1 / 32

Current Status of TOBA

Yuka Oshima Department of Physics, University of Tokyo

Tatsuya Sugioka, Satoru Takano, Ryosuke Sugimoto, Nobuki Kame, Shingo Watada, Takaaki Yokozawa, Shinji Miyoki, Tatsuki Washimi, Kentaro Somiya, Yuta Michimura, Kentaro Komori, Masaki Ando

TOBA and Gravity Gradient Workshop

March 14, 2025

Overview

- Proposed Torsion-Bar Antenna (TOBA) to detect GW in 0.1-10 Hz
 - Target: 10⁻¹⁹ /√Hz at 0.1 Hz with 10-m scale torsion pendulums at 4 K
 - Science: intermediate-mass BH binary mergers, gravity gradient noise, earthquakes
- Developing prototype detector Phase-III TOBA
 - Target: 10⁻¹⁵ / /Hz at 0.1 Hz with 30-cm scale torsion pendulums at 4 K
 - Some essential components are under development

TOBA and Gravity Gradient Workshop

March 14, 2025

YO, PhD thesis (2024)

Contents

- Torsion-Bar Antenna
 - Principle
 - Scientific targets
- Phase-III TOBA
 - Development roadmap
 - Configuration
 - Design sensitivity
- Current status of Phase-III TOBA
 - Cryogenic suspension
 - Active vibration isolation
 - Cryogenic interferometer
 - Integration of optics and suspension (my work)

TOBA and Gravity Gradient Workshop

March 14, 2025

Hongo Campus, University of Tokyo

My slot: 45 minutes My talk: ~30 minutes Feel free to ask questions during my talk

Contents

- Torsion-Bar Antenna
 - Principle
 - Scientific targets
- Phase-III TOBA
 - Development roadmap
 - Configuration
 - Design sensitivity
- Current status of Phase-III TOBA
 - Cryogenic suspension
 - Active vibration isolation
 - Cryogenic interferometer
 - Integration of optics and suspension (my work)

TOBA and Gravity Gradient Workshop

March 14, 2025

Hongo Campus, University of Tokyo

My slot: 45 minutes My talk: ~30 minutes Feel free to ask questions during my talk

TOBA: <u>Torsion-Bar</u> Antenna

- Ground-based GW detector for low freq. (0.1-10 Hz)
 - Final target: $10^{-19} / \sqrt{Hz}$ at 0.1 Hz
- Aim to detect the torsional rotation of test masses suspended horizontally
- The resonant frequency of torsional motion is low (~1 mHz) \rightarrow Good sensitivity in low freq. even on the ground

Response of torsion pendulum

- Respond to GW like a free mass at frequencies higher than the resonance frequency
 - \rightarrow Extend bandwidth

 Passive vibration isolation at frequencies higher than the resonant frequency

6 / 32

 \rightarrow Reduce seismic noise

TOBA and Gravity Gradient Workshop

March 14, 2025

Science of TOBA: GW in low freq.

- Intermediate-mass BH binary mergers
 - Within ~1 Mpc (Phase-III)
 - Within ~10 Gpc (Final)
 - \rightarrow Formation process of supermassive BHs

<u>M. Ando+ (2010)</u>

7 / 32

- GW stochastic background
 - $\Omega_{GW} < 10$ at 0.1 Hz (Phase-III)
 - $\Omega_{GW} < 10^{-7}$ at 0.1 Hz (Final)

 \rightarrow Direct exploration of the early universe

TOBA and Gravity Gradient Workshop

March 14, 2025

Science of TOBA: GGN

- Gravity gradient noise (Newtonian noise)
 - First direct detection (Phase-III)
 - \rightarrow Noise reduction for the 3rd generation GW detectors

TOBA and Gravity Gradient Workshop

March 14, 2025

Science of TOBA: earthquake

- Earthquake detection using gravity perturbations generated by fault rupture
 - Faster detection and early warning than conventional methods using seismic P waves
 - Better accuracy of magnitude estimation
- Gravity perturbations were observed by post-event analysis \rightarrow Aiming for higher accuracy and real-time detection

TOBA and Gravity Gradient Workshop

March 14, 2025

Hongo Campus, University of Tokyo

TOBA and other GW detectors

- Spaceborne GW detectors: LISA·DECIGO K
 - <u>K. Danzmann+, CQG (1996)</u> <u>S. Kawamura+, JPCS (2008)</u>

- Much better sensitivities
- High costs for development
- Difficulty of maintenance during operation M. Ando+, PRL (2010) D. J. McManus+, CQG (2017)
- Torsion pendulums: TOBA (UTokyo).TorPeDO (ANU)

Contents

- Torsion-Bar Antenna
 - Principle
 - Scientific targets
- Phase-III TOBA
 - Development roadmap
 - Configuration
 - Design sensitivity
- Current status of Phase-III TOBA
 - Cryogenic suspension
 - Active vibration isolation
 - Cryogenic interferometer
 - Integration of optics and suspension (my work)

TOBA and Gravity Gradient Workshop

March 14, 2025

Hongo Campus, University of Tokyo

Development roadmap of TOBA

Phase-I TOBA (2009-2011)Phase-II TOBA (2012 - 2014)

Principle test

 $10^{-8} / \sqrt{Hz}$ (achieved) 20 cm bars Room temp.

TOBA and Gravity Gradient Workshop

March 14, 2025

Hongo Campus, University of Tokyo

Development roadmap of TOBA

TOBA and Gravity Gradient Workshop

March 14, 2025

Hongo Campus, University of Tokyo

Configuration of Phase-III TOBA

- Laser interferometers
- Suspension
- Cryogenic cooler
- Active vibration isolation

14 / 32

TOBA and Gravity Gradient Workshop

March 14, 2025

Design sensitivity of Phase-III TOBA

• 3.7×10⁻¹⁵ /√Hz at 0.1 Hz

Contents

- Torsion-Bar Antenna
 - Principle
 - Scientific targets
- Phase-III TOBA
 - Development roadmap
 - Configuration
 - Design sensitivity
- Current status of Phase-III TOBA
 - Cryogenic suspension
 - Active vibration isolation
 - Cryogenic interferometer
 - Integration of optics and suspension (my work)

TOBA and Gravity Gradient Workshop

March 14, 2025

Status: cryogenic suspension

by T. Shimoda and C. P. Ooi

17 / 32

- Torsion pendulums were successfully cooled
 - Target: 4 K / result: 6.1 K
- Developing suspension wire made of sapphire for high Q factor
 - Target: 10^8 / result: 7×10^4 at 4 K

T. Shimoda, Ph.D. thesis (2019)

Photo by C. P. Ooi

TOBA and Gravity Gradient Workshop

March 14, 2025

18 / 32

Status: active vibration isolation

by S. Takano and M. Cao

- 3 DoFs were controlled with geophones and piezo actuators
 - Vertical vibration suppressed by 10⁻³ at 0.7 Hz
 - Horizontal vibration suppressed by 3×10^{-2} at 1.7 Hz
- Developing a tiltmeter to reduce tilt-horizontal coupling

TOBA and Gravity Gradient Workshop

March 14, 2025

Status: cryogenic interferometer

by S. Takano

19 / 32

- Monolithic interferometer made of silicon was developed
 - Operated at 12 K more than one day
 - 4×10^{-14} m//Hz at 0.1 Hz (comparable to LISA Pathfinder)

S. Takano, Ph.D. thesis (2024)

We'll show you on the lab tour Satoru will introduce in today's final talk from AEI

TOBA and Gravity Gradient Workshop

March 14, 2025

Status: my work

• Goal : completion of optics and suspension system

Element development by previous researches

- Cryogenic torsion pendulum
- High-Q suspension wire
- Active vibration isolation
- Cryogenic interferometer

This study

Integration of optics and suspension (designed for cryogenic temp.)

Phase-III TOBA target sensitivity

- Cooling
- Improvement of suspension wire
- Introduction of active vibration isolation

TOBA and Gravity Gradient Workshop

March 14, 2025

Final TOBA target sensitivity

20 / 32

Increase size

Design sensitivity of my work

• $3.4 \times 10^{-11} \text{ rad}/\sqrt{\text{Hz}}$ at 0.1 Hz

TOBA and Gravity Gradient Workshop

March 14, 2025

Hongo Campus, University of Tokyo

Optics

Entire experimental setup

- Suspension inside the vacuum chamber
- Laser source outside the chamber
- Laser is introduced into the optical bench via optical fiber

Design of optics

- Differential Fabry–Pérot cavities btw two test masses to detect torsional rotation as cavity length variation
- Feedback control by coil-coil actuator to lock the cavities
- Optical levers are installed as auxiliary sensors

TOBA and Gravity Gradient Workshop

March 14, 2025

Design of suspension: overall

- Test masses and optical bench are suspended from the intermediate mass
- Damping magnet support is also suspended

TOBA and Gravity Gradient Workshop

March 14, 2025

Hongo Campus, University of Tokyo

Design of suspension: detail

- Parts made of invar are glued to test masses without screwing to prevent silicon from cracking
- Aluminum was used instead of silicon in this work
 - Silicon: 2.33 g/cm³, aluminum: 2.7 g/cm³
- Optical bench was suspended from the same intermediate mass as the test masses to reduce vibration noise

Summary of results

		Results of this work	Design of this work	Design of Phase-III TOBA
Optics	Optical lever	Detection	Auxiliary sensor	Auxiliary sensor
	Differential Fabry–Pérot cavities	Finesse \sim 300 First for TOBA Unlock	Finesse 400 Lock and detection	Lock and detection
Suspension	Test mass	Aluminum (for cryogenic temp.) First for TOBA		Silicon
	Torsional resonant freq.	117 mHz	28.7 mHz	7.7 mHz
	Q factor	\sim 50	10 ³	10 ⁸
	Tilt of test mass	\sim 2 $ imes$ 10 ⁻³ rad	10 ⁻⁴ rad	10 ⁻⁸ rad
	Resonant freq. of GAS filter	First for TOBA 3-4.5 Hz	3 Hz	3 Hz
Temperature		300 K	300 K	4 K
Sensitivity at 0.1 Hz		3×10⁻7 /√Hz	3×10 ⁻¹¹ /√Hz	4×10 ⁻¹⁵ /√Hz

TOBA and Gravity Gradient Workshop

March 14, 2025

Result: resonant freq. and Q factor

- Measured after excitation of torsional modes by coil-coil actuators (ring-down method)
- Measured under atmospheric pressure and vacuum

Due to the increased restoring force by wires of coils
 → Use of thinner wire / non-contact current supply /
 cavity control without coil-coil actuators

TOBA and Gravity Gradient Workshop

March 14, 2025

Hongo Campus, University of Tokyo

Result: sensitivity of optical levers

- Torsional rotation was measured with optical levers
- Common mode rejection between two test masses
- $1.1 \times 10^{-7} \text{ rad}/\sqrt{\text{Hz}}$ at 0.4 Hz

TOBA and Gravity Gradient Workshop

March 14, 2025

Hongo Campus, University of Tokyo

29 / 32

Discussion of noise sources

- Above 4 Hz, sensor noise is dominant
 → Sensitivity can be improved by replacing cavities for detection
- Significant correlation with vertical seismic noise in 0.1-4 Hz
 → Reduction of test mass tilt /
 lower resonant frequency of GAS filter

Future plans

- Need to lock the cavities to measure torsional rotation
- We will replace test masses made of silicon and cool
 - Test masses with HR coating were already purchased
- I will graduate in March and Tatsuya takes over the exp.

TOBA and Gravity Gradient Workshop

March 14, 2025

Hongo Campus, University of Tokyo

Future plans

Need to reduce suspension thermal noise, seismic noise, and laser freq. noise

 \rightarrow We can achieve the target sensitivity of Phase-III TOBA

TOBA and Gravity Gradient Workshop March 14, 2025 Hongo Campus, University of Tokyo

31 / 32

Temp.: 300 K \rightarrow 4 K

Q factor: $10^3 \rightarrow 10^8$

Active isolation 1/100

 $10^{-4} \text{ rad} \rightarrow 10^{-8} \text{ rad}$

Stabilization 1/1000

Beryllium copper

 \rightarrow silicon

Tilt of bars:

Summary

- TOBA is a GW detector for low freq. with torsion pendulums
- Phase-III TOBA with 30 cm scale bars is under development
- Element development for Phase-III TOBA
 - Cryogenic torsion pendulum
 - High-Q suspension wire at cryogenic temp.
 - Active vibration isolation
 - Cryogenic monolithic interferometer
- We are integrating optics and suspension to realize the target sensitivity of Phase-III TOBA

TOBA and Gravity Gradient Workshop

March 14, 2025

YO, PhD thesis (2024)