Torsion-Bar Antenna for Low-Frequency Gravitational-Wave Observation Yuka Oshima¹, Tatsuya Sugioka¹, Satoru Takano², Ryosuke Sugimoto¹, Yuta Michimura³, Kentaro Komori^{1,3}, Masaki Ando^{1,3} ¹Dept. of Physics, Univ. of Tokyo²AEI² ³RESCEU, Univ. of Tokyo LIGO DCC: G2500245

Abstract

Torsion-Bar Antenna (TOBA) is a ground-based detector using torsion pendulums being developed to observe gravitational waves (GWs) in frequencies between 1 mHz and 10 Hz. The low resonant frequency of the torsion pendulum enables observation in this frequency band on the ground. The final target of TOBA is to achieve the sensitivity of 10^{-19} / \sqrt{Hz} at 0.1 Hz with 10 m-scale bars.

We are developing a prototype detector, Phase-III TOBA, to investigate technical noises. In this work, we constructed a combined system of the optics for torsional rotation measurement and the suspension including the torsion pendulums. We show the results and future plans.

1. TOBA: Torsion-Bar Antenna

Principle [1]

3. Development of optics and suspension

Readout optics

- Ground-based GW detector
- Composed of two torsion pendulums
 - The resonant frequency of torsional motion is low (~1 mHz) \rightarrow Good sensitivity in 0.1 Hz-10 Hz even on the ground
- Detect the differential rotation of bars with Fabry-Pérot cavities

Scientific targets

• GWs emitted from intermediate-mass black hole binary mergers

Gravity

perturbation

(speed of light)

Laser 1550 nm (height: 25 mm) Laser 1064 nm

- Differential Fabry-Pérot cavities between two test masses
- Optical levers as auxiliary sensors

- Within ~1 Mpc (Phase-III TOBA)
- Within ~10 Gpc (Final TOBA) [1]
- Newtonian noise
 - Detector • First direct detection (Phase-III) [2]
- Earthquake alert
 - Within 10 sec for M7 earthquakes far from 100 km (Phase-III) [3]

2. Phase-III TOBA

Development roadmap of TOBA [4, 5]

Phase-II Phase-III Final Phase-I (2009)(2015)(future) (now) Technical Principle test Observation demonstration $10^{-19} / \sqrt{Hz}$ (Target) $10^{-15} / \sqrt{Hz}$ (Target) $10^{-8} / \sqrt{Hz}$ (Established) 20 cm bars 30 cm bars 10 m bars Room temp. Cryo. temp. (4 K) Cryo. temp. (4 K)

Intermediate mass

- Suspension so that vibrations of the optical bench do not cause noise
- GAS filter for vertical vibration isolation

 10^{2}

- Common mode rejection between two test masses
- Above 4 Hz, sensor noise is dominant
- In 0.1 Hz-4 Hz, significant correlation with vertical seismic noise

Design sensitivity of Phase-III TOBA [5]

• Current prototype: Phase-III TOBA

 10^{0}

• We constructed a combined system of optics and suspension

10

Optical

lever2

- Rotation measurement with optical levers
- We will lock the cavities
- We will replace test masses made of silicon and operate at cryo. temp.

References

[1] M. Ando et al., Phys. Rev. Lett. 105, 161101(2010) [2] J. Harms et al., Phys. Rev. D 88, 122003 (2013) [3] T. Shimoda et al., Geophys. J. Int. 224, 533–542 (2020) [4] T. Shimoda et al., Inter. J. Modern Phys. D 29, 1940003 (2020) [5] S. Takano et al., Galaxies 12, 78 (2024) [6] Y. Oshima, Ph.D. thesis, University of Tokyo (2024)

This work was supported by MEXT Quantum Leap Flagship Program (MEXT Q-LEAP) Grant Number JPMXS0118070351

LIGO-Virgo-KAGRA Collaboration Meeting

March 24th-27th, 2025

Melbourne, Australia