ねじれ振り子型重力波検出器 TOBA(Phase-III)の開発(41): ねじれ振り子と読み取り光学系の開発

<u>大島 由佳</u>^A, 高野 哲^A, Ooi Ching Pin^A,Cao Mengdi^B, 道村 唯太^{C, D}, 小森 健太郎^D, 安東 正樹^{A, D} + Perry Forsyth^A

> 東大理^A,北京師範大天文^B, カリフォルニア工科大学^C,東大ビッグバン^D

- ねじれ振り子型重力波望遠鏡 TOBA で
 0.1 Hz 帯の重力波観測を目指している
- プロトタイプ Phase-III TOBA を開発中
 - ねじれ振り子の冷却試験は完了
 - 感度を追求する段階
- 過去のプロトタイプで得られた知見をもとに設計を行った
 - 懸架系
 - 読み取り光学系

- ねじれ振り子型重力波望遠鏡 TOBA
 - 原理
 - サイエンス
 - 開発の流れ
- プロトタイプ Phase-III TOBA
 - 構成
 - 目標感度
 - 現状·開発項目
- 懸架系・読み取り光学系の設計
 - 目的·構成
 - 目標感度·要求値
 - 懸架系
 - 光学系

- ねじれ振り子型重力波望遠鏡 TOBA
 - 原理
 - サイエンス
 - 開発の流れ
- プロトタイプ Phase-III TOBA
 - 構成
 - 目標感度
 - 現状·開発項目
- 懸架系・読み取り光学系の設計
 - 目的·構成
 - 目標感度·要求値
 - 懸架系
 - 光学系

ねじれ振り子型重力波望遠鏡 TOBA

- TOBA: <u>TOrsion-Bar</u> <u>Antenna</u>
- 水平に懸架した2本の棒状マスで潮汐力によるねじれ回転を検出
- ねじれ振り子の共振周波数は低い(~1 mHz)
 → 地上で低周波数に高感度
 - 宇宙打ち上げの技術開発・コストが抑えられる
 - 地上にあるためメンテナンスが簡単
 - 地上にあるため地球物理のサイエンスも得られる

TOBA で得られるサイエンス(1)

低周波の重力波観測

- 中間質量ブラックホール連星合体
 - ~1 Mpc 以内 (銀河系内) (Phase-III)
 - ~10 Gpc 以内 (宇宙全体) (Final)
 → 大質量ブラックホール形成過程の解明

- 背景重力波
 - $\Omega_{GW} \sim 10^{-7}$ (Final)
 - → 初期宇宙の直接探査

TOBA で得られるサイエンス(2)

- より早い地震速報
 - 100 km 先の M7 の地震を 10 秒以内 (Phase-III)
 → 災害被害の軽減

TOBA 開発の流れ・目標感度

日本物理学会 2022/09/18 東北大学

- ねじれ振り子型重力波望遠鏡 TOBA
 - 原理
 - サイエンス
 - 開発の流れ
- プロトタイプ Phase-III TOBA
 - 構成
 - 目標感度
 - 現状·開発項目
- 懸架系・読み取り光学系の設計
 - 目的·構成
 - 目標感度·要求値
 - 懸架系
 - 光学系

Phase-III TOBAの構成

<u>下田智文博士論文 (2019)</u>

日本物理学会 2022/09/18 東北大学

Phase-III TOBAの目標感度

Phase-III TOBA の現状

- 常温での達成感度: 4×10⁻⁸ /√Hz @ 0.1 Hz
 - 読み取りはマイケルソン干渉計
 - カウンターウェイトによるテストマスの傾き調整
- 低温での達成感度: 7×10⁻⁷ /√Hz @ 0.1 Hz
 - 6Kまでの冷却に成功
 - 読み取りは光てこ

Phase-III TOBA の開発項目

- 18pT21-7 (本講演) <u>懸架系+光学系</u>:ねじれ振り子と読み取りファブリペロー共振器
- 18pT21-8 (高野) <u>低温+光学系</u>: 低温モノリシック光学系
- 18pT21-9 (Cao)
 <u>防振系</u>:能動防振系のための傾斜計
- 18pT21-10 (Ooi)
 <u>低温懸架系</u>: 低温で高いQ値をもつ懸架ワイヤ

- ねじれ振り子型重力波望遠鏡 TOBA
 - 原理
 - サイエンス
 - 開発の流れ
- プロトタイプ Phase-III TOBA
 - 構成
 - 目標感度
 - 現状·開発項目
- 懸架系・読み取り光学系の設計
 - 目的·構成
 - 目標感度·要求値
 - 懸架系
 - 光学系

実験の目的・構成

- 目的
 - 差動ファブリペロー共振器での角度読み取りの実証
 - シリコン製のねじれ振り子の製作
 - 現在の状況で可能な最高感度を出す

目標感度·要求値

- 目標感度: 6×10⁻¹² /√Hz
 - 懸架ワイヤの熱雑音リミット・常温→低温での感度向上
- 要求値
 - ねじれの共振周波数 < 0.1 Hz: テストマス・懸架ワイヤの設計
 - 並進地面振動からのカップリング雑音 < 熱雑音: テストマス傾き

懸架系の設計

日本物理学会 2022/09/18 東北大学

テストマスの設計

- 冷却時にシリコンが割れないように クランプを設計
 - 低熱膨張インバーを接着
 - その他のパーツはテストマスに 接しない
- 2本のテストマスを直交させ 共振器を構築

光学系の設計

まとめ・今後の予定

- ねじれ振り子型重力波望遠鏡 TOBA で
 0.1 Hz 帯の重力波観測を目指している
- プロトタイプ検出器 Phase-III TOBA を開発中
- 懸架系 · 読み取り光学系の設計を行った

Tidal forces by gravitational waves

20/20

- 目標感度: 6×10⁻¹² /√Hz (懸架ワイヤの熱雑音リミット)
- シリコン製ねじれ振り子・差動ファブリペロー共振器での角度読み取り

日本物理学会 2022/09/18 東北大学

重力勾配雑音

J. Harms+ (2013)

日本物理学会 2022/09/18 東北大学

	先行研究 下田智文博士論文 (2019)	本研究①	本研究②
温度	低温	常温	低温
角度読み取り 光学系	光てこ	差動ファブリペロー 共振器	差動ファブリペロー 共振器
テストマス基材	銅	アルミニウム	シリコン
ミラー基材	溶融石英	溶融石英	シリコン
	達成感度: 7×10 ⁻⁷ /√Hz	設計の問題点・ 雑音源の洗い出し	目標感度: 6×10 ⁻¹² /√Hz

光学系の設計

