Torsion-Bar Antenna and its Angular Sensor

Yuka Oshima¹, Satoru Takano¹, Ching Pin Ooi¹, Mengdi Cao², Yuta Michimura^{3,4}, Kentaro Komori⁴, Masaki Ando^{1,4}

¹Dept. of Physics, Univ. of Tokyo ²Beijing Normal Univ. ³LIGO, California Institute of Technology ⁴RESCEU, Univ. of Tokyo

Email: yuka.oshima@phys.s.u-tokyo.ac.jp

Abstract

Torsion-Bar Antenna (TOBA) is a ground-based gravitational-wave detector using a torsion pendulum. The resonant frequency of torsional motion is ~ 1 mHz, therefore TOBA has good design sensitivity in low frequency, specifically 10^{-19} / $\sqrt{10}$ Hz at 0.1 Hz. TOBA can detect intermediate-mass black hole binary mergers, Newtonian noise, and so on. A prototype detector Phase-III TOBA with a 35 cm-scale test mass is under development to demonstrate noise reduction. The target sensitivity is set to 10^{-15} / $\sqrt{\text{Hz}}$ at 0.1 Hz. To achieve our target sensitivity, we need to measure the pendulum rotation precisely. We propose a wavefront sensor with a coupled cavity (Coupled WFS) as an angular sensor for Phase-III TOBA. In our method, an auxiliary cavity is used to compensate Gouy phase of a main cavity and enhance the first-order TEM modes in the main cavity. The experimental demonstration was successfully performed. Here we show the principle of TOBA and demonstration results of a Coupled WFS.

1. Introduction of TOBA

TOBA: Torsion-Bar Antenna [1]

- Ground-based GW detector for low frequency
- Aim to detect the torsional rotation of bars suspended horizontally
- The resonant frequency of torsional motion is low (\sim 1 mHz)
 - → Good sensitivity in low frequency even on the ground

Scientific target & development plan [2]

Phase-I Phase-II (2009)(2015)Principle test $10^{-8}/\sqrt{\text{Hz}}$ at 0.1 Hz (Established) 20 cm bars

Room temp.

Phase-III (Now)

Intermediate-mass Newtonian noise, Earthquake early warning $10^{-15}/\sqrt{\text{Hz}}$ at 0.1 Hz (Target)

30 cm bars Cryo. Temp. (4 K)

Final (Future)

BH binary mergers $10^{-19}/\sqrt{\text{Hz}}$ at 0.1 Hz (Target)

10 m bars Cryo. Temp. (4 K)

[1] M. Ando et al., Phys. Rev. Lett. 105, 161101 (2010) [2] T. Shimoda et al., International Journal of Modern Physics D 29, 1940003 (2020)

2. Principle of Coupled WFS

Coupled WFS:

Wavefront sensor with a coupled cavity

- An improved WFS proposed
 - to measure the torsional rotation of TOBA test masses accurately
- An auxiliary cavity can compensate Gouy phase of a main cavity
 - → Both TEM00 and TEM10 are resonant in the main cavity
 - → Angular signal is amplified by the finesse of the main cavity

Comparison of angular sensors

	Michelson interferometer	Wavefront sensor	Coupled WFS
Shot noise (Requirement: 5×10 ⁻¹⁶ rad/√Hz)		No signal amplification	Signal amplification
Frequency noise	Asymmetry of two light paths		
Beam jitter noise	Non-parallel of two mirrors		No amplification of beam jitter
Translational coupling	Non-parallel of two mirrors		
Linear range			Trade-off with signal amplification

3. Experimental Setup of Coupled WFS

Design of the coupled cavity

- Parameters are designed to allow Gouy phase compensation
- The main cavity is folded to monitor the transmitted light
- Mirrors are fixed to a spacer rigidly to stabilize the alignment

4. Results of Coupled WFS

- Cavities were successfully locked TEM00 and TEM10 simultaneously
- Length fluctuations of the main cavity are transmitted to the auxiliary cavity

Signal amplification

 Signal amplification was successfully demonstrated by three times

5. Summary & Future plans

- We are developing TOBA to detect GW in low frequency
- We propose Coupled WFS as an angular sensor for TOBA
- We demonstrated angular signal amplification and locking scheme of Coupled WFS
- We need to stabilize the cavity lock