Design of Coupled Wave Front Sensor for TOrsion-Bar Antenna

Yuka Oshima, Satoru Takano, Ching Pin Ooi, Yuta Michimura, Masaki Ando Department of Physics, University of Tokyo

Email: yuka.oshima@phys.s.u-tokyo.ac.jp

Abstract

Torsion-Bar Antenna (TOBA) is a ground-based gravitational wave (GW) detector using torsion pendulums. The resonant frequency of torsional motion is ~1 mHz, therefore TOBA has good design sensitivity of 10^{-19} / \sqrt{Hz} in 0.1 – 10 Hz. TOBA can detect intermediate mass black hole binary mergers, etc. A prototype detector Phase-III TOBA with a 35 cm-scale pendulum is under development to demonstrate noise reduction. The target sensitivity is set to 10^{-15} / \sqrt{Hz} at 0.1 Hz. To achieve our target sensitivity, we need to measure the pendulum rotation precisely. We propose a coupled wave front sensor (WFS) as an angular sensor for Phase-III TOBA. In our method, an auxiliary cavity is used to enhance the first-order TEM modes in the main cavity. Here we show the principle and experimental design of a coupled WFS.

Fabry-Perot

interferometer

1. Introduction of TOBA

Test-mass bar

3. Experimental Setup of Coupled WFS Design of optical cavities

TOBA [1]

- Low frequency GW detector
- Target: $10^{-19}/\sqrt{Hz}$ in 0.1 10 Hz
- Use torsion pendulums
 - Low resonant frequency (~ 1 mHz)
 - Ground-based configuration
- Scientific targets: intermediate mass black hole binary mergers, Newtonian noise, etc.

Development plan [2]

	Phase-I (2009)	Phase-II (2015)		Phase-III (Now)		Final (Future)	
	Principle test			Technical demonstration		GW observation	
10 ⁻⁸ /√Hz at 0.1 Hz (Established)			10 ⁻¹⁵ /√Hz at 0.1 Hz (Target)		lz 1 et)	.0 ⁻¹⁹ /√Hz at 0.1 (Targ	Hz Jet)
 Developing items for Phase-III TOBA 35 cm Si torsion pendulums 							

- Fold main cavity to extract signal inside main cavity
- Suspend front mirror by pendulum to look like TOBA's bar
- Build cavities inside vacuum chamber to achieve good sensitivity

Robustness to cavity loss

Active vibration isolation

Cooling system

Satoru's talk (ID: 55)

- High-Q suspension wire } Ching Pin's poster (ID: 66)
- Coupled WFS: a highly sensitive angular sensor to measure the rotation of bars (GW signal)
- [1] M. Ando et al., Phys. Rev. Lett. 105, 161101(2010)
 [2] T. Shimoda et al., International Journal of Modern Physics D 29, 1940003 (2020)

2. Proposal of Coupled WFS

Coupled WFS: improved WFS for Phase-III TOBA

Compensate Gouy phase

 \rightarrow HG₁₀ mode signal can be amplified by finesse of main cavity

Comparison of angular sensors

	Michelson interferometer	Conventional WFS	Coupled WFS
Shot noise (Phase-III TOBA requirement: 5×10 ⁻¹⁶ rad/√Hz)			
Frequency noise	X		
Cross-coupling	X		

Cavity	Line width of carrier	Modulation frequency of sidebands	
Main	13 MHz	40 MHz	
Auxiliary	1.3 MHz	4 MHz	

Carrier

4. Summary & Future Plans

- A prototype GW detector Phase-III TOBA is under development
- We propose a coupled WFS as an angular sensor for Phase-III TOBA

4 MHz

- HG_{00} and HG_{10} can be resonant simultaneously
- We design the experimental setup
- We are planning the experimental demonstration to confirm angular signal amplification and locking scheme

Gravitational Wave Advanced Detector Workshop May 17-21, 2021 Gather.town