First observation and analysis of DANCE: Dark matter Axion search with riNg Cavity Experiment

Yuka Oshima Department of Physics, University of Tokyo

Hiroki Fujimoto, Masaki Ando, Tomohiro Fujita, Jun'ya Kume, Yuta Michimura, Soichiro Morisaki, Koji Nagano, Hiromasa Nakatsuka, Atsushi Nishizawa, Ippei Obata, Taihei Watanabe

Overview

 We proposed a new experiment to search for axion dark matter with a ring cavity
 DANCE: Dark matter Axion search with riNg Cavity Experiment

```
• Prototype experiment DANCE Act-1 is ongoing
```

- Assembled and evaluated the optics
- Obtained the first data for 12 days
- Data analysis is underway

I. Obata, T. Fujita, Y. Michimura, PRL 121, 161301 (2018)

Axion search with laser interferometers

- Need to search for dark matter in wider mass range
- Ultralight dark matter can be searched with laser interferometers
- DANCE focuses on axion dark matter

Polarization rotation from axions

 Axion-photon coupling causes phase velocity difference between left- and right-handed photons

$$c_{L/R} = \sqrt{1 + \frac{g_{a\gamma}a_0m_a}{k}} \sin(m_a t + \delta_{\tau})$$
Coupling constant Axion field Axion mass

 Phase velocity difference of circular polarizations makes linear polarization rotate
 S-pol

Signal amplification with cavities

• Rotation angle is too small to be observed without a cavity

• Laser light runs between mirrors many times in a cavity \rightarrow Rotation angle can be amplified

Bow-tie ring cavity

• Rotated direction is inverted in a linear cavity

 \rightarrow Rotation effect is cancelled out

 A bow-tie ring cavity prevents linear polarization from inverting rotated direction

Design sensitivity of DANCE

- Shot noise is caused by fluctuations of number of photons
- Need to minimize the other noises

Important parameters (1)

- Input laser power
 Shot noise
- Round-trip length
- Finesse

••• Number of round trip \int

··· Optical length

Effective pass length

Important parameters (2)

- Resonant frequency difference between S- and P-polarizations
 - ••• From non-zero phase shift by mirror coating at reflections

Experimental setup of DANCE

Picture of DANCE Act-1

Performance evaluation of the cavity

	Designed values	Measured values
Input laser power	1 W	242(12) mW
Transmitted laser power	1 W	153(8) mW
Finesse for carrier	3×10 ³	2.85(5)×10 ³ (S-pol.)
Finesse for sidebands	3×10 ³	195(3) (P-pol.)
Resonant frequency difference between S- and P-pol.	0 Hz	2.52(2) MHz
1.0 1.0 0.8 0.6 0.4 0.2 0.0 -1	Cavity scan S-pol. P-pol. building buildin	Non-zero phase shift Zero phase shift Axion mass (Frequency)

Data acquisition and calibration

- Recorded amount of P-pol. $P_{\rm P}(t)$ and total transmitted light $P_{\rm tot}(t)$ for 12 days (May 18-30, 2021) with 1 kHz sampling
- Calibrated to rotation angle of linear polarization

 $\phi(t) = \sqrt{P_{\rm P}(t)/P_{\rm tot}}$

Estimated sensitivity

- Need to reduce noises to reach shot noise
- Need to reduce resonant frequency difference between polarizations and inject higher laser power to achieve DANCE Act-1 design

Discussion for noises

Correlation with incident light

Data analysis

- Started analysis with 10-hour data due to high computational cost
- Applied the data analysis pipeline for ultralight dark matter

 \rightarrow Found 55 candidate peaks

- Veto procedure
 - 1. Q-factor veto

(DM signal should have Q of $\sim 10^6$)

- \rightarrow Candidate peaks were reduced to 33
- 2. Consistency veto

(DM signal should have the same frequency in two segments of data)

- \rightarrow Candidate peaks were reduced to 8
- \rightarrow Investigating the cause of the peaks

Future plans

• Further data analysis to set the upper limit

New setup of DANCE Act-1 to improve the sensitivity

Cancel out resonant frequency difference between polarizations with an auxiliary cavity D. Martynov, H. Miao, PRD 101, 095034 (2020)

→ Hiroki's poster (Poster session 2, No. 363)

Summary

- DANCE: a new experiment to search for axion dark matter with a bow-tie ring cavity
 I. Obata, T. Fujita, Y. Michimura, PRL 121, 161301 (2018)
- Prototype experiment DANCE Act-1 is ongoing
 - Assembled and evaluated the optics
 - Found resonant frequency difference between polarizations
 - Obtained the first data for 12 days
 - Estimated the sensitivity and analyzing the data

