 2020)

Ver. Mar. 2021 (Dec. 2020 – Now)

- Improved some points
 - Finesse
 - Resonant frequency difference between polarizations
 - Input laser power
 - Laser intensity noise

Current estimated sensitivity

- Sensitivity was gradually improved
- Current main issue is resonant frequency difference between polarizations
 - → Fujimoto-kun will deal with this issue

Contents

DANCE Act-1

- Principle
- Experiment & Sensitivity
- Future plans

Coupled WFS for TOBA

- Principle
- Plans of experimental setups

Future plans (1): Data acquisition

Broad band in low frequencies

Observe for a week
 with sampling rate of 100 Hz

Narrow band in high frequencies

- Measure resonant frequency difference between pol. accurately
 - Current smallest error: 1 % (= sampling rate 30 kHz)
 - Target error: 0.01 % (= sampling rate 300 Hz)
- Make dual phase lock-in amp. with Red Pitaya
- Observe for a few days (with sampling rate of 300 Hz?)

Future plans (2): Data analysis

- Plan to use Morisaki-san's code as a reference
- Finished constructing analysis environment
- Source code written by Morisaki-san is for data format "xxx.gwf", but our raw data is "xxx.csv"
- We have to convert csv format to gwf format
 or write source code by myself imitating Morisaki-san's code
 → Ask Morisaki-san which way is easier

What I will do in this year

No lecture in M2S semester

Brownian motion TA & One lecture in M2A semester ??

Contents

DANCE Act-1

- Principle
- Experiment & Sensitivity
- Future plans

Coupled WFS for TOBA

- Principle
- Plans of experimental setups

Setup of Phase-III TOBA

- Cooling to 4 K
- Active vibration isolation
- 35 cm Si test mass
- High Q value wire
- Sensitive readout optics

Design sensitivity of Phase-III TOBA

→ Sensitive angular sensor is needed: coupled WFS

WFS is used in many experiments

- Alignment of cavities can be controlled with WFS
 - KAGRA
 - ALPS II

arXiv:2010.02334

I reviewed in Journal Club on Feb. 4

FIG. 2. Optical layout of the central optical bench (COB). HW: Half-Wave plate, MZ: partially transmissive mirror of the Mach-Zehnder-like interferometer, LT: partially transmissive mirror of the Light-Tight box, PC: Production Cavity, OPL: Optical Path Length, CCD camera: monitors spatial mode, PD: Photodetector, PLL: Phase-Locked Loop, QW: Quarter-Wave plate, QPD: Quadrant Photodetector, RL: Reference Laser, RC: Regeneration Cavity, S1: Shutter WFS: Wavefront Sensor, BD: Beam Dump, s: vertical polarization direction, p: horizontal polarization direction. The power levels of the three laser fields are estimated based on known mirror reflectivities and transmissivities.

Principle of simple WFS

 $\mathsf{HG}_{00}\ \mathsf{HG}_{10}$

- Tilted mirror converts HG₀₀ to HG₁₀
- HG₁₀ mode from cavity is detected as angular signal

- HG_{00} and HG_{10} cannot be resonant simultaneously since HG_{10} mode gets different phase from HG_{00} mode by Gouy phase $(\varphi_{10} = \varphi_{00} + \Phi_{Gouy})$
 - \rightarrow HG₁₀ mode signal cannot be amplified in simple WFS

Principle of coupled WFS

 HG_{00} HG_{10}

- Tilted mirror converts HG₀₀ to HG₁₀
- HG₁₀ mode from cavity is detected as angular signal

- HG₀₀ and HG₁₀ can be resonant simultaneously since reflection phase of auxiliary cavity can compensate Gouy phase in main cavity ($\varphi_{10} = \varphi_{00} + 2n\pi$)
 - \rightarrow HG₁₀ mode signal can be amplified in coupled WFS

Phase compensation with auxiliary cavity

180 HG_{10} HG₀₀ 135 90 arg (r_{aux}) 45 $-\Phi_{\mathsf{Gouy}}$ or $2\pi - \Phi_{\text{Gouy}}$ -45-90-135-1800.3 0.4 0.5 $-0.2 - 0.1 \ 0.0 \ 0.1 \ 0.2$ cavity length [a.u.]

Round-trip phase in main cavity

$$\varphi_{10} = \varphi_{00} + \Phi_{\text{Gouy}} + \arg\left(r_{\text{aux},10}\right) - \arg\left(r_{\text{aux},00}\right)$$
$$= \varphi_{00} + 2n\pi$$

 \rightarrow HG₀₀ and HG₁₀ can be resonant simultaneously

Lock points of auxiliary cavity

Solutions do not always exist

Requirement:

enough large Φ_{Gouy}

- Long cavity⇔ Chamber size

We have to design proper

- Length of cavities
- Reflectivity of mirrors
- RoC of mirrors

Allowed reflectivity

Possible configurations

Test mass can be put anywhere

Comparison of angular sensors

From Miyazaki-san & Shimoda-san's thesis	MI	Optical lever	Simple WFS	Folded WFS	Coupled WFS
Shot noise (Phase-III TOBA requirement: 5×10 ⁻¹⁶ rad/√Hz)		X	X		
Beam jitter		X	X		
Frequency noise	X				
Trans coupling	X				
Other demerits				Weak to shrink in cryostat	Difficult to control with two DoF

Folded WFS

- HG₀₀ and HG₁₀ can be resonant simultaneously by changing cavity length
 - \rightarrow HG₁₀ mode signal can be amplified in folded WFS

Contents

DANCE Act-1

- Principle
- Experiment & Sensitivity
- Future plans

Coupled WFS for TOBA

- Principle
- Plans of experimental setups

Miyazaki-san's master thesis

- Confirmed HG₁₀ signal amplification
 and principle of coupled WFS successfully
- △ Control of two DoF: auxiliary cavity was 肩 locked
- △ Large RoC of mirrors and beam radius: severe requirement to alignment
- △ Large loss of mirrors: difficult to compensate phase
- △ Instable lock by resonance of mirror mounts
- Could not extract signal inside main cavity

Plan to improve these issues in my experiment

Setup of cavities

Setup of whole optics

- Cavities
- Optical lever
- Pendulum
- QPD·PD

Incident optics

Mirrors I purchased from Layertec

Large RoC is better for thermal noise Small RoC is better for alignment

	Front & Folded	Mid	End
Radius of curvature	∞ (flat)	7 m convex	4 m concave
Reflectivity (1)	99.4 %	99.94 %	99.9 %
Reflectivity (2)		99.9 %	99.94 %

Auxiliary cavity is

under-coupled (better to control)

over-coupled

(better to compensate phase)

Cavity parameters

- Cavity length
 - 8 cm (total of main)
 - 6 cm (auxiliary)

- Beam radius
 - 500 µm at front mirror (waist)
 - 508 μm at end mirror
- Finesse
 - 337 (main when auxiliary is under-coupled)
 - 330 (main when auxiliary is over-coupled)
 - 3.93×10^3 (auxiliary)

My designs are strong to loss

Control of two DoF

- Plan to control with PDH technique for both cavities
- Signal separation (main-auxiliary) is important
- Under-coupled cavity gives better signal separation

Idea of control (1)

- Inject different polarizations into auxiliary cavity from behind
- Reflected light of main and auxiliary cavity is detected independently

Idea of control (2)

- Use two different modulation frequencies for main and auxiliary cavity
- Reflected light of auxiliary cavity is detected from folded mirror

	Length	FSR	Finesse	FWHM	Possible modulation freq.
Main	8 cm	3.8 GHz	300	13 MHz	40 MHz
Auxiliary	6 cm	5 GHz	4000	1.3 MHz	4 MHz

What is new for me

Same technique as DANCE Act-1

- Optical cavity
- Mode matching
- Optical fiber
- PDH technique
- Polarizations

New technique for me

- Vacuum chamber
- Pendulum
- Control with two DoF
- QPD
- Alignment control

I want to finish the same thing as DANCE Act-1 as soon as possible and focus on something new

What I will do in this year

No lecture in M2S semester

Brownian motion TA & One lecture in M2A semester ??

Summary

DANCE Act-1

- I started DANCE Act-1 in 2019 and ongoing
- First result in 2020 successfully
- Plan for data acquisition and analysis in 2021

Coupled WFS for TOBA

- Coupled WFS is a sensitive angular sensor
- Plan to build coupled WFS in order to achieve two DoF control and good sensitivity

また1年間よろしくお願いします

Bonus Slides

Lab e-log analysis

- 119 e-log were posted in Apr. 1, 2020 Mar. 31, 2021
- 40 meetings were held

- Aritomi-san posted to NAOJ e-log
- Takeda-san wrote comments for meeting log

List of e-log I posted

This page is just a memo for myself

	2020/6/16	<u>#4292</u>	Toy Michelson Interferometer
•	2020/7/15	<u>#4498</u>	Performance of Piezo Amplifier E-610
•	2020/7/16	<u>#4504</u>	Toy Fabry-Pérot Cavity
•	2020/10/2	<u>#4858</u>	Mirror Holding Jig Design
•	2020/10/2	<u>#4867</u>	New power meter S132C is delivered
•	2020/10/13	<u>#4898</u>	New data logger DL850E is available
	2020/10/16	<u>#4951</u>	Power Spectrum of Transmitted Light

List of e-log I posted

This page is just a memo for myself

```
• 2020/10/29 #5002
Survey of the Seismic Noise on Faculty of Science Bldg.1
```

• 2020/11/5 <u>#5059</u>

Aluminum frames and plates surrounding optical table

- 2020/12/24 <u>#5320</u> Status report of DANCE
- 2021/1/11 #5353 Performance evaluation of a cavity
- 2021/1/12 #5375

Mirror Design for Coupled Wave Front Sensor

- 2021/1/28 #5446

 D and C polarizations do not reconsts simultaneous
 - P and S polarizations do not resonate simultaneously
- 2021/2/5 <u>#5551</u> Lattice mirrors again

List of movies I watched

I watched many movies with my family due to COVID-19 My father rented many foreign movies

- Back to the Future series
- Jurassic Park series
- Night at the Museum series
- Star Wars series ← Takano-san's favorite. I like so-so
- Columbo series
- Agatha Christie's Poirot series ← My favorite. I'm also reading novels
- Sherlock Holmes series
- Mission:Impossible series
- Roman Holiday
- Wait Until Dark
- Outbreak
- Interstellar ← Fujimoto-kun's favorite. I don't like

Please let me know your favorites!

Extra Slides

データ解析

$$\begin{pmatrix} E_{\rm S} \\ E_{\rm P} \end{pmatrix} = \begin{pmatrix} E_0 \cos \phi(t) \\ E_0 \sin \phi(t) \end{pmatrix}$$
 $\text{HWP} \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ -\sin 2\theta & \cos 2\theta \end{pmatrix}$
 $\rightarrow \begin{pmatrix} E_{\rm S}' \\ E_{\rm P}' \end{pmatrix} = \begin{pmatrix} E_0 \cos (2\theta + \phi(t)) \\ E_0 \sin (2\theta + \phi(t)) \end{pmatrix}$
 $P_{\rm S} = E_{\rm S}'^2 = E_0^2 \cos^2 (2\theta + \phi(t))$
 $P_{\rm P} = E_{\rm P}'^2 = E_0^2 \sin^2 (2\theta + \phi(t))$
 $2\theta + \phi \ll 1 \text{ Objection} \sin(2\theta + \phi(t)) \approx 2\theta + \phi(t)$

偏光の回転角
$$2\theta + \phi(t) = \frac{E_{\rm P}'}{E_0}$$

20は定数だからスペクトルに寄与しない

How to measure resonant freq. dif.

From <u>e-log #5655</u>

Miyazaki-san's design

Design of mirrors and finesse

	Front & Folded	Mid	End
Radius of curvature	∞ (flat)	7 m (±2 %) convex	4 m (±1 %) concave
Reflectivity (1)	99.4(3) %	99.94(2) %	99.90(2) %
Reflectivity (2)		99.90(2) %	99.94(2) %

Auxiliary cavity is under-coupled over-coupled

Finesse

- 337 (225-667) (main when auxiliary is under-coupled)
- 330 (222-640) (main when auxiliary is over-coupled)
- 3.93 (3.14-5.23) $\times 10^3$ (auxiliary)

Figures

Figures

