The current status of DANCE: Dark matter Axion search with riNg Cavity Experiment

Yuka Oshima Department of Physics, University of Tokyo

Taihei Watanabe, Hiroki Fujimoto, Yuta Michimura, Koji Nagano, Ippei Obata, Tomohiro Fujita, Masaki Ando

Overview

- A new method to search for axion-like particles with a table-top experiment

 I. Obata, T. Fujita, Y. Michimura, <u>PRL 121, 161301 (2018)</u>
- DANCE: Dark matter Axion search with riNg Cavity Experiment
- Prototype experiment DANCE Act-1 is ongoing

Contents

- Introduction
 - Axion
 - Previous researches
- Methods
 - Principle of DANCE
 - Experimental setups of DANCE
- Results
 - Performance evaluation of a cavity
 - Data analysis & Sensitivity
- Discussion & Future plans

Kashiwa Dark Matter Symposium 2020/11/19 Online

Ultralight dark matter

- Dark matter has not been detected yet
- Need to search in wider mass range
- Ultralight dark matter search with laser interferometer is attracting attention

Axion

- Hypothetical particles to solve the strong CP problem in QCD
- Many kinds of axion-like particles (ALPs) are predicted by superstring theory
 - One of the candidates for dark matter
- Various methods of measuring axion-photon coupling, especially by using magnetic field, are proposed in many treatise

Upper limits from previous researches

Contents

- Introduction
 - Axion
 - Previous researches
- Methods
 - Principle of DANCE
 - Experimental setups of DANCE
- Results
 - Performance evaluation of a cavity
 - Data analysis & Sensitivity
- Discussion & Future plans

Kashiwa Dark Matter Symposium 2020/11/19 Online

Rotation of linear polarization

Axion-photon coupling causes phase velocity difference between left- and right-handed photons

$$c_{\rm L/R} = \sqrt{1 + \frac{g_{a\gamma}a_0m_a}{k}} \sin(m_a t + \delta_{\tau})$$

Coupling constant Axion field Axion mass

 Phase velocity difference of circular polarizations makes linear polarization rotate

Kashiwa Dark Matter Symposium 2020/11/19 Online

Amplification of rotation angle

- We measure rotation angle of linear polarization caused by axion (if axion is DM)
- Rotation angle is too small to be observed without a cavity

- Laser light runs between mirrors many times in a cavity
 - \rightarrow Rotation angle can be amplified

Kashiwa Dark Matter Symposium 2020/11/19 Online

Laser

Laser

Bow-tie ring cavity

- Rotated direction is inverted in a linear cavity
 - → Rotation effect is cancelled out

• A bow-tie ring cavity prevents linear polarization from inverting rotated direction

Kashiwa Dark Matter Symposium 2020/11/19 Online

Sensitivity of DANCE

• Shot noise is caused by fluctuations of number of photons

• Need to minimize other noise, except for shot noise

Experimental setups of DANCE

Frequency servo by PDH technique

 Lock laser frequency to resonance of a cavity to obtain data for a long time

Picture of the setups (whole)

Contents

- Introduction
 - Axion
 - Previous researches
- Methods
 - Principle of DANCE
 - Experimental setups of DANCE
- Results
 - Performance evaluation of a cavity
 - Data analysis & Sensitivity

• Discussion & Future plans

Performance evaluation of a cavity

	Design value	Measured value (P polarization)	
Reflectance of mirrors	M1, M4: 99.9 % M2, M3: 100 %	M1, M4: 99.9 % M2, M3: 99.95 %	→ Finesse 2100
Finesse (Number of round-trips)	3140	<mark>525 ± 19</mark> (S pol. : 527 ± 29)	 → Loss of light 0.91 % → Misalignment
Round-trip length	99.4 cm	102 ± 4 cm	0.9 deg
Radius of curvature of mirrors	100 cm (all)	102 ± 2 cm	
Incident angle	42 deg	41.9 ± 1.7 deg	
Mode matching ratio	99.9987 %	83.03 ± 0.09 %	
Input power	~1 W	~40 mW	

The sensitivity depends on finesse and input power

Data acquisition

- HWP is fixed to make equal amount of P and S polarization
- Record a differential power $(P_{\rm P}-P_{\rm S})(t)$
- Use a subtraction circuit to remove common noise of P and S polarization and to reduce quantization noise of a data logger

Data analysis

Rotation angle of linear polarization

$$\phi(t) = \frac{(P_{\rm P} - P_{\rm S})(t)}{2(P_{\rm P} + P_{\rm S})}$$

Kashiwa Dark Matter Symposium 2020/11/19 Online

Current estimated sensitivity

19/24

Contents

- Introduction
 - Axion
 - Previous researches
- Methods
 - Principle of DANCE
 - Experimental setups of DANCE
- Results
 - Performance evaluation of a cavity
 - Data analysis & Sensitivity
- Discussion & Future plans

Discussion for noise

- Sensitivity is limited by laser intensity noise in 0.1 Hz-10 Hz
 - An optical fiber

Correlation with feedback signal

mechanical)

Future plans

- Improve finesse
 - Change to high quality mirrors
 - Improve alignment of mirrors
- Reduce noise
 - Construct setups without an optical fiber
 - Reduce external vibration
- Higher laser input power

Summary

- A new table-top experiment searches for ALPs with a ring cavity
 DANCE: Dark matter Axion search with riNg Cavity Experiment
- DANCE observes rotation of linear polarization in a bow-tie cavity
- Prototype experiment DANCE Act-1 is ongoing
 - Assembly of optics and performance evaluation of a cavity are finished
 - Now hunting and reducing noise to achieve the design sensitivity

Extra Slides

Data analysis

Kashiwa Dark Matter Symposium 2020/11/19 Online

Comparison for data analysis

Cavity scan

Stability of feedback control

Kashiwa Dark Matter Symposium 2020/11/19 Online

Double-loop control

Only with laser PZT actuator : in a few hours

With laser PZT actuator and temperature actuator : in a few days

Open-loop transfer function (raw data)

Coherence between polarizations

Kashiwa Dark Matter Symposium 2020/11/19 Online

Transfer function between polarizations

Bow-tie cavity & Double-pass configuration

 Bow-tie ring cavity
 The effect is canceled in a linear cavity

Not canceled in a bow-tie cavity

Double-pass configuration
 Transmitted beam is reflected back into a cavity
 Axion signal is extracted from the reflection

Laser

(null measurement)

Kashiwa Dark Matter Symposium 2020/11/19 Online

PΓ

Sensitivity Design

• Brute force necessary, you cannot win for free

Coherent Time Scale

- SNR grows with √Tobs if integration time is shorter than coherent time scale
- SNR grows with (Tobs)^{1/4} if integration time is longer

Picture of the setups (1st floor)

Kashiwa Dark Matter Symposium 2020/11/19 Online

Picture of the setups (2nd floor)

