Torsion-Bar Antenna for Early Earthquake Alert

Yuka Oshima

Department of Physics, University of Tokyo

Satoru Takano, Ching Pin Ooi, Kentaro Komori, Yuta Michimura, Masaki Ando

TOBA: <u>TOrsion-Bar</u> <u>Antenna</u>

- Gravity gradient sensor
- Consists of two bars suspended horizontally
- Aim to detect the torsional rotation by gravity gradient
- Target sensitivity: $10^{-15} / \sqrt{Hz}$ between 0.1 10 Hz

Science of TOBA

- Earthquake alert
 - More than 10 sec earlier than now

- Gravitational waves from intermediate-mass black holes binary merger
 - Within ~1 Mpc
- Newtonian noise
 - First direct detection

Seismic wave

(6 km/s)

5th IFQMS Nov. 29, 2022 Online

TOBA

Gravity perturbation

 $(3 \times 10^8 \text{ m/s})$

Development of TOBA

- Successfully cooled the bars to 6 K T. Shimoda, Ph.D. thesis (2019)
- Next step: develop torsion pendulums and readout optics to achieve the target sensitivity

Experimental status

- Start to develop the torsion pendulums and readout optics in vacuum at room temp.
- Measure the rotation from the subtraction of PDH signals of two Fabry-Perot cavities
- Finished drawing the design, purchasing cavity mirrors, and building input optics
- Plan to assemble parts as soon as they arrive

Summary

- TOBA is a gravity gradient sensor using torsion pendulums
- Science of TOBA
 - Earthquake early warning
 - Gravitational waves from intermediate-mass black hole mergers
- Development of torsion pendulums and readout optics is ongoing

Extra slides

Earthquake alert

- Current systems: read Primary-wave (6 km/s) and alert before Secondary-wave (4 km/s) arrive
- TOBA: read gravity perturbation (speed of light) due to density fluctuation by fault rupture
- TOBA can alert within 10 sec for M7 earthquake at a distance of 100 km
 - Takes 10 seconds for signal integration

Development roadmap of TOBA

Now

Phase-III Phase-I Phase-II Technical Principle test demonstration $10^{-8} / \sqrt{Hz}$ (Established)

 ~ 20 cm bars Room temp.

 10^{-15} / \sqrt{Hz} (Target) 35 cm bars Cryo. Temp. (4 K) GW observation

Final

 $10^{-19} / \sqrt{Hz}$ (Target) 10 m bars Cryo. Temp. (4 K)

T. Shimoda+, Int. J. Mod. Phys. D 29, 1940003 (2020) 5th IFOMS Nov. 29, 2022 Online