光リング共振器を用いた アクシオン暗黒物質の探索実験 DANCE (5):

信号の較正と感度の評価

大島由佳, 藤本拓希, 渡邊泰平, 道村唯太, 長野晃士^A, 小幡一平^B, 藤田智弘^C, 安東正樹 ^{東大理, JAXA宇宙研^A, MPA^B, 東大宇宙線研^C}

● 光リング共振器を用いてアクシオン暗黒物質を探索

I. Obata, T. Fujita, Y. Michimura <u>PRL 121, 161301 (2018)</u>

DANCE: Dark matter Axion search with riNg Cavity Experiment

- プロトタイプ実験 DANCE Act-1 を進行中
 - 光学系を改良し性能を評価した

する実験を提案

• データを取得し感度を評価した

DANCEの構成

日本物理学会 2021/03/12 オンライン開催

重要なパラメータ ①

- 入射光強度 ···散射雑音
- 周回長

•••光路長

● フィネス

・・・共振器内での周回数

● 偏光間の共振周波数差 ・・・鏡への斜め入射による位相差

DANCE Act-1 2020年11月版 2019年4月 - 2020年11月

DANCE Act-1 2021年3月版 2020年12月 - 現在

2020年11月版の問題点

- 場所の関係で光学定盤を2階建てに
 → 不安定
- ・ 光ファイバでレーザー光を2階へ持ち上げる
 → レーザー光強度のロス
 → レーザー光強度雑音
- 鏡の反射率が低い・ロスが大きい
- ・ 鏡のアラインメント精度が低い
 → フィネスが小さい

7 / 14

2021年3月版の改良点

- 光学定盤全体を板で覆う
 - → 空気の揺れの低減による周波数制御の安定化
 - → 自然光の混入を防ぐのが容易に
- 高反射率・低口スの鏡に変更
- 鏡の固定ジグ改良によるアラインメントの向上
 → フィネスの向上

共振器の性能評価

設計值	2020年11月版	2021年3月版		
1 W	~40 mW	274(14) mW		
1 W	~1.2 mW	158(8) mW		
3×10 ³	525(19) (P偏光)	<mark>2.80(34)×10³</mark> (S偏光)		
3×10 ³	~300 (S偏光)	193(10) (P偏光)		
0 Hz	~28 MHz	3.92(16) MHz		
単式にものまたし、 アクシオン質量(周波数)				
	設計値 1 W 1 W 3×10 ³ 3×10 ³ 0 Hz UHz UHZ UHZ UHZ UHZ UHZ UHZ UHZ UHZ	設計値 2020年11月版 1 W ~40 mW 1 W ~1.2 mW 3×10 ³ 525(19) (P偏光) 3×10 ³ ~300 (S偏光) 0 Hz ~28 MHz		

偏光回転角と入射光の相関

偏光回転角とエラー信号の相関

今後の予定

DANCE Act-1 2021年3月版

● 1週間の観測とデータ解析を行う

DANCE Act-1 2021年4月 -

- 偏光間の共振周波数差を小さくする
 - 補助共振器を用いて位相差をキャンセルする実験手法

D. Martynov, H. Miao PRD 101, 095034 (2020)

- 今月中に2W出力のレーザーが納品予定
- 雑音を低減する
 - 透過光強度の安定化
 - 外乱の低減

- ・ 光リング共振器を用いてアクシオン暗黒物質を探索
 する実験を提案 (DANCE)
 I. Obata, T. Fujita, Y. Michimura PRL 121, 161301 (2018)
- プロトタイプ実験 DANCE Act-1 を進行中
 - 光学系を改良し性能を評価した
 - フィネスとレーザー強度を向上させた
 - 偏光間に共振周波数差がある
 - データを取得し感度を評価した
 - 1年間観測した場合 10⁻¹³ eV で 9×10⁻⁷ GeV⁻¹

日本物理学会 2021/03/12 オンライン開催

- 量子色力学における強いCP問題の解決策として 提唱された仮説上の粒子
- 超弦理論から多くの Axion-like particles (ALPs) が予言されている
 - 暗黒物質の有力候補
- アクシオン-光子相互作用を探索する方法が盛んに 行われている
 - 特に磁場を用いる方法が多い

● アクシオン-光子相互作用により 左円偏光と右円偏光に速度差が生じる

$$c_{L/R} = \sqrt{1 \pm \frac{g_{a\gamma}a_0m_a}{k}} \sin(m_a t + \delta_{\tau})$$

相互作用係数 アクシオン場 アクシオン質量

● 円偏光間の速度差は直線偏光の回転を生む

共振器による偏光回転の増幅

● 短い光路長では偏光回転は小さく観測が難しい

● 共振器で光路長を延ばし偏光回転を増幅できる

ボウタイ共振器による偏光回転の保持

● 線形共振では鏡での反射によって 偏光回転が反転する

● ボウタイ共振器では偏光回転を保持できる

重要なパラメータ

- ・・・鏡の反射率の違い 偏光間のフィネスの差
- - 偏光間の共振周波数差 ・・・鏡への斜め入射による位相差

キャビティスキャン

日本物理学会 2021/03/12 オンライン開催

共振器の性能評価

	設計値	2020年11月版	2021年3月版
鏡の 強度反射率	低反射: 99.9 % 高反射: 100 %	低反射: 99.9 % 高反射: 99.95 % (P偏光での測定値)	低反射: 99.90(2) % 高反射: <99.99 % (LayertecによるS偏光での設計値)
キャリアでの フィネス	3140	525(19) _(P偏光)	2.80(34)×10 ³ (S偏光)
サイドバンドでの フィネス	3140	~300 (S偏光)	193(10) _(P偏光)
偏光間の 共振周波数差	0 Hz	~28 MHz	3.92(16) MHz
周回長	99.4 cm	102(4) cm	97.1(4.5) cm
鏡の曲率半径	すべて 100 cm	95.6 ± 3.7 cm	98.3(2.2) cm
入射角	42 deg	40.9 ± 2.4 deg	42.3(1.4) deg
モードマッチング率	<99 %	83.03(9) %	82.3(1.6) %
入射光強度	1 W	~40 mW	274(14) mW
透過光強度	1 W	~1.2 mW	158(8) mW

日本物理学会 2021/03/12 オンライン開催

偏光の回転角での感度の比較

2021年3月版 引き算ができない

日本物理学会 2021/03/12 オンライン開催

V/√Hz での比較

2020年11月

2021年3月

データ解析

$$\begin{pmatrix} E_{\rm S} \\ E_{\rm P} \end{pmatrix} = \begin{pmatrix} E_0 \cos \phi(t) \\ E_0 \sin \phi(t) \end{pmatrix}$$
HWP $\begin{pmatrix} \cos 2\theta & \sin 2\theta \\ -\sin 2\theta & \cos 2\theta \end{pmatrix}$
 $\rightarrow \begin{pmatrix} E_{\rm S}' \\ E_{\rm P}' \end{pmatrix} = \begin{pmatrix} E_0 \cos (2\theta + \phi(t)) \\ E_0 \sin (2\theta + \phi(t)) \end{pmatrix}$
HWP $P_{\rm S} = E_{\rm S}'^2 = E_0^2 \cos^2 (2\theta + \phi(t))$
 $P_{\rm S} = E_{\rm P}'^2 = E_0^2 \sin^2 (2\theta + \phi(t))$
 $2\theta + \phi \ll 1$ のとき $\sin(2\theta + \phi(t)) \approx 2\theta + \phi(t)$
偏光の回転角 $2\theta + \phi(t) = \frac{E_{\rm P}'}{E_0}$
 2θ は定数だからスペクトルに寄与しない

PDH法による周波数制御

日本物理学会 2021/03/12 オンライン開催

外乱のスペクトル

日本物理学会 2021/03/12 オンライン開催

Coherent Time Scale

- SNR grows with √Tobs if integration time is shorter than coherent time scale
- SNR grows with (Tobs)^{1/4} if integration time is longer

● ダブルパス構成 透過光を鏡で打ち返し共振周波数差をヌル測定

日本物理学会 2021/03/12 オンライン開催