First test operation of DANCE: Dark matter Axion search with riNg Cavity Experiment

Yuka Oshima Department of Physics, University of Tokyo

Hiroki Fujimoto, Taihei Watanabe, Yuta Michimura, Koji Nagano, Ippei Obata, Tomohiro Fujita, Masaki Ando

Overview

- We proposed a new experiment to search for axion dark matter with a ring cavity DANCE: Dark matter Axion search with riNg Cavity Experiment
 We proposed a new experiment to search for axion dark matter with a ring cavity
- Prototype experiment DANCE Act-1 is ongoing
 - Assembled and evaluated the optics
 - Obtained the first data for 12 days

Axion search with laser interferometers

- Need to search for dark matter in wider mass range
- Ultralight dark matter can be searched with laser interferometers
- DANCE focuses on axion dark matter

16th Patras Workshop on Axions, WIMPs and WISPs 2021/06/15 Online

Polarization rotation from axions

 Axion-photon coupling causes phase velocity difference between left- and right-handed photons

$$c_{\rm L/R} = \sqrt{1 \pm \frac{g_{a\gamma}a_0m_a}{k}} \sin(m_a t + \delta_{\tau})$$

Coupling constant Axion field Axion mass

• Phase velocity difference of circular polarizations makes linear polarization rotate

Signal amplification with cavities

 Rotation angle is too small to be observed without a cavity

- Laser light runs between mirrors many times in a cavity
 - \rightarrow Rotation angle can be amplified

Laser

Bow-tie ring cavity

- Rotated direction is inverted in a linear cavity
 - \rightarrow Rotation effect is cancelled out

 A bow-tie ring cavity prevents linear polarization from inverting rotated direction

Design sensitivity of DANCE

- Shot noise is caused by fluctuations of number of photons
- Need to minimize the other noises

Important parameters (1)

- Input laser power
 Shot noise
- Round-trip length
- Finesse

- ••• Optical length
- ••• Number of round trip

Important parameters (2)

- Resonant frequency difference between S- and P-pol.
 - ••• From non-zero phase shift by mirror coating at reflections

Experimental setup of DANCE

Picture of DANCE Act-1

Performance evaluation of the cavity

	Designed values	Measured values
Input laser power	1 W	242(12) mW
Transmitted laser power	1 W	153(8) mW
Finesse for carrier	3×10 ³	2.85(5)×10 ³ (S-pol.)
Finesse for sidebands	3×10 ³	195(3) (P-pol.)
Resonant frequency difference between S- and P-pol.	0 Hz	2.52(2) MHz

16th Patras Workshop on Axions, WIMPs and WISPs 2021/06/15 Online

Data acquisition and calibration

- Recorded amount of P-pol. $P_{\rm P}(t)$ and total transmitted light $P_{\rm tot}(t)$
 - Data in low freq.:

for 12 days (May 18-30, 2021) with 1 kHz sampling

• Data in high freq.: with 10 MHz sampling

Estimated sensitivity

- Need to reduce noises to reach shot noise
- Need to reduce resonant frequency difference between pol. and inject higher laser power to achieve DANCE Act-1 design

Discussion for noises

Data analysis

- Applied the ultralight dark matter data analysis pipeline developed by S. Morisaki and J. Kume
- We have 12-day data, but started with one-hour data due to high computational cost
 - → Found 82 candidate peaks

- Next step: veto noise peaks
 - Sharpness of peaks
 - Coincidence between several segments of data

Future plans

• Data analysis to set the upper limit

Summary

- A new experiment to search for axion dark matter with a ring cavity (DANCE)
 I. Obata, T. Fujita, Y. Michimura PRL 121, 161301 (2018)
- Prototype experiment DANCE Act-1 is ongoing
 - Assembled and evaluated the optics
 - Found resonant frequency difference between pol.
 - Obtained the first data for 12 days
 - Estimated the sensitivity and analyzing the data

Extra Slides

Discussion for noises in MHz band

• Suggested to be limited by external noises below 100 kHz

• Could not identify noise source above 100 kHz

Axion

- Hypothetical particles to solve the strong CP problem in QCD
- Many kinds of axion-like particles (ALPs) are predicted by superstring theory
 - One of the candidates for dark matter
- Various methods of measuring axion-photon coupling, especially by using magnetic field, are proposed in many treatise

Picture of experimental setups

16th Patras Workshop on Axions, WIMPs and WISPs 2021/06/15 Online

Cavity scan

16th Patras Workshop on Axions, WIMPs and WISPs 2021/06/15 Online

Performance evaluation of the cavity

	Design values	Ver. Nov. 2020	Ver. Mar. 2021
Reflectivity of mirrors	Low: 99.9 % High: 100 %	Low: 99.9 % High: 99.95 % (Measured with P-pol.)	Low: 99.90(2) % High: <99.99 % (Designed for S-pol. by Layertec)
Finesse for carrier	3140	525(19) (P-pol.)	2.85(5)×10 ³ (S-pol.)
Finesse for sidebands	3140	~300 (S-pol.)	195(3) (P-pol.)
Resonant frequency difference between polarizations	0 Hz	~28 MHz	2.52(2) MHz
Round-trip length	99.4 cm	102(4) cm	97.1(4.5) cm
RoC of mirrors	all 100 cm	95.6(3.7) cm	98.3(2.2) cm
Incident angle	42 deg	40.9(2.4) deg	42.3(1.4) deg
Mode matching ratio	<99 %	83.03(9) %	82.3(1.6) %
Input laser power	1 W	~40 mW	242(12) mW
Transmitted laser power	1 W	~1.2 mW	153(8) mW

16th Patras Workshop on Axions, WIMPs and WISPs 2021/06/15 Online

Important parameters (3)

- Finesse difference between polarizations
 - ••• From mirrors' reflectivity difference
- Resonant frequency difference between polarizations
 - ••• From non-zero phase shift by mirror reflections

Fixed parameters

- Wavelength of laser: 1064 nm
- Round-trip length: 1 m
- Input laser power: 1 W
- Observation time: 1 year

Variable parameters

- Finesse for carrier \mathcal{F}_{car}
- Finesse for sidebands \mathcal{F}_{side}
- Resonant frequency difference between polarizations δ_{res}

Fixed parameters

- Wavelength of laser: 1064 nm
- Round-trip length: 1 m
- Input laser power: 1 W
- Observation time: 1 year

- Finesse for carrier: 3000
- Resonant frequency difference between polarizations: 0 Hz

Fixed parameters

- Wavelength of laser: 1064 nm
- Round-trip length: 1 m
- Input laser power: 1 W
- Observation time: 1 year

- Finesse for carrier: 3000
- Finesse for sidebands: 3000

Fixed parameters

- Wavelength of laser: 1064 nm
- Round-trip length: 1 m
- Input laser power: 1 W
- Observation time: 1 year

- Finesse for carrier: 3000 \mathcal{F}_{car}
- Resonant frequency difference between polarizations: 3 MHz

Signal calibration

$$\begin{pmatrix} E_{\rm S} \\ E_{\rm P} \end{pmatrix} = \begin{pmatrix} E_0 \cos \phi(t) \\ E_0 \sin \phi(t) \end{pmatrix}$$

$$HWP \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ -\sin 2\theta & \cos 2\theta \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} E_{\rm S}' \\ E_{\rm P}' \end{pmatrix} = \begin{pmatrix} E_0 \cos (2\theta + \phi(t)) \\ E_0 \sin (2\theta + \phi(t)) \end{pmatrix}$$

$$P_{\rm S} = E_{\rm S}'^2 = E_0^2 \cos^2 (2\theta + \phi(t))$$

$$P_{\rm P} = E_{\rm P}'^2 = E_0^2 \sin^2 (2\theta + \phi(t))$$

$$When 2\theta + \phi \ll 1, \sin(2\theta + \phi(t)) \approx 2\theta + \phi(t)$$

$$P_{\rm Pol. rotation angle 2\theta + \phi(t) = \frac{E_{\rm P}'}{E_0}$$

Spectrum is independent of $2\theta = \text{const.}$

Frequency servo by PDH technique

16th Patras Workshop on Axions, WIMPs and WISPs 2021/06/15 Online

Stability of frequency servo

16th Patras Workshop on Axions, WIMPs and WISPs 2021/06/15 Online

frequency [Hz]

Spectrum of external noises

Coherent Time Scale

- SNR grows with √Tobs if integration time is shorter than coherent time scale
- SNR grows with (Tobs)^{1/4} if integration time is longer

Sensitivity Design

• Brute force necessary, you cannot win for free

Optical table and optical fiber

Issues of ver. Nov. 2020

Built a two-story optical table
Lifted laser light with an optical fiber

Unstable setup

Improvement of ver. Mar. 2021

- Assembled the optics on the first floor without the fiber
- Surrounded the optical table by aluminum plates

Wind

Light

Loss of 50 % Large intensity noise

More stable frequency servo Easier to avoid natural light

Mirrors and alignment

Issues of ver. Nov. 2020

- Mirrors had low reflectivity and large loss
- Mirror alignment was not accurate due to holding jigs
 → Small finesse

Improvement of ver. Mar. 2021

- Changed to mirrors with high reflectivity and small loss
- Improved alignment by changing mirror holding jigs
 → Improved finesse

16th Patras Workshop on Axions, WIMPs and WISPs 2021/06/15 Online