Stellar-mass black holes in young massive and open stellar clusters and their role in gravitational-wave generation I -IV

Yuka Oshima (M1)
Dept. of Physics, Univ. of Tokyo

Why star clusters?

Cancelled due to COVID-19

I saw beautiful すばる with the naked eye in Kiso Star clusters are my favorites

→ I looked for papers about "star clusters × GWs"

Today's papers

Stellar-mass black holes in young massive and open stellar clusters and their role in gravitational-wave generation by <u>Sambaran Banerjee</u>

I: MNRAS 467, 524-539 (2017)

II: MNRAS 473, 909-926 (2018)

Ⅲ: MNRAS **481**, 5123-5145 (2018)

IV: arXiv:2004.07382v3

Summary

- In general, star clusters are classified into open clusters and globular clusters by their age
- Many models of young massive and open clusters are prepared
- The dynamical formation of BBHs in clusters are simulated by N-body evolution program
- The results are similar to LIGO-Virgo data

Contents

- Introduction
 - Classification of star clusters
- Methods
 - N-body evolution program: NBODY7
 - Natal kicks & merger kicks
 - Natal spins & final spins
 - Primordial-binary fraction
 - Initial conditions of model clusters
- Results
 - Basic quantities
 - Comparisons with LIGO-Virgo data
 - Interesting phenomena

Introduction

- The study of dynamical interactions of BHs in star clusters has been started since 1993 (<u>Nature 364</u>, 421-423)
- ullet BH mass detected by LIGO is typically $10-100\,M_\odot$
- The scenario of formation of stellar-mass BBHs in star clusters is simple and easy

Classification of star clusters

	Age	Total mass	Number of stars	Metall icity	Shape & Location	Example
Young massive cluster	≲ 100 Myr	$10^4~M_{\odot} \ - 10^5~M_{\odot}$	_	$\gtrsim 1 Z_{\odot}$	_	
Open cluster	≲ 300 Myr	$\lesssim 10^4~M_{\odot}$	$10^2 - 10^3$	~1 Z _⊙	Irregular, Disk	Pleiades, M45, すばる 。 ©Antonio Fernandez-Sanchez
Globular cluster	≥ 10 Gyr	$10^5~M_{\odot} - 10^6~M_{\odot}$	$10^5 - 10^6$	$\lesssim 1 Z_{\odot}$	Globe, Halo	Omega Centauri, NGC 5139 ©Martin Pugh

Definition of the papers

Metallicity :
$$Z = \sum_{i>\mathrm{He}} \frac{m_i}{M_{\mathrm{total}}}$$

($Z_{\odot} = 0.02$)

天文学辞典

Star cluster's age

- Make Hertzsprung-Russell Diagram
- Estimate cluster's age by location of turnoff point

- Born in the same place and time
 → Separate in long time
- The way to be born and evolve is not understood well

NBODY7

NBODY7:

N-body evolution program, descendant of NBODY6

TABLE 1
Main N-Body Codes

Keyword	Period	Name
Primitive beginnings	1961–1969 1969–1974 1974–1983 1979–1992 1993–1999 1994–1999	NBODY1 NBODY3 NBODY2 NBODY5 NBODY6 NBODY4

S. J. Aarseth (1999)

- 4th-order Hermite integrator
- Neighbor-based scheme
- Post-Newtonian approximation

4th-order Hermite integrator

① Predict positions and velocities of all particles at time $t_{n+1} = t_n + \Delta t$

$$\begin{aligned} \boldsymbol{x}_{p,j} &= \boldsymbol{x}_{n,j} + \boldsymbol{v}_{n,j} \Delta t + \boldsymbol{a}_{n,j} \frac{\Delta t^2}{2} + \dot{\boldsymbol{a}}_{n,j} \frac{\Delta t^3}{6} \\ \boldsymbol{v}_{p,j} &= \boldsymbol{v}_{n,j} + \boldsymbol{a}_{n,j} \Delta t + \dot{\boldsymbol{a}}_{n,j} \frac{\Delta t^2}{2} \end{aligned}$$

② Calculate the acceleration and its time derivative for particle i at time t_{n+1} using predictors

$$\begin{aligned} &\boldsymbol{a}_{n+1,i} = \sum_{j} Gm_{j} \frac{\boldsymbol{r}_{ij}^{2}}{(r_{ij}^{2} + \varepsilon^{2})^{3/2}} \\ &\dot{\boldsymbol{a}}_{n+1,i} = \sum_{j} Gm_{j} \left[\frac{\boldsymbol{v}_{ij}}{(r_{ij}^{2} + \varepsilon^{2})^{3/2}} + \frac{3(\boldsymbol{v}_{ij} \cdot \boldsymbol{r}_{ij})\boldsymbol{r}_{ij}}{(r_{ij}^{2} + \varepsilon^{2})^{5/2}} \right] \\ &\text{where} \quad \boldsymbol{r}_{ij} = \boldsymbol{x}_{p,j} - \boldsymbol{x}_{p,i}, \quad \boldsymbol{v}_{ij} = \boldsymbol{v}_{p,j} - \boldsymbol{v}_{p,i} \\ &\varepsilon : \text{softening parameter} \end{aligned}$$

4th-order Hermite integrator

3 Construct 3rd-order Hermite interpolation polynomial

$$a_{i}(t) = a_{n,i} + \dot{a}_{n,i}(t - t_{n}) + a_{n,i}^{(2)} \frac{(t - t_{n})^{2}}{2} + a_{n,i}^{(3)} \frac{(t - t_{n})^{3}}{6}$$
where
$$a_{n,i}^{(2)} = \frac{-6(a_{n,i} - a_{n+1,i}) - \Delta t(4\dot{a}_{n,i} + 2\dot{a}_{n+1,i})}{\Delta t^{2}}$$

$$a_{n,i}^{(3)} = \frac{12(a_{n,i} - a_{n+1,i}) + 6\Delta t(\dot{a}_{n,i} + \dot{a}_{n+1,i})}{\Delta t^{3}}$$

④ Integrate $a_i(t)$ from t_n to t_{n+1} to obtain correctors and set $x_{n+1,i} = x_{c,i}$ and $v_{n+1,i} = v_{c,i}$

$$x_{c,i} = x_{p,i} + a_{n,i}^{(2)} \frac{\Delta t^4}{24} + a_{n,i}^{(3)} \frac{\Delta t^5}{120}$$

$$v_{c,i} = v_{p,i} + a_{n,i}^{(2)} \frac{\Delta t^3}{6} + a_{n,i}^{(3)} \frac{\Delta t^4}{24}$$

⑤ Update t_n and go back to step ①

Neighbor-based scheme

- Neighbor-based scheme is used in order to ease computing time
- Each CPU stores a copy of its local checkpoint in the memory of its neighbor CPU
- Whenever a CPU fails, the lost local checkpoint data can be recovered from its neighbor CPU

Figure 1: Neighbor-Based Schemes
July 31st, 2020 @ Ando Lab Seminar

Post-Newtonian approximation

- Post-Newtonian approximation:

 an approximate solution of Einstein's equation in the case of weak field
- Starting at Newton's law of gravity, higher order terms can be added to increase accuracy

Expansion parameter:
$$\varepsilon = \left(\frac{v}{c}\right)^2 \ll 1$$

- PN-1, PN-2: GR periastron precession
- PN-2.5: orbital shrinking due to GW radiation
- PN-3, PN-3.5: spin-orbit coupling
- PN terms up to the order 2.5 are applied
- BH spins are taken to be zero for the economy in computing time

Remnant masses

- The remnant (NS or BH) masses are determined by
 - Wind mass-loss until core collapse
 - CO and FeNi core mass
 - The amount of material fallback

"Fallback":

during supernovae, some of the stellar material does not receive enough energy to escape the potential of NS and it falls back on to the core

Natal kicks

- Asymmetric mass ejection will lead to material fallback and natal kicks
- If NSs and BHs receive a high natal kick velocity, they will escape from the host clusters

Merger kicks (I-Ⅲ)

- \bullet PN-2.5 \rightarrow BH spins are not taken
- In reality, when BHs have spins, BBHs will receive a large GW merger kick (100 – 1000 km/s) during inspiral phase
- Merged BH will escape from the cluster
- A kick velocity is applied on to the merged BH immediately after a coalescence in order to eject the merged BH out of the cluster

Natal spins (IV)

BH spins are applied in IV

Dimensionless spin parameter

$$\boldsymbol{a} = \frac{c\boldsymbol{S}_{\mathrm{BH}}}{GM_{\mathrm{BH}}^2}$$

- Geneva BH-spin model
 - Not include magnetic field
 - Angular momentum transport from core to envelope is purely convective
 - BHs have a high spin (a = 0.85)

- MESA BH-spin model
 - Include magnetic field
 - Angular momentum transport from core to envelope is much more efficient
 - BHs have a small spin (a = 0.1)

Final spins & merger kicks (IV)

 For all mergers, effective spin parameter is evaluated

$$\chi_{\text{eff}} = \frac{M_1 a_1 \cos \theta_1 + M_2 a_2 \cos \theta_2}{M_1 + M_2}$$

- ullet Orbital angular momentum $L_{
 m orb}$ and natal spins a_1 , a_2 determine merger kick velocity $v_{
 m k}$
- ullet Merger kick velocity $v_{\rm k}$ determines whether the merged BH should stay in the clusters or escape
- If the BH stays, it is allowed for second-generation BBH mergers

Primordial-binary fraction (II-IV)

- Binary stars are initially included
- This makes the models more realistic
- ◆ However, the system will become more complicated
 → A reduction in computation is needed
- All stars are ZAMS (Zero-Age Main Sequence) stars
- Initial masses of stars are distributed over $0.08 150 M_{\odot}$
- For $M_{\rm ZAMS} \ge 16 \, M_{\odot}$ (O-type stars) primordial-binary fraction $f_{\rm bin.O} \approx 100 \, \%$
- For $M_{\rm ZAMS} < 16 \, M_{\odot}$ primordial-binary fraction $f_{\rm bin} \approx 2 50 \, \%$
- The population of O-type stars is much smaller than the total stellar population ($N_{\rm O} \ll N_{\rm total}$)
- Note that f_{bin} represents the overall primordial-binary fraction $(f_{\text{bin}} \approx f_{\text{bin,total}})$

Initial conditions of model clusters

Paper	Number of models	Total mass $[M_{\odot}]$	Half-mass radius [pc]	Metallicity $[Z_{\odot}]$	Primordial -binary fraction
I	12	$7 \times 10^3 - 5 \times 10^4$	1, 2	0.05 - 1.0	0
П	23 (include I)	$7 \times 10^3 - $ 1×10^5	1, 2	0.05 - 1.0	0, 0.02, 0.05, 0.1
Ш	22	$7.5 \times 10^3 - 5 \times 10^4$	1, 1.5 , 2	0.05 - 1.0	0.05, 0.1, 0.3, 0.5
IV	65 (spins)	$1 \times 10^4 - 1 \times 10^5$	1, 1.5, 2, <mark>3</mark>	0.0001 - 0.02	0, 0.05, 0.1

- Initial conditions are typical for young massive and open clusters
- All stars in the clusters are initially unsegregated
- ◆ All models are evolved for 10 13.7 Gyr or until they dissolve completely
- Half-mass radius: the radius that contains half the total mass (c.f. Half-light radius)

Initial conditions of model clusters

Paper	Number of models	Total mass $[M_{\odot}]$	Half-mass radius [pc]	Metallicity $[Z_{\odot}]$	Primordial -binary fraction
I	12	$7 \times 10^3 - 5 \times 10^4$	1, 2	0.05 - 1.0	0
П	23 (include I)	$7 \times 10^3 - $ 1×10^5	1, 2	0.05 - 1.0	0, 0.02, 0.05, 0.1
Ш	22	$7.5 \times 10^3 - 5 \times 10^4$	1, 1.5, 2	0.05 - 1.0	0.05, 0.1, 0.3, 0.5
IV	65 (spins)	$1 \times 10^4 - 1 \times 10^5$	1, 1.5, 2, 3	0.0001 - 0.02	0, 0.05, 0.1

• I : not important

II: large total mass, small primordial-binary fraction

■ III: large primordial-binary fraction

IV: many models, spins, low metallicity

Basic quantities

Basic quantities

Evolution of BH number in cluster

Cumulative radial distribution of BH in cluster

Evolution of binary number in cluster

BH mass distribution

Primary mass - secondary mass

July 31st, 2020 @ Ando Lab Seminar

11 events with LIGO and Virgo during O1/O2

B. P. Abbott+ (2019)

Total mass & mass ratio

Color horizontal lines: 90% CI Coalescence time:

$$\tau_{\rm insp} \approx \frac{5}{64} \frac{c^5 a_{\rm ej}^4 (1 - e_{\rm ej}^2)^{7/2}}{G^3 M_1 M_2 (M_1 + M_2)} \left(1 + \frac{73}{24} e_{\rm ej}^2 + \frac{37}{96} e_{\rm ej}^4 \right)^{-1}$$

- $\bullet \ au_{
 m insp} \ll 1 \
 m Myr$ for in-cluster mergers
- 1 Gyr $< \tau_{\rm insp} <$ 14 Gyr for ejected mergers
- Agree with O1/O2 data
- Not agree with GW190814 $(M_2/M_1 = 0.112^{+0.008}_{-0.009})$

Effective spin parameter

non-BH binaries

- The majority of binaries are BBHs, but non-BH binaries are found
- For example, WD-WD, BH-WD and BH-MS (main sequence)
- Their mergers will leave electromagnetic signatures

Triples or higher-order subsystems

- Some binary mergers occur in a triple or higher-order subsystems
- These subsystems are strongly perturbed and chaotic

Kozai-Lidov time period of the triple (innermost triple)

$$T_{\rm KL} = \frac{2P_{\rm o}^2}{3\pi P_{\rm i}} (1 - e_{\rm o}^2)^{3/2} \frac{M_1 + M_2 + m_{\rm o}}{m_{\rm o}}$$

Ratio of the outer periastron to the inner apoastron of the triple (innermost triple)

$$\mathcal{R} = \frac{a_0(1 - e_0)}{a_i(1 + e_i)}$$

Slingshot events

 "Slingshot" events: close fly-by interactions between a binary and a single object

• Slingshot events are highly eccentric (e > 0.9)

The "proper" detection will be difficult

They might contribute to GW background noise for

LISA and PTA

Evolution of orbital eccentricity

- Almost all BBHs have very high eccentricities
- The reason is slingshot events or in a triple

Summary

- In general, star clusters are classified into open clusters and globular clusters by their age
- Many models of young massive and open clusters are prepared
- The dynamical formation of BBHs in clusters are simulated by N-body evolution program
- The results are similar to LIGO-Virgo data