Development of Torsion Pendulums and Readout Optics for Gravity Gradient Observation

<u>Yuka Oshima¹</u>, Satoru Takano¹, Ching Pin Ooi¹, Mengdi Cao², Perry W. F. Forsyth¹, Yuta Michimura^{3,4}, Kentaro Komori⁴, Masaki Ando^{1,4}

¹Dept. of Physics, Univ. of Tokyo ²Beijing Normal Univ. ³LIGO Lab, Caltech ⁴RESCEU, Univ. of Tokyo

Email: yuka.oshima@phys.s.u-tokyo.ac.jp

Abstract

Torsion-Bar Antenna (TOBA) is a low-frequency gravity gradient detector using torsion pendulums. Gravity gradient fluctuation is measured as the differential rotation of two horizontally suspended bars. The resonant frequency of torsional motion is low ($\sim 1 \text{ mHz}$) therefore TOBA has good design sensitivity, specifically 10^{-19} / \sqrt{Hz} between 0.1-10 Hz with 10 m-scale pendulums. TOBA can be used for gravitational-wave observation and earthquake early warning. A prototype detector Phase-III TOBA with 30 cm-scale pendulums at cryogenic temperature is under development to demonstrate noise reduction. The target sensitivity is set to 10^{-15} / \sqrt{Hz} at 0.1 Hz. Currently we are developing cryogenic torsion pendulums made of silicon and Fabry-Pérot cavities to detect the differential rotation of pendulums.

1. TOBA: Torsion-Bar Antenna

3. Development of Phase-III TOBA

Principle [1]

- Ground-based gravity gradient detector
- Composed of two torsion pendulums
 - The resonant frequency of torsional motion is low ($\sim 1 \text{ mHz}$)
 - \rightarrow Good sensitivity in 0.1–10 Hz even on the ground
- Detect the differential rotation of bars with Fabry-Pérot cavities

10¹

Configuration [3]

[@]Hongo campus, Univ. of Tokyo

• Target sensitivity

Optical bench

(suspended)

Fabry-Pérot

Laser

1550 nm

cavity

 \square

Coupling from

seismic noise

 $(\theta = 10^{-5} \text{ rad})$

• $6 \times 10^{-12} / \sqrt{\text{Hz}}$ at 0.1 Hz Limited by suspension thermal noise 10^{0} 10^{1} Frequency [Hz] **Readout optics** Damping magnet support Laser Optical 1064 nm lever \bigcirc Coil-coil actuator Intermediate mass Test mass bars EOM

Suspension jigs (aluminum \rightarrow silicon)

4. Summary & Future plans

- - from intermediate-mass black hole binary mergers
 - Within ~1 Mpc (Phase-III TOBA)
 - Within ~10 Gpc (Final TOBA) [1]

 Gravitational wave stochastic background \rightarrow Direct exploration of the early universe

• $\Omega_{GW} \sim 10^{-7}$ (Final TOBA)

Geophysics

- Earthquake early warning
 - Within 10 sec for M7 earthquakes far from 100 km (Phase-III) [3] Fault rupture
- Newtonian noise: the fluctuations of the gravitational field by seismic and atmospheric perturbations • First direct detection (Final) [4]

10⁴

- TOBA is a gravity gradient detector with torsion pendulums • TOBA can detect gravitational waves and earthquakes between 0.1–10 Hz
- We are developing Phase-III TOBA
 - We finished designing suspension and readout optics
 - We plan to build a setup

JSR Fel owship

This research is supported by JSR Fellowship, University of Tokyo

References

[1] M. Ando et al., Phys. Rev. Lett. 105, 161101(2010) [2] T. Shimoda et al., International Journal of Modern Physics D 29, 1940003 (2020) [3] T. Shimoda, Ph.D. thesis, University of Tokyo (2019) [4] J. Harms et al., Phys. Rev. D 88, 122003 (2013)

Symposium on Quantum Electronics

Feb. 13-16, 2024 Ito International Research Center, Univ. of Tokyo