Angular Signal Amplification with a Coupled Cavity for Torsion-Bar Antenna

<u>Yuka Oshima¹</u>, Satoru Takano¹, Ching Pin Ooi¹, Yuta Michimura^{2,3}, Masaki Ando^{1,3} ¹Department of Physics, University of Tokyo ²LIGO, California Institute of Technology ³RESCEU, University of Tokyo

Email: yuka.oshima@phys.s.u-tokyo.ac.jp

Abstract

Torsion-Bar Antenna (TOBA) is a ground-based GW detector using a torsion pendulum. The resonant frequency of torsional motion is ~ 1 mHz, therefore TOBA has good design sensitivity in low frequency, specifically 10^{-19} / \sqrt{Hz} at 0.1 Hz. TOBA can detect intermediate-mass black hole binary mergers, Newtonian noise, and so on. A prototype detector Phase-III TOBA with a 35 cm-scale pendulum is under development to demonstrate noise reduction. The target sensitivity is set to 10^{-15} / \sqrt{Hz} at 0.1 Hz.

To achieve our target sensitivity, we need to measure the pendulum rotation precisely. We propose a wavefront sensor with a coupled cavity (Coupled WFS) as an angular sensor for Phase-III TOBA. In our method, an auxiliary cavity is used to compensate Gouy phase of a main cavity and enhance the first-order TEM modes in the main cavity. The experimental demonstration was successfully performed in 2021. Here we show the principle and demonstration results of a Coupled WFS.

1. Introduction of TOBA

TOBA: Torsion-Bar Antenna [1]

- Ground-based GW detector for low frequency
- Aim to detect the torsional rotation Test masses of test masses suspended horizontally
- The resonant frequency of torsional motion is low ($\sim 1 \text{ mHz}$)
 - \rightarrow Good sensitivity in low frequency even on the ground
- Scientific targets: intermediate-mass black hole binary mergers, Newtonian noise, Earthquake early warning, etc.

Development plan [2]

Phase-I (2009)	Phase-II (2015)	Phase-III (Now)	Final (Future)
Principle test		Technical demonstration	GW observation
10 ⁻⁸ /√Hz 20 cm Room	at 0.1 Hz (Established) bars temp.	10 ⁻¹⁵ /√Hz at 0.1 Hz (Target) 30 cm bars Cryo. Temp. (4 K)	10 ⁻¹⁹ /√Hz at 0.1 Hz (Target) 10 m bars Cryo. Temp. (4 K)

Design of the coupled cavity

- Parameters are designed to allow Gouy phase compensation
- The main cavity is folded to monitor the transmitted light
- Mirrors are fixed to a spacer rigidly to stabilize the alignment

Length control of the coupled cavity

- PDH technique with two modulation frequencies
- Hierarchical control for the main cavity

\Rightarrow See Satoru's poster (#A14) for more details about TOBA

[1] M. Ando et al., Phys. Rev. Lett. 105, 161101(2010) [2] T. Shimoda et al., International Journal of Modern Physics D 29, 1940003 (2020)

2. Principle of Coupled WFS

Coupled WFS: Wavefront sensor with a coupled cavity

An improved WFS proposed

to measure the torsional rotation of TOBA test masses accurately

- An auxiliary cavity can compensate Gouy phase of a main cavity
 - \rightarrow Both TEM00 and TEM10 are resonant in the main cavity
 - \rightarrow Angular signal is amplified by the finesse of the main cavity

Comparison of angular sensors

	Michelson interferometer	WFS	Coupled WFS
Shot noise (Requirement: 5×10 ⁻¹⁶ rad/√Hz)	0	No signal amplification	Signal amplification
Frequency noise	Asymmetry of two light paths	•	2
Beam jitter noise	Non-parallel of two mirrors		No amplification of beam jitter
Thermal noise	0	Narrow range measurement	Narrow range measurement
Linear range	0	0	Trade-off with signal amplification

- + 0.0 + 100 20 80 Time [sec]
 - Cavities were successfully locked TEM00 and TEM10 simultaneously
- Signal amplification was successfully demonstrated by three times

5. Summary & Future plans

- We are developing TOBA to detect GW in low frequency
- We propose Coupled WFS as an angular sensor for TOBA
- We demonstrated angular signal amplification and locking scheme of Coupled WFS
- We plan to suspend the test mass to stabilize the cavity lock

JSR Felowship This research is supported by JSR Fellowship, the University of Tokyo

Gravitational Wave Advanced Detector Workshop May 23-28, 2022 Gather.town