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Why star clusters?
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I saw beautiful 9133 with the naked eye in Kiso
Star clusters are my favorites

— I looked for papers about “star clusters x GWs”
A not galaxy clusters
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Today’s papers

Stellar-mass black holes in young massive and open stellar
clusters and their role in gravitational-wave generation
by Sambaran Banerjee

I: MNRAS 467, 524-539 (2017) I : MNRAS 473, 909-926 (2018)
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https://astro.uni-bonn.de/~sambaran/index.html
https://academic.oup.com/mnras/article/467/1/524/2869841
https://academic.oup.com/mnras/article/473/1/909/4111171
https://academic.oup.com/mnras/article/481/4/5123/5105761
https://arxiv.org/abs/2004.07382v3

Summary

® In general, star clusters are classified into open
clusters and globular clusters by their age

® Many models of young massive and open clusters
are prepared

® The dynamical formation of BBHs in clusters are
simulated by N-body evolution program

® The results are similar to LIGO-Virgo data
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® Introduction
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Introduction

® The study of dynamical interactions of BHs in star
clusters has been started since 1993 (Nature 364,
421-423)

® BH mass detected by LIGO is typically 10 — 100 Mg

® The scenario of formation of stellar-mass BBHSs in
star clusters is simple and easy

Masses in the Stellar Graveyard
in Solar Masses
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LIGO Gallery
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https://www.nature.com/articles/364421a0
https://www.ligo.caltech.edu/image/ligo20200623a

Classification of star clusters

Number | Metall | Shape &
Age Total mass . . Example
of stars | icity | Location
Young 4
massive |<S 100 Myr 10 ’Z’@ - =>12Zg - —
—10° Mg
cluster
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Open A 5 3 Irregular, |-
< < — ~ ’
cluster S 300Myr | <10* Mo (102 —10 1Zo Dick
Globular 10> Mg Globe
> 5 _ 6 | < /
Cluster | ~ 10Gyr 1 _ 10° Mg 10 =107 1= 1 20 Halo
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http://astro-dic.jp/galactic-halo/

Star cluster’s age

® Make Hertzsprung-Russell Diagram
® Estimate cluster’s age by location of turnoff point

(or luminosity)
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(or temperature, spectrum type)

® Born in the same place and time ® The way to be born and evolve

— Separate in long time is not understood well
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https://www.rikanenpyo.jp/kaisetsu/tenmon/tenmon_025.html

NBODY 7/

® NBODY7:

N-body evolution program,
descendant of NBODY6

® 4th-order Hermite integrator

® Neighbor-based scheme

TABLE 1

MaN N-Bopy CoDEes

Keyword Period Name
Primitive beginnings ............ 1961-1969 NBODY1
Two-body regularization ....... 1969-1974 NBODY3
Cosmological experiments...... 1974-1983 NBODY2
Star cluster simulations......... 1979-1992 NBODY5
Hermite integration ............. 1993-1999 NBODY6
The HARP challenge ........... 1994-1999 NBODY4

S. J. Aarseth (1999)

® Post-Newtonian approximation
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https://iopscience.iop.org/article/10.1086/316455

4th-order Hermite integrator

@ Predict positions and velocities of all particles
attimet,,; =t, + At

At> At .
fp'j :xn,j+v;l,jAt+ an,j7+an,]-? +0(At )
predictor time t, AtZ

Vyj = Upj + an,jAt + ay —2

2 Calculate the acceleration and its time derivative
for particle i at time t,,,, using predictors

G Ty
an+1l m] ( 4 82)3/2

_ Vij 3(”1] ru)ru
an+1,l _Z Gm] (T +82)3/2 (T _|_€2)5/2

where rjj=x,;—X,;, Vij=V,;—Vy;
¢ : softening parameter
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4th-order Hermite integrator

® Construct 3rd-order Hermite interpolation polynomial

o) (t — ty)? 3y (t — )’
al(t)—am+am(t—t)+a() 2" + ;l) 6”

(2) _6(an,i _ an+1,i) _ At(4‘an,i + 2an+1,i)

where a
At?
(3) 12(an,i o an+1,i) + 6At(an,i + an+1,i)
Tll _ At3

@ Integrate a; (t) from t, to t,,, to obtain correctors
and set x,,,.1; = x.; and vn+1l = Vi

At* At>
_ (2) a®)
Yei = Xpi T A, ﬁ+ 120
corrector At 3 At
Vei = Vpi ) ——+ )

® Update t,, and go back to step @
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Neighbor-based scheme

® Neighbor-based scheme is used in order to ease
computing time

® Each CPU stores a copy of its local checkpoint in
the memory of its neighbor CPU

® \Whenever a CPU fails, the lost local checkpoint
data can be recovered from its neighbor CPU

Ring Pair
neighbor neighbor

D
@
@
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Figure 1: Neighbor-Based Schemes Z. Chen+ (2005)
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https://www.researchgate.net/publication/221643464_Fault_tolerant_high_performance_computing_by_a_coding_approach/download

Post-Newtonian approximation

® Post-Newtonian approximation:
an approximate solution of Einstein’s equation
In the case of weak field

® Starting at Newton's law of gravity, higher order
terms can be added to increase accuracy

. v 2
Expansion parameter: ¢ = (—) K1

C

« PN-1, PN-2: GR periastron precession
« PN-2.5: orbital shrinking due to GW radiation
« PN-3, PN-3.5: spin-orbit coupling

® PN terms up to the order 2.5 are applied
® BH spins are taken to be zero for the economy in
computing time
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Remnant masses

® The remnant (NS or BH) masses are determined by
« Wind mass-loss until core collapse
« CO and FeNi core mass
« The amount of material fallback

® “Fallback”:
during supernovae, some of the stellar material does
not receive enough energy to escape the potential of
NS and it falls back on to the core

AN V17 / AN \ T /
™~ ™~
. e _ 2 ‘@~ Fallback
g g
Cra Cpa
- —> — —>
Pejecta P Pejecta P H. T. Janka (2013)
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https://academic.oup.com/mnras/article/434/2/1355/1070323

Natal kicks

® Asymmetric mass ejection will lead to material
fallback and natal kicks

® If NSs and BHs receive a high natal kick velocity,
they will escape from the host clusters

N \ ! / / AN \ ! / /
0 . 0 » Natal kick
NS> - NS — NS ==
v g © Fallbagck = ©r®H
e g
RS C
— «— —
Pejec P Pejecta P H. T. Janka (2013)
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https://academic.oup.com/mnras/article/434/2/1355/1070323

Merger kicks (I -1I)

® PN-2.5 — BH spins are not taken

® In reality, when BHs have spins, BBHs will receive
a large GW merger kick (100 — 1000 km/s) during
inspiral phase

® Merged BH will escape from the cluster

® A kick velocity is applied on to the merged BH
Immediately after a coalescence in order to eject
the merged BH out of the cluster
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Natal spins (1V)

® BH spins are applied in IV

® Geneva BH-spin model

Not include magnetic field

Dimensionless
spin parameter

_ CSBH
- GMEy

Angular momentum transport
from core to envelope is purely

convective
BHs have a high spin (a

® MESA BH-spin model

Include magnetic field

0.85)

Angular momentum transport
from core to envelope is much

more efficient
BHs have a small spin (a
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Final spins & merger kicks (1V)

® For all mergers, effective spin
parameter is evaluated

M;a4cos6; + M,a,cos6,
Xeff = M, + M,

® Orbital angular momentum L., and
natal spins a,, a, determine merger
kick velocity v

® Merger kick velocity v, determines
whether the merged BH should stay
In the clusters or escape

® If the BH stays, it is allowed for
second-generation BBH mergers
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Primordial-binary fraction (I -1V)

Binary stars are initially included

This makes the models more realistic

However, the system will become more complicated
— A reduction in computation is needed

All stars are ZAMS (Zero-Age Main Sequence) stars
Initial masses of stars are distributed over 0.08 — 150 M

For Myams = 16 Mg (O-type stars)
primordial-binary fraction fyi,o0 = 100 %
For Mzams < 16 Mg
primordial-binary fraction f,;; = 2 — 50 %

The population of O-type stars is much smaller than the
total stellar population (Ng < Nigtar)
Note that f;;, represents the overall primordial-binary

fractlon (fbin ~ fbin,total)
July 31st, 2020 @ Ando Lab Seminar 19/ 31



Initial conditions of model clusters

Number of | Total mass HaIf—r_nass Metallicity Prlmord|al
Paper models [Mo] radius [Zo] -binary
© [pc] © fraction
7 X 103 - 0.05 —
I 12 5 x 10* 1,2 1.0 0
I 23 7 X 103- 1 2 0.05 - 0,0.02,
(include 1)| 1x10° ’ 1.0 0.05,0.1
7.5 X 103- 0.05 - 0.05,0.1,
I 22 5% 10 1152 1.0 0.3,0.5
65 1 x 10%- 0.0001
IV (spins) 1 x 105 1,1.5,2,3 _0.02 0,0.05,0.1
® Initial conditions are typical for young massive and open clusters

or until they dissolve completely

® Half-mass radius: the radius that contains half the total mass
(c.f. Half-light radius)

All stars in the clusters are initially unsegregated
All models are evolved for 10 — 13.7 Gyr
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Initial conditions of model clusters

Number of | Total mass HaIf-r_nass Metallicity Prlmordlal
Paper models [Mo] radius [Zo] -binary
© [pc] © fraction
7 x 103 - 0.05 -
I 12 5 x 10* 1,2 1.0 0
I 23 7 x 103- » 0.05 - 0,0.02,
(include 1)| 1x10° ’ 1.0 0.05,0.1
7.5 x 103- 0.05 - 0.05,0.1,
Il 22 5 x 10* 1,152 1.0 0.3,0.5
65 1 x 10*- 0.0001
1\ (spins) % 105 1,1.5,2,3 002 1000501
® ] : not important
® I : large total mass, small primordial-binary fraction
® I : large primordial-binary fraction
® IV : many models, spins, low metallicity
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Basic quantities

Remnant mass (Mg)
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Basic quantities

Evolutlon of BH number in cluster
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M, (Mg)

Primary mass - secondary mass
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GWTC-1

Error bars: 90% CI|

A Merger after ejection

e Merger inside cluster

IIIV
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(largest mass BH)
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GWTC (GW Transient Catalog) -1:
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the beginning of cluster evolutions
and the occurrence of mergers

Event

GWI150914
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11 events with LIGO and Virgo during O1/02 &% assors o1o)
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https://journals.aps.org/prx/abstract/10.1103/PhysRevX.9.031040

Total mass & mass ratio
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Effective spin parameter

Geneva (high spin) MESA (low spin)
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non-BH binaries

® The majority of binaries are BBHs, but non-BH

binaries are found

® For example, WD-WD, BH-WD and BH-MS (main
sequence)
® Their mergers will leave electromagnetic signatures

Semi-major-axis (AU)
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Triples or higher-order subsystems

® Some binary mergers occur in a triple or higher-order
subsystems
® These subsystems are strongly perturbed and chaotic

10406 | Canonical stability limit °°, =
Kozai-Lidov time period of the triple ' (R =3) L o
(innermost triple) le+04 ¢ z
E [ ® ® 7 E
2 216402 | ; &
T = o2 (1 = gzyra it Mot mo | 7o) .
3P, © M S 1e+00 | “oltlss . 2
< : odae” ; S
5 1e-02 | o ..’ i 5
= e i » 1 =
_ e L ] - %
2 1e-04 F . o’ £ 38
2‘ | . L] .- | g
= 1e-06 E e E f
: 0 ] 2
1e-08 + h... . {g
0 . IV | g
1e-10 o ol ol el 2=
1e-02 1e+00 1e+02 1e+04 1e+06
30(1 '90)/ai(1 +ei) [(1 +ei)f’l{1 'ei} for np=2]
Ratio of the outer periastron to the inner _as(1—ep)
apoastron of the triple (innermost triple) a;(1 + e)
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https://ja.wikipedia.org/wiki/HD_188753

Slingshot events

® “Slingshot” events:
close fly-by interactions between a binary and
a single object

® Slingshot events are highly eccentric (e > 0.9)
® The “proper” detection will be difficult
® They might contribute to GW background noise for

LISA and PTA 1E02
eosl N

1E-05 | @

1E-06 | @ ®

GW peak frequency fG\Np (Hz)

1E-07 F
Wikipedia: Slingshot @

i II
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0 2000 4000 6000 8000 10000
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https://en.wikipedia.org/wiki/Slingshot

Evolution of orbital eccentricity

® Almost all BBHs have very high eccentricities
® The reason is slingshot events or in a triple

Detectable by LISA  Detectable by LIGO-Virgo
e < 0.7 e < 0.1
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Summary

® In general, star clusters are classified into open
clusters and globular clusters by their age

® Many models of young massive and open clusters
are prepared

® The dynamical formation of BBHs in clusters are
simulated by N-body evolution program

® The results are similar to LIGO-Virgo data
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