重力波望遠鏡 TOBA のための 結合光共振器を用いた角度信号増幅の実証

Angular Signal Amplification with a Coupled Cavity for Torsion–Bar Gravitational–Wave Antenna

東京大学大学院理学系研究科物理学専攻 大島由佳

ねじれ型重力波望遠鏡 TOBA で
 0.1 Hz 帯の重力波観測を目指している

- TOBAの角度センサとして
 結合光共振器を用いた wavefront sensor (Coupled WFS)
 が考案された
 - 角度信号が大きい
 - ビームジッター雑音が小さい
- 本研究ではCoupled WFSのシミュレーションと 原理実証実験を行った
 - 信号強度と線形レンジの関係を示した
 - 制御手法を確立した
 - 角度信号増幅を定量的に評価した

- ねじれ型重力波望遠鏡 TOBA
- 結合光共振器を用いた wavefront sensor (Coupled WFS)
- FINESSEを用いたシミュレーション
- 原理実証実験
- 実験結果·考察
- まとめ・今後の展望

- ねじれ型重力波望遠鏡 TOBA
 - TOBAの原理
 - TOBAのサイエンス
 - プロトタイプ Phase-III TOBA
- 結合光共振器を用いた wavefront sensor (Coupled WFS)
- FINESSEを用いたシミュレーション
- 原理実証実験
- 実験結果·考察
- まとめ・今後の展望

低周波数の重力波観測

- 重力波
 - 時空のゆがみが波として伝播する現象
 - 電磁波では観測が難しい天体現象を観測できる
- 重力波観測の現状
 - レーザー干渉計型重力波望遠鏡
 LIGO・Virgo・KAGRAが稼働中
 - 10 Hz 1 kHz の感度が良い
 10 Hz 1 kHz の感度が良い
 2015年
 → 恒星質量ブラックホールや中性子星の連星合体

- 周波数によって観測対象が異なる
- 低周波数:背景重力波•

LIGO - O3b catalog

2021年

5 / 41

Masses in the Stellar Graveyard

 $200\,M_{\odot}$

ねじれ型重力波望遠鏡 TOBA

- TOBA: <u>TO</u>rsion-<u>B</u>ar <u>A</u>ntenna
- 目標感度: 10⁻¹⁹/√Hz @ 0.1 Hz
- 水平に懸架した2本の棒状マスのねじれ回転を検出
- ねじれ振り子の共振周波数は低い(~1 mHz) → 地上で低周波数に高感度
 - 宇宙打ち上げの技術開発・コストが不要
 - 地上のためメンテナンスが簡単
 - 地上ならではのサイエンス

TOBA で得られるサイエンス

TOBA 開発の流れ

Phase-I Phase-II

現在 Phase-III

原理実証

10⁻⁸/√Hz (達成) 20 cm 試験マス

室温

要素開発・雑音低減 10⁻¹⁵ /√Hz (目標) 35 cm 試験マス 低温 (4 K)

eismometers & tiltmeter

hexapod actuators

laser

10⁻¹⁹ /√Hz (目標) 10 m 試験マス 低温 (4 K)

本観測

修士論文審査会 2022/01/19 オンライン

T. Shimoda+ (2020)

pulse-tube

cryocooler

Phase-III TOBA で得られるサイエンス

低周波重力波望遠鏡として

- 中間質量ブラックホール 連星合体
 - ~1 Mpc以内

~10 Gpc以内 (Final)

背景重力波 Ω_{GW} ~10⁻⁷ (Final)

重力勾配計として 重力勾配雑音 モデル検証・非定常雑音 10⁻¹ Seismic NN Infrasound NN 10⁻¹ Laser-Atom Strain noise [1// Hz] TOBA 10⁻¹⁰ Michelson 10⁻¹ 10 10 10⁻²

▶ 地震速報

10⁻²¹_____

100km 先のM7の地震を10秒以内 今より10秒以上早い速報 (Final)

0.1 Frequency [Hz]

Phase-III TOBAの構成

Phase-III TOBAの目標感度

修士論文審査会 2022/01/19 オンライン

11 / 41

ねじれ型重力波望遠鏡 TOBA

- 結合光共振器を用いた wavefront sensor (Coupled WFS)
 - 角度センサの比較
 - Coupled WFSの原理
 - 先行研究の課題
- FINESSEを用いたシミュレーション
- 原理実証実験
- 実験結果·考察
- まとめ・今後の展望

- ねじれ振り子の回転を高感度に読み取るセンサが必要
- Phase-III TOBAの散射雑音の要求値(角度換算): 5×10⁻¹⁶ rad/√Hz

光共振器

- 光共振器: 鏡を向かい合わせて光をためる装置
 - フィネス:光をためる能力を表す物理量
 - Gouy 位相: 00 モードと10 モードの位相差 → 同時に共振しない
- PDH法: 共振状態に制御する手法
 - PDH 信号: 共振点まわりで線形な信号
 - フィードバック信号は鏡やレーザー光源に返す

Wavefront sensorの原理

- <u>WaveFront Sensor(WFS)</u>: 光共振器を用いた角度センサ
- ミラーの傾きで10モードが生まれる
- 00モードと10モードの干渉を検出
- 左右の信号の差をとる → 傾き量に比例した WFS 信号

● Gouy 位相により00モードと10モードが同時に共振しない
 → 共振器内で10モードが増幅されない

Coupled wavefront sensorの原理

● Coupled WFS: 結合光共振器 (<u>coupled</u> cavity)を用いた <u>WFS</u>

 補助共振器による位相補償で主共振器のGouy 位相を打ち消し 00モードと10モードを同時に共振させる
 → 主共振器内で10モードが増幅される
 → WFSより大きな信号

2.5

Phase shift [deg]

補助共振器長

補助共振器で反射するときに 00モードと10モードは異なる位相を受け取る → 主共振器のGouy 位相を打ち消せる

Coupled WFSのビームジッターへの応答

● ビームジッター:入射光の揺らぎ

→ 入射光の10モードがWFS 信号に現れ雑音となる

● ビームジッターは増幅されない

→ ビームジッター雑音に対して信号雑音比が良い

先行研究の課題

原理実証実験により Coupled WFSの信号増幅を確認した

信号増幅の定量的な評価が行われていない

宮崎祐樹修士論文 (2019)

線形レンジが計算されていない

⇒ 本研究で解決を目指す

- ねじれ型重力波望遠鏡 TOBA
- 結合光共振器を用いたwavefront sensor (Coupled WFS)
- FINESSEを用いたシミュレーション
 - 目的·方法
 - Coupled WFSの信号増幅
 - Coupled WFSの線形レンジ
- 原理実証実験
- 実験結果·考察
- まとめ・今後の展望

FINESSE を用いたシミュレーション

- 目的
 - Coupled WFSの性質 (特に線形レンジ)を明らかにする
- 目標
 - Coupled WFS の信号が WFS より大きいことを確認する
 - Coupled WFSの線形レンジを計算する
- 方法
 - 線形レンジには解析解がない
 → 干渉計シミュレーションソフト FINESSE を使用
 - Coupled WFSを構築しパラメータを変えながらWFS 信号を計算する

Coupled WFSの信号増幅

(Coupled) WFS signal [W]

修士論文審査会 2022/01/19 オンライン

22 / 41

WFSの線形レンジ

WFSの信号強度と線形レンジはフィネスに依存しない ← 10 モードが増幅しないため

修士論文審査会 2022/01/19 オンライン

23 / 41

追加

定

6

Coupled WFSの線形レンジ

● フィネスが大きいほどCoupled WFSの信号強度が大きい

● 信号強度が大きくなると線形レンジが狭くなる(トレードオフ)

Coupled WFSの制御点

 ・補助共振器の制御点を変えることで
 Coupled WFSの信号強度と線形レンジを選ぶことができる
 → 1つの装置で様々な応答を示すセンサとして便利

修士論文審査会 2022/01/19 オンライン

9.1

9.2

9.3

Detuning of auxiliary cavity [deg]

9.4

追加

- ねじれ型重力波望遠鏡 TOBA
- 結合光共振器を用いた wavefront sensor (Coupled WFS)
- FINESSEを用いたシミュレーション
- 原理実証実験
 - 目的·方法
 - 共振器の設計・性能評価
 - 共振器の制御手法
- 実験結果·考察
- まとめ・今後の展望

・ 前御子法の確立
 ・ 信号増幅の定量的な評価

● 目標

- 主共振器・補助共振器を共振点に制御
- Coupled WFS 信号が WFS 信号より大きいことを実験で実証
- 方法
 - 主共振器・補助共振器ともに PDH 法で制御
 - 共振器のアラインメントが変化しにくい構成で製作

28 / 41

共振器の設計

- Phase-III TOBAの要求値に近づけつつ実験しやすいパラメータを選択
- 主共振器の状態をモニタできるように折り返す
- 位相補償には補助共振器の反射率・ロスが重要
 - HRコーティングを向かい合わせ
 - 0.1%のロスがあっても位相補償できるようにパラメータ設計
- アラインメント安定化のためフロントミラー以外はスペーサーに固定
 → 数日間経ってもアラインメントは大きく悪化しない

共振器の性能評価

	物理量	設計値※	測定値
主共振器	フィネス	225 – 667	200 ± 20
	Gouy 位相 [deg]	12.1 - 12.3	12.1 ± 1.0
	モードマッチ率 [%]	_	87 ± 2
補助共振器	フィネス	$(3.14 - 5.23) \times 10^3$	$(4.1 \pm 0.2) \times 10^3$
	Gouy 位相 [deg]	9.25 – 9.71	9.54 ± 0.04
	モードマッチ率 [%]	_	94 ± 2

※ Layertec 社のスペック値から計算した

- フィネス: 共振ピークの鋭さから測定
- Gouy 位相: 00 モードと10 モードの共振ピークの離れ度合いから測定
- モードマッチ率: 全共振ピークに占める00モードと10モードの割合から測定

共振器の性能評価

	物理量	設計值※	測定値
主共振器	フィネス	225 – 667	200 ± 20
	Gouy 位相 [deg]	12.1 - 12.3	12.1 ± 1.0
	モードマッチ率 [%]	-	87 ± 2
補助共振器	フィネス	$(3.14 - 5.23) \times 10^3$	$(4.1 \pm 0.2) \times 10^3$
	Gouy 位相 [deg]	9.25 – 9.71	9.54 ± 0.04
	モードマッチ率 [%]	_	94 ± 2

※ Layertec 社のスペック値から計算した

- ・補助共振器のフィネスが設計値と矛盾しない
 →補助共振器内のロスが小さく位相補償できる
- Gouy 位相が設計値と矛盾しない → 位相補償できる
- 主共振器のフィネスが設計値より小さい → AR コーティング・基材のロスが原因
- モードマッチ率は十分大きい

共振器の制御手法

- 主共振器・補助共振器ともに共振点に制御することを目指す
 ← 十分な信号増幅が得られ安定に動作するため
 サイドバンド光
- 2つの変調周波数を用いて PDH 法で制御
 - 15 MHz: 主共振器用
 - 3.5 MHz: 補助共振器用

- 主共振器の制御
 - 低周波数のフィードバック信号はフロントミラーに返す
 - 高周波数のフィードバック信号はレーザー光源に返す
 ← レーザー周波数を介して
 主共振器の外乱が補助共振器に伝わるため
- 補助共振器の制御
 - フィードバック信号はエンドミラーに返す

修士論文審査会 2022/01/19 オンライン

エンドミラー

折り返しミラー

15 MHz

フロントミラー

主共振器

キャリア光

中間ミラー

サイドバンド光

3.5 MHz

補助共振器

- ねじれ型重力波望遠鏡 TOBA
- 結合光共振器を用いた wavefront sensor (Coupled WFS)
- FINESSEを用いたシミュレーション
- 原理実証実験
- 実験結果·考察
 - 共振器制御の結果
 - 角度信号増幅・ビームジッターへの応答の測定結果
 - 共振器制御の考察
- まとめ・今後の展望

透過光をカメラで見た様子

 補助共振器は共振点から ずれたところに制御した

→ 考察

34 / 41

角度信号の測定と結果

- フロントミラーに正弦波を注入して角度方向に揺らす
- 光てこ信号を使って較正
- 補助共振器の透過光量から制御点を較正
- WFSとCoupled WFSの信号強度を比較
 - → 信号増幅を確認できた → 測定値と計算値の差は 検出器の位置ずれで説明できる

ビームジッター応答の測定と結果

- ステアリングミラーを揺らして入射光にビームジッターを混ぜる
- 光てこ信号を使って較正
- 補助共振器の透過光量から制御点を較正
- WFSとCoupled WFSの信号強度を比較
 - → ビームジッターを増幅しないことを確認できた
 - → 測定値と計算値の差は 検出器の位置ずれで説明できる

- 共振器の制御の結果
 - 補助共振器の透過光量が揺らぐ → 主共振器の透過光量も揺らぐ

- 原因
 - 主共振器と補助共振器の固有モードのカップリング
 - 補助共振器の制御の安定性

考察1:共振器の固有モードのカップリング

- 現在の問題点
 - フロントミラーを置いた後は補助共振器のアラインメントを調整していない
 - → 2つの共振器の固有モードのカップリングが悪く 補助共振器の10モードの光量が大きい
 - → 主共振器内の光量が減少するため 補助共振器の共振点に制御できない
 - → 共振点から少しずれた点に制御がかかり 透過光量が1次でふらついている

- 解決方法
 - ステアリングミラーとフロントミラーのアラインメントを調整して
 共振器の固有モードのカップリングを改善
 → 補助共振器の10モードの光量を減らす
 - ただし PDH 信号が小さくなるので制御のゲインを大きくする必要がある

考察2:補助共振器の制御の安定性

- 現在の問題点
 - 2つの共振器の PDH 信号は 40 Hz 以上で相関をもっている
 → 高周波数帯までフィードバック信号を返せず制御が不安定
- 解決方法
 - フロントミラーを振り子で吊って防振し
 主共振器の高周波数帯での外乱を小さくする(設計・製作済み)
 - 主共振器のフィードバック信号をフロントミラーに返し
 PDH 信号の高周波数帯における相関を小さくする

- ねじれ型重力波望遠鏡 TOBA
- 結合光共振器を用いたwavefront sensor (Coupled WFS)
- FINESSEを用いたシミュレーション
- 原理実証実験
- 実験結果·考察
- まとめ・今後の展望

- 本研究の成果
 - シミュレーションにより Coupled WFS の線形レンジを明らかにした
 - Coupled WFSを製作しPDH法による制御を実現した
 →制御は十分安定とはいえないが解決可能
 - 角度信号増幅とビームジッターへの応答を確認した

• TOBAへの導入に向けて要求値を満たす設計の考案・雑音の低減

修士論文審査会 2022/01/19 オンライン

補助共振器の制御点

 Coupled WFSの信号増幅が最大になるとき 反射ポートの10モードも最大
 ← 10モードが増幅されている

- Coupled WFSの信号増幅が最大になるとき 補助共振器の10モードもほぼ最大
 - ← 共振器のフィネスが大きいため 位相補償点と共振点がほぼ一致
- 補助共振器は10モード共振点に制御してよい
 - ← 共振点だと光量がふらつかず安定に動作できる

Coupled WFSのビームジッターへの応答

 ・ 共振器のミスアラインによって内部で生まれた10モードは
 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ビームジッターに含まれる10モードも共振するが 入射光と反射光に含まれる量は変わらない(増幅されない)
 →ビームジッター雑音に対して信号雑音比が良い

FINESSE

- 重力波分野でよく使われている干渉計シミュレーションソフト
- レーザー光源やミラーのコマンドで干渉計を設計
- レーザー光を空間モードで展開し電場を計算する

Power vs. microscopic cavity length change

11

複雑な干渉計・解析解が存在しない計算に有用

ねじれ型重力波望遠鏡 TOBA

- TOBA: <u>TOrsion-Bar</u> <u>Antenna</u>
- 水平に懸架した2本の棒状マス(ねじれ振り子)で構成
- 重力波が到来するとねじれ振り子が回転
- ねじれ振り子の共振周波数は低い(~1 mHz)

→ 低周波数の重力波を観測できる

重力波望遠鏡の中での TOBA の位置づけ

- TOBA の目標感度: 10⁻¹⁹/√Hz @ 0.1 Hz
- 地上のレーザー干渉計型重力波望遠鏡 (LIGO・Virgo・KAGRA)との違い
 - ・ より低い周波数帯をねらう → 異なるサイエンス
- 宇宙の重力波望遠鏡(LISA・DECIGO)との違い
 - 宇宙打ち上げの技術開発・コストが不要
 - 地上のためメンテナンスが簡単
 - 地上ならではのサイエンス

角度信号増幅についての考察

● 信号増幅度の計算値と測定値が一致しない

- 原因: 光検出器の位置ずれ
 - WFS の信号強度は光検出器の位置に依存
 - ・ 光検出器をフロントミラーから 74.6 cm の場所に置くことが目標
 - 2 cm 程度ずれうると考え増幅度を計算

→ -2 cm ずれている場合1点を除いて誤差の範囲で一致 ビームジッターへの応答のふるまいとも無矛盾

解決方法:光検出器をマイクロステージにのせて位置調整を可能にする

Coupled WFSの信号増幅

Coupled) WFS signal [W]

Phase compensation with auxiliary cavity

修士論文審査会 2022/01/19 オンライン

Lock points of auxiliary cavity

Solutions do not always exist

Allowed reflectivity

Possible configurations

• Test mass can be put anywhere

Comparison of angular sensors

MI	Optical lever	Simple WFS	Folded WFS	Coupled WFS
0	X	X	0	0
\triangle	X	X	\bigcirc	0
X	\bigcirc	\bigcirc	\bigcirc	\bigcirc
X	\bigcirc	0	0	0
			Weak to shrink in cryostat	Difficult to control with two DoF
		MI Optical lever NI NI O NI NI O O NI NI O NI NI NI NI NI NI NI NI NI NI	MIOptical leverSimple WFSImage: Simple Image: Simple <td>MIOptical leverSimple WFSFolded WFSImage: Simple Image: Simpl</br></td>	MIOptical leverSimple

Folded WFS

 HG₀₀ and HG₁₀ can be resonant simultaneously by changing cavity length

 \rightarrow HG₁₀ mode signal can be amplified in folded WFS

Mirrors I purchased from Layertec

Large RoC is better for thermal noise Small RoC is better for alignment

Folded	Mid	End	
∞ (flat)	7 m convex	4 m concave	Auxiliary cavity is
99.4 %	99.94 %	99.9 %	(better to control)
	99.9 %	99.94 %	over-coupled (better to compensate phase)
	Folded ∞ (flat) 99.4 %	Folded Mid ∞ (flat) 7 m 99.4 % 99.94 % 99.9 % 99.9 %	Folded Mid End ∞ (flat) 7 m 4 m ∞ (flat) 7 m convex 99.4 % 99.94 % 99.9 % 99.9 % 99.9 % 99.94 %

Cavity parameters

- Beam radius
 - 500 µm at front mirror (waist)
 - 508 µm at end mirror
- Finesse
 - 337 (main when auxiliary is under-coupled)
 - 330 (main when auxiliary is over-coupled)
 - 3.93×10³ (auxiliary)

My designs are strong to loss

Control of two DoF

- Plan to control with PDH technique for both cavities
- Signal separation (main-auxiliary) is important
- Under-coupled cavity gives better signal separation

Idea of control (1)

- Inject different polarizations into auxiliary cavity from behind
- Reflected light of main and auxiliary cavity is detected independently

Idea of control (2)

- Use two different modulation frequencies for main and auxiliary cavity
- Reflected light of auxiliary cavity is detected from folded mirror

	Length	FSR	Finesse	FWHM	Possible modulation freq.
Main	8 cm	3.8 GHz	300	13 MHz	40 MHz
Auxiliary	6 cm	5 GHz	4000	1.3 MHz	4 MHz

●角度の読み取り雑音の要求値: 5×10⁻¹⁶ rad/√Hz (Phase-III)

共振器長の制御手法

- 主共振器と補助共振器を PDH 法で制御
 - 2つの異なるサイドバンド周波数を使用
 - 信号取得のために主共振器を折り返す

共振器の設計

●補助共振器に0.1%のロスがあっても位相補償できるように設計

- ●入射鏡はTOBAの試験マスに見立てて振り子で吊るす
- ●他の3つの鏡はアルミニウム製スペーサーに固定

修士論文審査会 2022/01/19 オンライン

History of interferometer simulation tools

Frequency domain

- Twiddle (1998-)
 - First tool, but slow to calculation
- FINESSE (2000-)
 - Much faster than Twiddle
- Thomas tool (2003-)
 - First tool to calculate radiation pressure
 - RF cannot be calculated
- Optickle (2005-)
 - Radiation pressure can be calculated including RF

Time domain I don't know at all... ex.) e2e

<u>JGW-G0900053-v1: Matlab上で動くOptickleを</u> 使った干渉計シミュレーション オンライン 66 / 41

FINESSE vs. Optickle

- They have both strong and weak points
 - \rightarrow We have to choose which to use depending on purposes

	FINESSE	Optickle
Misalign of mirrors		::
Higher-order modes		::
Radiation pressure		•
Polarizations	(?)	•
Way of using	C & gnuplot, or Jupyter	MATLAB
	I chose this	I only installed and

for Coupled WFS run sample codes...

JGW-G0900053-v1: Matlab上で動くOptickleを 使った干渉計シミュレーション

What is FINESSE?

- One of interferometer simulation tools
- <u>Frequency domain INterfErometer Simulation SotfwarE</u>
- Created by <u>Andreas Freise</u>
- Open sourced since 2012
- Used by many GW researchers

Locations of downloads

JGW-G1301720: FINESSE lecture slides History and impact of FINESSE : You can find many papers that cite FINESSE

How does FINESSE work?

Cheatsheet

<u>FINESSE official website</u> > <u>4. Documentation</u> > <u>Cheatsheet</u>

 Cheatsheet provides some answers to frequently asked questions (= very important information about use of commands)

修士論文審査会 2022/01/19 オンライン

Microscopic length "phi"

- Command "phi" is important for simulation of Coupled WFS and DANCE when tuning length of mirrors microscopically
- "Phi" is defined such that a tuning of phi = 360 deg corresponds to a change of one wavelength

$$\Delta L = \frac{\phi}{360^{\circ}} \lambda$$

- FSR of linear cavity is not 360 deg, but 180 deg
 FSR of ring cavity depends on angle of incidence
- Sign of "phi" is opposite for front and end mirrors

Choose proper sign for detuning and feedback signals

flat Finesse 300

Experimental vs. simulation setup

I want to build simulation setup as similar to my experimental setup as possible

99.4%

8 cm

But too complicated setup is difficult for simulation

修士論文審査会 2022/01/19 オンライン
Simulation setup of WFS

 Before calculating linear range of Coupled WFS, I calculate that of WFS for comparison

Step to calculate linear range of WFS

- 1. Search for best Gouy phase by sweeping it
- 2. Calculate linear range by increasing misalignment
- 3. Calculate finesse dependence by changing reflectance

Simulation setup of WFS

 Before calculating linear range of Coupled WFS, I calculate that of WFS for comparison

Step to calculate linear range of WFS

- 1. Search for best Gouy phase by sweeping it
- 2. Calculate linear range by increasing misalignment
- 3. Calculate finesse dependence by changing reflectance

Result of best Gouy phase

analytical solution. Why?

 \rightarrow Because of flat front mirror

(Rounding error in np.Inf?)

When I change front mirror to concave, two results are consistent WFS_GouyPhase_AnalyticalSolution.ipynb 修士論文審査会 2022/01/19 オンライン 75 / 41

Result of linear range

WFS_LinearRange_tips.ipynb 76 / 41

Linear range: ~0.04 mrad
WFS signal: ~2 W/rad

Tips for simulating linear range

- By the way, simulating linear range of WFS with FINESSE is not easy
- I introduce tips and bad simulating examples

Tips

- 1. Monitor intracavity power with PD
- 2. Misalign mirror from 0 rad
- 3. Perform feedback control with "lock" command
- 4. Choose proper sign for feedback signal

Bad simulating examples

WFS_LinearRange_tips.ipynb

修士論文審査会 2022/01/19 オンライン

78 / 41

Result of finesse dependence

- WFS signal and linear range are independent on finesse
 - ← Consistent with Takano-san's result

JGW-G2113337-v2: How to simulate WFS signal properly with FINESSE

79 / 41

WFS_LinearRange.ipynb

修士論文審査会 2022/01/19 オンライン

How to build coupled cavity

- Before calculating linear range of Coupled WFS, I have to build coupled cavity with FINESSE
- Eigenmode declared later is overwritten, so I have to calculate configuration of coupled cavity in advance
 - cav auxcav mid n7 end n8 \leftarrow Trace eigenmode for auxiliary cavity,
 - cav maincav front n5 mid n6 but overwritten

↑ Trace eigenmode for main cavity

RoC.m

Distance from front mirror [cm]

修士論文審査会 2022/01/19 オンライン

Phase compensation

• I confirm that my simulation setup has lock points of auxiliary cavity for working Coupled WFS

 Auxiliary cavity can compensate Gouy phase of main cavity with this setup 修士論文審査会 2022/01/19 オンライン

PhaseCompensation.ipynb 81 / 41

Simulation setup of Coupled WFS

Step to calculate linear range of Coupled WFS

- 1. Search for lock points of auxiliary cavity by sweeping end mirror
- 2. Search for best Gouy phase by sweeping it
- 3. Calculate linear range by increasing misalignment
- 4. Calculate finesse dependence by changing reflectance

Result of lock points

83 / 41

Result of best Gouy phase

- Best Gouy phase is different between WFS (96 deg) and Coupled WFS (143 deg)
- But configuration of main cavity is the same. Why?

修士論文審査会 2022/01/19 オンライン

CoupledWFS_GouyPhase.ipynb 84 / 41

Result of linear range

Linear range: ~3 urad
WFS signal: ~40 W/rad

ont mirror: 98.2% CoupledWFS 修士論文審査会 2022/01/19 オンライン

CoupledWFS_LinearRange.ipynb 85 / 41

Result of finesse dependence

 As finesse increases, Coupled WFS signal increases and linear range decreases

> CoupledWFS_LinearRange.ipynb 86 / 41

修士論文審査会 2022/01/19 オンライン

Summary of Coupled WFS results

- Factors for signal amplification and linear range reduction are roughly equal CoupledWFS_LinearRange.ipynb
- This factor is much smaller than finesse 修士論文審査会 2022/01/19 オンライン

87 / 41