Torsion Pendulum with Interferometric Readout for Low-Frequency Gravity Gradient Observation

低周波重力勾配観測のための高感度ねじれ振り子の開発

東京大学大学院理学系研究科物理学専攻安東研究室 大島由佳(Yuka Oshima)

博士論文審査会 2025/01/07 理学部1号館414号室

- 低周波重力波などの観測を目指している
- 35 cmスケールのねじれ振り子型重力勾配計
 Phase-III TOBAを開発中である
- 光学系と懸架系を組み合わせた設計・開発を行った
 - 差動ファブリペロー共振器(TOBA初)・光てこ
 - 低温シリコン仕様・アルミニウム製のねじれ振り子

- 縦防振のためのGASフィルタ(TOBA初)
- 装置を製作し動作に成功して性能評価を行った
- 光てこによる回転計測・同相雑音除去の解析を行った
- TOBAの光学系と懸架系の構成を確立した

- 研究背景 ··· 第1章
- ねじれ振り子型重力勾配計TOBA ・・・ 第2章
- 実験セットアップ ・・・ 第3章
- 結果·考察 · · · 第4章
- 結論 ··· 第5章

博士論文審查会 2025/01/07 理学部1号館414号室

目次

- 研究背景
 - 低周波重力波
 - ニュートニアン雑音
 - 重力勾配を用いた地震速報
 - 提案・開発されている重力勾配計
- ねじれ振り子型重力勾配計TOBA
- 実験セットアップ
- 結果·考察
- 結論

低周波重力勾配変動観測

- 観測対象
 - 低周波重力波
 - ニュートニアン雑音
 - 重力勾配を用いた地震検出
- 重力勾配[/s²] = 重力歪み [無次元] の時間の2階微分 $G(x,t) = \frac{d^2}{dt^2}h(x,t)$

5/47

- 重力勾配計 = 重力波望遠鏡
- 低周波数: ここでは0.1 Hz-10 Hz

博士論文審查会 2025/01/07 理学部1号館414号室

低周波重力波

- 重力波:時空の歪みが波として光速で伝播する現象
 - 電磁波では観測が難しい天体現象を観測できる
- 重力波観測の現状
 - レーザー干渉計型重力波望遠鏡LIGO・Virgo・KAGRAが稼働中

6 / 47

Final TOBA

VOY

2025

ET >2030) CE ~2035)

- 10 Hz-1 kHzの感度が良い
- 恒星質量ブラックホールや中性子星の連星合体を約90イベント検出 (2023年時点)
 3000+

/⊙

(1.200 + 80) N

10-4

Pop-B

LISA (~2034

10

3,500

00

 $80 M_{\odot}$

Gravitational wave frequency (Hz)

- 低周波数帯を観測することが重要
 - 中間質量ブラックホール連星合体
 → 超巨大ブラックホール
 形成過程の解明
 - ・ 背景重力波
 → 初期宇宙の直接探査

博士論文審査会

2025/01/07 理学部1号館414号室

K. Jani+, Nature Astronomy (2020)

● ニュートニアン雑音: 大気や地面の揺らぎによる重力勾配の変動

- 第3世代重力波望遠鏡の主要な雑音となる見込み
- 低周波ほど振幅が大きいという理論予測
 - → 直接検出によるモデル化・低減方法の確立

重力勾配を用いた地震検出

- 地震の断層破壊で生じる重力場変動を用いた地震検出
 - 地震波を用いる従来の手法と独立な地震検出手法

- 地震波を用いる従来の手法より素早い検出・速報
- マグニチュード推定精度の向上
- 事後解析で重力場変動が確認された
 →より高い精度・リアルタイムの地震検出を目指す

- ねじれ振り子型: TOBA(本研究)・TorPeDO
- 超伝導型: SOGRO <u>H. J. Paik+, IJMPD (2020)</u>
- 原子干渉計型: MIGA・ZAIGA B. Canuel+, Scientific Reports (2018) M.-S. Zhan+, IJMPD (2020)
- K. Danzmann+, CQG (1996) 宇宙重力波望遠鏡: LISA・DECIGO S. Kawamura+, JPCS (2008) 10⁻⁶ Phase-II 実線: 達成 OBA 10⁻⁸ 点線:提案 MIG 10⁻¹⁰ OTOTVDE 10⁻¹² Ztrain [/Hz] 10⁻¹² 10⁻¹⁴ 10⁻¹⁶ 10⁻¹⁸ Phase-III TOBA 10⁻¹⁶ GRO orPeDD 10⁻¹⁸ Final TOBA 10⁻²⁰ LIGO(03) 10⁻²² LIGO 10⁻²⁴

10⁻⁴ 10⁻³ 10⁻² 10⁻¹ 10⁰ 10¹ 10² 10³ 10⁴ Frequency [Hz] 博士論文審査会 2025/01/07 理学部1号館414号室

M. Ando+, PRL (2010)

D. J. McManus+, CQG (2017)

提案・開発されている重力勾配計

- ねじれ振り子型
 - ねじれ振り子の回転を計測

- 原子干渉計型:
 - 自由落下する原子の 物質波干渉を利用
 - π |-ħk⟩ π/2

|+ħ**k**〉

博士論文審査会

<u>B. Canuel+,</u> <u>Scientific Reports</u> (2018)

2025/01/07

 $P = \frac{1}{2} (1 - \cos \Delta \Phi_{AT})$

- ▶ 超伝導型:
 - 超伝導浮上した複数のマスの 相対運動を計測

● 宇宙重力波望遠鏡

・ 衛星間レーザー干渉計・ 地上検出器より良い感度

Earth

Sun

S. Kawamura+, JPCS (2008)

開発コストがかかる

理学部1号館414号室

目次

- 研究背景
- ねじれ振り子型重力勾配計TOBA
 - TOBAの原理・サイエンス
 - 開発ロードマップ
 - Phase-III TOBAの構成・目標感度
 - Phase-III TOBAの先行研究
- 実験セットアップ
- 結果·考察

ねじれ振り子型重力勾配計TOBA

- TOBA: Torsion-Bar Antenna
- 水平に懸架した2本の棒状マスでねじれ回転を検出
- ねじれ振り子の共振周波数は低い(~1 mHz)
 - → 地上で0.1 Hz-10 Hzの重力勾配変動が観測可能

ねじれ振り子の応答

- 共振周波数より高い周波数では 自由質点のように 重力勾配変動に応答する
 - → 観測帯域の拡大

共振周波数より高い周波数では
 地面振動を受動防振できる

→ 地面振動雑音の低減

TOBAで得られるサイエンス

- 低周波重力波
 - 中間質量ブラックホール連星合体の観測
 - 背景重力波への制限
- ニュートニアン雑音の初検出
- 重力勾配を用いた従来よりも早い地震速報

観測対象	Phase-III TOBA (35 cmスケール)	Final TOBA (10 mスケール)
中間質量ブラックホール	1 Mpc以内の観測	10 Gpc以内の観測
背景重力波	Ω _{GW} < 10 @ 0.1 Hz の制限	Ω _{GW} < 10 ⁻⁷ @ 0.1 Hz の制限
ニュートニアン雑音	初の直接検出	SNR10 ⁴ -10 ⁵ での検出
地震速報	120 km先のM7の 地震を10秒以内に検出	M5の地震を検出

TOBA開発のロードマップ

2025/01/07 理学部1号館414号室

Phase-III TOBAの構成

- 光学系:ねじれ回転検出
- 懸架系:ねじれ振り子
- 冷却系: 振り子を低温化
- 防振系: 懸架点を能動防振

博士論文審査会

S. Takano, T. Shimoda, YO+, Galaxies (2024)

2025/01/07

理学部1号館414号室

Phase-III TOBAの目標感度・雑音源^{17/47}

• 3.7×10⁻¹⁵ /√Hz @ 0.1 Hz

Phase-III TOBAの先行研究

- 光学系 ・ 固定したテストマスのねじれ回転を <u>高野哲、博士論文 (2024)</u>
 低温モノリシック差動ファブリペロー共振器で検出した
 → 鉛直地面振動雑音低減のための縦防振が必要
- 懸架系 ・ 低温でQ値の高い懸架ワイヤを開発中 <u>Ooi Ching Pin, 修士論文 (2018)</u>
 - ・ 常温ねじれ振り子を用いて 正田智文.修士論文 (2016)
 並進地面振動雑音の伝達経路を特定し低減した
 → テストマスの傾き調整が必要
- 冷却系 ・ ねじれ振り子を6.1 Kまで冷却し <u>下田智文,博士論文 (2019)</u> 光てこでねじれ回転を計測した (10⁻⁶ /√Hz @ 0.1 Hz)
 → ビームジッター雑音低減のために 光ファイバでの入射・光学ベンチの振動低減が必要
- 防振系 ・ 3自由度制御で振動雑音を約100倍低減した

<u>高野哲,修士論文 (2018)</u>

18 / 47

→ 要素開発で明らかになった課題をもとに 本研究で光学系と懸架系を組み合わせた実験系を完成させる

博士論文審查会 2025/01/07 理学部1号館414号室

目次

● 研究背景

• ねじれ振り子型重力勾配計TOBA

- 実験セットアップ
 - 本研究の目的
 - 設計思想·設計感度
 - 光学系の詳細設計
 - 懸架系の詳細設計
 - センサ・アクチュエータ
- 結果·考察

本研究の目的

20 / 47

• TOBAの光学系と懸架系の完成

博士論文審査会 2025/01/07 理学部1号館414号室

設計思想

21 / 47

- 低温で特性の良いシリコン製のテストマス・冷却で割れない設計
- 差動ファブリペロー共振器でのねじれ回転計測
- 並進地面振動からのカップリング雑音の低減
 - 光学ベンチの振動が雑音にならない構成
 - 縦防振の導入 / ダンピングマグネットの懸架

本研究の位置づけ

	Phase-III TOBA			
		低温ねじれ振り子 <u>下田智文,博士論文 (2019)</u>	本研究	目標
光学系	光てこ	\checkmark	\checkmark	\checkmark
	差動 ファブリペロー共振器	なし	\checkmark	\checkmark
懸架系	テストマス	銅製	アルミニウム製 (低温シリコン仕様)	シリコン
	懸架ワイヤ	ベリリウム銅 (Q値 10 ³)	ベリリウム銅 (Q値 10 ³)	シリコン (Q値 10 ⁸)
	光学ベンチ	テストマスと別の チェーンで懸架	テストマスと同じ チェーンで懸架	同じ チェーン
	ダンピングマグネット	固定	懸架	懸架
	縦防振	なし	✔ (GASフィルタ)	\checkmark
	冷却系	✓ (6 K)	常温	✓ (4 K)
	能動防振系	なし	なし	\checkmark

博士論文審查会 2025/01/07 理学部1号館414号室

設計感度

• 3.4×10⁻¹¹ rad/√Hz @ 0.1 Hz

設計値

光学系の設計

• 2つのテストマス間で差動ファブリペロー共振器を構成

- ねじれ回転を共振器の長さ変動の差として検出
- コイル-コイルアクチュエータによるフィードバック制御で
 ファブリペロー共振器の共振状態を保つ
- 光学ベンチの振動が雑音とならない構成
- 補助センサとして光てこも設置

懸架系の設計: テストマス

- 振動雑音低減のために2つのテストマスの高さをそろえる
- 冷却時にシリコンが割れないようパーツをねじ止めせず
 インバーを接着
- 本実験ではシリコンの代わりにアルミニウムを使用
 - シリコン: 2.33 g/cm³
 - アルミニウム: 2.7 g/cm³

中央部分をカット

羽の共振を硬くするサポート (最低次: 600 Hz) インバー製のサポート 博士論文審査会 2025/01/07 理学部1号館414号室

29/47 懸架系の設計: 中段マス・光学ベンチ・ダンピングマグネット

- 光学ベンチの振動雑音が問題とならないよう
 テストマスと同じ中段マスからロッドで4本吊り
- ダンピングマグネットで中段マスを覆い変位のRMSを抑制
- ねじれ: 13 Hz • 並進: 68 Hz 中段マスの クランプ 光学ベンチの ロッド クランプ マグネット マグネットサポ

博士論文審查会 2025/01/07 理学部1号館414号室

懸架系の設計: GASフィルタ

- Geometric Anti-Spring フィルタ
 - 反ばね効果を利用して低周波の縦防振を実現する装置
 - マルエージング鋼を用いたTOBAより大きな実験系での 先行研究はある(KAGRAなど)

G. Cella+, Nucl. Instrum. Methods Phys. Res. (2002)

- TOBAにGASフィルターを初めて導入する
 - 縦方向の地面振動からのカップリング雑音を低減するため
 - 入手容易で安価なSUS304ばね材を用いる(先行研究なし)
 - 荷重は1-10 kg

懸架系の設計: GASフィルタ

 SUS304ばね材の先行研究がないため 複数のブレードを製作して選定した

● 最適な荷重はブレードの幅に比例・厚みの3乗に比例する

センサ・アクチュエータ

● 光学ベンチ上に共振器・光てこ用のフォトダイオードを設置

- テストマスにコイル-コイルアクチュエータを設置
- ワイヤは中段マスを経由してケーブルホルダから外へ

目次

- 研究背景
- ねじれ振り子型重力勾配計TOBA
- 実験セットアップ
- 結果·考察
 - 共振器の評価
 - 振り子の評価
 - コイル-コイルアクチュエータの評価・共振器ロックへの考察
 - 光てこの回転感度
 - 雑音源の考察

共振器の評価: フィネス

- フィネス: 共振度合を表す物理量(≒ Q値)
- レーザー周波数をスキャンして共振ピークから測定

振り子の評価:ねじれ共振周波数・Q値^{35/47}

- コイル-コイルアクチュエータでねじれモードを励起し
 励起を止めた後の減衰振動を用いて測定(リングダウン法)
- 大気圧下と真空下で測定

ねじれ共振周波数・Q値の考察

ねじれ共振周波数が約4倍大きくなった
 → 観測帯域拡大・受動防振のために低減が必要
 ← コイルのワイヤによりねじれの復元力が大きくなったため
 → より細いワイヤの使用 / 非接触での電流供給 /

コイル-コイルアクチュエータを使わない共振器制御

 Q値が大気圧下・真空下ともに約50
 → 中段マスのダンピングによって変位のRMSを抑制できている (ガスダンピングによるQ値: ~6×10⁶)
 コイルのワイヤによるQ値の低下の場合は改善が必要 振り子の評価: その他のモードの共振周波数^{37/47}

博士論文審查会 2025/01/07 理学部1号館414号室

ロール()

振り子の評価: GASフィルタの共振周波数^{38/47}

→ さらに共振周波数を下げるには荷重のチューニングが必要 (大きな系では0.2 Hzの実績があるが このブレードの長さでは1 Hz程度が限界か)

アクチュエータ効率・共振器ロックへの考察39/47

- 光てこ・コイル-コイルアクチュエータを用いて ねじれ振り子の回転をフィードバック制御
- オープンループ伝達関数からアクチュエータの効率を測定: 3.41×10⁻⁷ N/V
 - → 共振器のロックに向けて効率を1-2桁大きくする必要がある → パーツを改良しコイル間の距離を小さくする

 $(2.9 \text{ mm} \rightarrow 1.0 \text{ mm}) = 0.5 \text{ mm} + 0.5 \text{ mm}$

博士論文審査会

2025/01/07

理学部1号館414号室

回転感度

- 光てこで回転測定を行った
- 2つのテストマス間で同相雑音除去
- 1.1×10⁻⁷ rad/√Hz @ 0.4 Hz

博士論文審査会 2025/01/07 理学部1号館414号室

 設計感度まで3桁・Phase-III TOBA目標感度まで7桁の 雑音低減が必要

雑音源・感度向上に向けての考察

- 4 Hz以上は光てこのセンサ雑音が支配的
 → 共振器での検出にすることで感度向上が期待できる
- 0.1 Hz-4 Hzでは鉛直方向の地面振動雑音と有意な相関がある
 → テストマスの傾き低減 / 鏡の傾き低減 / GASフィルタの共振周波数低減が必要

目次

- 研究背景
- ねじれ振り子型重力勾配計TOBA
- 実験セットアップ
- 結果·考察
- 結論
 - ・ 結果のまとめ
 - 今後の展望
 - 結論

結果のまとめ

		本研究の結果	本研究の設計値	Phase-III TOBA 設計値
光学系	光てこ	回転検出	補助センサ	補助センサ
	差動 ファブリペロー 共振器	フィネス ~300 TOBA初の導入 アンロック	フィネス 400 ロックして回転検出	フィネス 50 ロックして回転検出
懸架系	テストマス	アルミニウム製(シリコン仕様) TOBA初の設計		シリコン製
	ねじれ 共振周波数	117 mHz	28.7 mHz	7.7 mHz
	ねじれQ値	~50	10 ³	10 ⁸
	テストマス傾き	~2×10 ⁻³ rad	10 ⁻⁴ rad	10 ⁻⁸ rad
	GASフィルタ 共振周波数	TOBA初の導入 3-4.5 Hz	3 Hz	3 Hz
冷却系	温度	300 K	300 K	4 K
感度	@ 0.1 Hz	3×10⁻7 /√Hz	3×10 ⁻¹¹ /√Hz	4×10 ⁻¹⁵ /√Hz

博士論文審査会 2025/01/07 理学部1号館414号室

- ファブリペロー共振器をロックしねじれ回転を計測する
- テストマスをシリコンに置き換え冷却
 - 反射コーティングを施したテストマス調達済み

● 懸架ワイヤ熱雑音・地面振動雑音・レーザー周波数雑音の低減
 → Phase-III TOBAの完成へ

結論

- 低周波重力波などの観測を目指している
- 35 cmスケールのねじれ振り子型重力勾配計
 Phase-III TOBAを開発中である
- 光学系と懸架系を組み合わせた設計・開発を行った
 - 差動ファブリペロー共振器(TOBA初)・光てこ
 - 低温シリコン仕様・アルミニウム製のねじれ振り子
 - 縦防振のためのGASフィルタ(TOBA初)
- 装置を製作し動作に成功して性能評価を行った
- 光てこによる回転計測・同相雑音除去の解析を行った
- 本研究はTOBAの光学系と懸架系の構成を確立し TOBAの目標感度実現に向けた道を拓いた

補助スライド

博士論文審查会 2025/01/07 理学部1号館414号室

重力勾配計の比較

- ねじれ振り子型
 - レーザー散射雑音と熱雑音
 - 技術が実証されている
 - オフライン雑音除去が可能
 - 常温でも運転可能

- 原子干渉計型:
 - 原子数による散射雑音
 - 技術実証中
 - 数kmスケール

博士論文審査会

<u>B. Canuel+,</u> <u>Scientific Reports</u> (2018)

2025/01/07

- 超伝導型:
 - SQUID散射雑音と熱雑音
 - ・ 技術が実証されている
 - ・ 再現性が高く オフライン雑音除去が容易

宇宙重力波望遠鏡

理学部1号館414号室

- 地上検出器より良い感度
 - 開発コストがかかる

中間質量ブラックホール合体頻度

<u>真貝寿明,安東研セミナー (2017)</u>

博士論文審查会 2025/01/07 理学部1号館414号室

中間質量ブラックホール合体頻度

Final TOBAを用いた地震速報

光・量子飛躍フラッグシッププログラム面接審査 (2018年7月22日,科学技術振興機構 東京本部)

2025/01/07

理学部1号館414号室

博士論文審査会

38

安東先生作成

懸架系の設計: テストマス

- 振動雑音低減のために2本のワイヤ間の距離を近づける
- 振動雑音低減のためにバランスウェイトで傾き補正(~2 mrad)

懸架系の設計:回転ステージ

● 中段マスにテストマスのねじれ回転を補正用のステージを設置

博士論文審査会 2025/01/07 理学部1号館414号室

- 懸架・真空槽へのインストールを容易にするための治具
 → 作業性の向上・再現性の向上
- Phase-III TOBAの真空槽・冷却シールドに入る大きさ

博士論文審査会 2025/01/07 理学部1号館414号室

共振器の評価: モードマッチ率

● ファブリペロー共振器内では固有のビーム径が共振できる

56 / 47

● モードマッチ率:入射ビーム径と固有ビーム径の一致割合

	設計値	共振器1	共振器2	
ウエスト半径	142.9 μm	x: 155.2 μm	x: 155.2 μm	
		z: 155.2 μm	z: 155.2 μm	
ウエスト位置	265 mm	x: 263 mm	x: 257 mm	
		z: 265 mm	z: 269 mm	
モードマッチ率		99.0%	99.4%	→ 十分高い値

博士論文審査会

2025/01/07 理学部1号館414号室

光てこセンサ雑音

