Development of Torsion-Bar Antenna for Low-Frequency Gravitational-Wave Observation

Yuka Oshima Department of Physics, University of Tokyo

Satoru Takano, Ching Pin Ooi, Minseo Choi, Mengdi Cao, Kentaro Komori, Yuta Michimura, Masaki Ando

Torsion-Bar Antenna (Yuka Oshima)

Overview

- Proposed <u>Torsion-Bar Antenna (TOBA)</u> to detect GW in 0.1-10 Hz
 - Target: 10⁻¹⁹ /√Hz with 10-m scale torsion pendulums at 4 K
 - Science: intermediate-mass BH binary merger within ~10 Gpc

- Developing prototype detector Phase-III TOBA
 - Target: 10⁻¹⁵ /√Hz with 30-cm scale torsion pendulums at 4 K
 - Science: Newtonian noise, earthquake early warning
 - Some essential components are under development

Tidal forces by gravitational waves

TOBA: <u>TOrsion-Bar</u> Antenna

- Ground-based GW detector for low freq. (0.1-10 Hz)
 - Final target: $10^{-19} / \sqrt{Hz}$ at 0.1 Hz
- Aim to detect the torsional rotation of test masses suspended horizontally
- The resonant frequency of torsional motion is low (~1 mHz) \rightarrow Good sensitivity in low freq. even on the ground
 - Inexpensive to develop
 - Easy to maintain
 - Geophysical science

Torsion-Bar Antenna (Yuka Oshima)

ICRC2023 July 27, 2023 Nagoya University

10⁶

Science of TOBA (1)

<u>Astrophysics</u>

- Intermediate-mass BH binary merger
 - Within ~1 Mpc (Phase-III)
 - Within ~10 Gpc (Final)
 - \rightarrow Formation process of a supermassive black hole

- GW stochastic background
 - $\Omega_{\rm GW} \sim 10^{-7}$ (Final)
 - \rightarrow Direct exploration of the early universe

Torsion-Bar Antenna (Yuka Oshima)

Science of TOBA (2)

Geophysics

- Newtonian noise
 - First direct detection (Phase-III)
 - \rightarrow Noise reduction for the 3rd generation GW detectors

- Earthquake early warning
 - M7 earthquake apart from 100 km within 10 sec (Phase-III)
 - \rightarrow Reduction of disaster damage

Development roadmap of TOBA

Torsion-Bar Antenna (Yuka Oshima)

Configuration of Phase-III TOBA

12

Cryogenic suspension Torsion pendulums at 4 K

Torsion-Bar Antenna (Yuka Oshima)

Optical readout Detect the rotation of the pendulums

Design sensitivity of Phase-III TOBA

Torsion-Bar Antenna (Yuka Oshima)

Current status of Phase-III TOBA (1)

Cryogenic suspension

- \checkmark Cryogenic test was successfully done to 6 K
- Developing suspension wire made of sapphire for high Q value ($\sim 10^8$)
- Designing torsion pendulums to reduce coupling from translational seismic noise

T. Shimoda, Ph.D. thesis (2019)

Photo by C. P. Ooi

Drawn by YO

Torsion-Bar Antenna (Yuka Oshima)

Current status of Phase-III TOBA (2)

Active vibration isolation

- ✓ 3 DoF was successfully controlled with geophones and piezo actuators
- Developing a tiltmeter to reduce tilt-horizontal coupling

Photo by M. Cao

10 / 12

Torsion-Bar Antenna (Yuka Oshima)

Current status of Phase-III TOBA (3)

Optical readout

- ✓ Torsional motion was successfully measured with an optical lever
- Developing improved-type wavefront sensor
- Developing monolithic differential Fabry–Pérot cavity made of silicon

Photo by S. Takano

11 / 12

Torsion-Bar Antenna (Yuka Oshima)

Summary

- Proposed <u>Torsion-Bar Antenna (TOBA)</u> to detect GW in 0.1-10 Hz
 - Target: 10⁻¹⁹ /√Hz with 10-m scale torsion pendulums at 4 K
 - Science: intermediate-mass BH binary merger within ~10 Gpc

- Target: 10⁻¹⁵ /√Hz with 30-cm scale torsion pendulums at 4 K
- Science: Newtonian noise, earthquake early warning
- Some essential components are under development: sapphire wire, torsion pendulums, tiltmeter, improved WFS, monolithic silicon FP cavity

Torsion-Bar Antenna (Yuka Oshima)

Extra Slides

Torsion-Bar Antenna (Yuka Oshima)

ICRC2023 July 27, 2023 Nagoya University

13 / 12

Current status of Phase-III TOBA (3)

Optical readout

- ✓ Torsional motion was successfully measured with an optical lever
- Developing improved-type wavefront sensor
- Developing monolithic differential Fabry–Pérot cavity made of silicon

Torsion-Bar Antenna (Yuka Oshima)

Photo by S. Takano