Ando Lab Midterm Seminar

April 26, 2021

Sleepless 2021

Yuta Michimura Department of Physics, University of Tokyo

Contents

- Looking back on the year 2020
- My research timeline over the past >10 years
- My plans and expectations for the year 2021
- · Hot topics
 - Vector dark matter search with KAGRA
 - DANCE
 - Optical levitation mirrors
 - SILVIA

Review: My Plans JFY2020

Review: My Expectations JFY2020

Effort Report for 2020

23 24 25 26

19 20

22 231

28 29 **30**

30 31

Effort Report for 2020

Almost no visits

90	KAGRA	47.9	days	15.8%	K	Kamioka	9	days
90	KAGRA+	9.1	days	3.0%	т	Tokyo-area	7	days
90	Quantum	33.6	days	11.1%	J	Japan	3	days
90	Lorentz	1.8	days	0.6%	Α	Abroad	14	days
90	DM	40.8	days	13.4%		Home	333	days
90	DECIGO	39.7	days	13.1%				
90	Duties	50.3	days	16.6%				
90	Others	79.9	days	26.4%				

• Effort Report for 2021 upto March

2021

Effort Ratio Over Time

• Getting harder to say what is my main work

Summary and News from JFY2020

- New collaboration with Iwamoto Group at IIS
- 学術変革A and さきがけ started Met with new people (online...) New postdoc !
- Drastically increased number of meetings (student meetings, SILVIA meetings)
- Wrote many applications, prepared for number of hearings (5 positions, 2 grants (+2 as Co-I and +2 as 研究協力者) and SILVIA)
- Totally new lifestyle: COVID-19 and baby
- Too many meetings and not very productive research-wise?
- As a group, outcomes are almost as expected, although COVID-19 situation was completely unexpected

Research Timeline

Undergraduate "Research"

- 2006 (B1)
 Fukutani Wilde Group at ISS, UTokyo
 Optical characterization of Yttrium Hydride
- 2007 (B2)
 Yoshie Group at ISS, UTokyo
 Recyclable polymer
- 2008 (B3)
 - サマーチャレンジ @ KEK

Test of gravitational inverse square law
電波天文観測実習 @ Nobeyama Radio Observatory
Observation of infrared dark cloud G28.34+0.06
物理学ゼミナール

- 素粒子標準模型入門 textbook, visit to Kamioka

2009 (B4)
 Teuhono I al

Tsubono Lab

- Digital control of

DECIGO Pathfinder test mass Suto Lab

- Maggoire textbook

Service Timeline

Service Timeline

Applications Timeline

Productivity

- Pandemic probably forced people to write papers (based on past activities! Will be tough for 2021?)
- Number of presentations decreased (as expected)

Grants for JFY2021

• Crucial year to move projects forward in this tough moment

My Plans JFY2021

- Remaining optical table covers and some optics for KAGRA
- Write O3 commissioning paper, birefringence paper and parametric instability paper
- Write SILVIA and DECIGO paper
- Development and characterization of optical levitation mirrors
- Start DANCE Act-1 observation and get the first results
- Polarization studies for DANCE
- Introduce polarization optics to TRX and TRY of KAGRA
- Search for vector boson dark matter with KAGRA data
- Papers on axion search with TMS, stochastic effects

My Expectations JFY2021

- Q measurement at cryogenic temperatures, with some interesting results
- Observation of radiation pressure noise
- Operation of (fixed) TOBA at cryogenic temperatures, with a monolithic optical bench
- Full characterization of coupled WFS
- First DANCE observation and data analysis
- Realization of s-pol and p-pol simultaneous resonance
- Write axion sensitivity calculation paper

Ultralight Dark Matter

- Ultralight DM (<~1 eV) behaves as classical wave fields $f=242~{\rm Hz}\left(\frac{m_{\rm DM}}{10^{-12}~{\rm eV}}\right)$
- Laser interferometers are sensitive to tiny length changes from such oscillations

Gauge Bosons

 Possible new physics beyond the standard model: New gauge symmetry and gauge boson

Proton

Neutron

Electron

Nucleus

gauge

22

field

- New gauge boson can be dark matter
- B-L (baryon minus lepton number)
 - Conserved in the standard model
 - Can be gauged without additional ingredients
 - Equals to the number of neutrons
 - Roughly 0.5 per neutron mass, but slightly different between materials Fused silica: 0.501 Sapphire: 0.510
- Gauge boson DM gives oscillating force

Search with KAGRA KAGRA

 KAGRA uses cryogenic sapphire mirrors for arm cavities, and fused silica mirrors for others **Gauge field** (LIGO/Virgo uses fused silica for all mirrors) Force Force Laser **B-L** charge Fused silica: 0.501 DARM Sapphire: 0.510 $L_{\rm x}$ – photodiode 23

Search with KAGRA KAGRA

KAGRA O3GK Run in 2020

- 2020 Feb 25 March 10, 2020 April 7 - 21
- Displacement sensitivities are not as good as the design (especially at low frequencies where auxiliary channels have good DM sensitivity)
- Good occasion to develop the pipeline to analyze multiple detector d outputs

Data Analysis Flow

- 1. Calculate FFT of data
- 2. Calculate SNR and find frequency bins above threshold - Parameter tuning of spectrum smoothing on-going
- 3. Veto based on the linewidth of the peak
- Veto by checking consistency between multiple series of data at different times
 Now using two series. Maybe better to use more?
- 5. Veto by comparing the candidate frequencies and known line noises - List of known lines made
- 6. Veto using multiple detector outputs (DARM, PRCL, MICH) - Studies on the effect of DM field polarization on-going
- 7. Put upper limits (or claim outliers)

- Studies on stochastic effects on-going

PRELIMINARY Candidates

• After step 4

PRELIMINARY Candidates

• After step 5

- Low frequency candidates could be investigated further using PRCL and MICH
 - DARM is more sensitive in terms of displacement, but less sensitive in terms of vector DM coupling

Current Estimated Reach

s-pol

p-pol

p-pol

carrier

- Sensitivity largely degraded due to resonant frequency difference between polarizations
 - p-pol generated by axion-photon coupling also needs to be amplified inside the cavity

Past Proposals

- W. DeRocco & A. Hook, <u>PRD 98, 035021 (2018)</u> use of QWP to keep polarization
- I. Obata, T. Fujita, YM, <u>PRL 121, 161301 (2018)</u> bow-tie cavity to keep polarization
- H. Liu+, <u>PRD 100</u>, 023548 (2019)

tune incident angles to tune s-pol and p-pol resonant frequency difference

 D. Martynov & H. Miao, <u>PRD 101, 095034 (2020)</u>

use auxiliary cavity to tune s-pol and p-pol resonant frequency difference

Resonant Frequency Difference

- Caused by reflected phase difference in Fresnel reflection **Phase Advance at Internal Reflection** with non-zero incidence
- Coating also has birefringence

Applied Physics B 97, 457 (2009)

Birefringence of interferential mirrors at normal incidence

10

 10^{-2}

10⁻³ 10^{-4}

10⁻⁶ 10^{-7}

10⁻⁸

 $\delta_{\rm M}$ 10⁻⁵

6 8

1-R

10⁻³

68

10⁻²

https://en.wikipedia.org/wiki/Fresnel rhomb

Zero Phase Shift Mirrors

Phase shift needs to be less than O(0.01) deg to have simultaneous resonance within the linewidth

Comparison of Tuning Methods

	Auxiliary cavity	Incident angle	Wavelength
Finesse	Limitations (mode mismatch, AR losses)	Can make high	Can make high
Power	Can make high	Can make high	Could be tough (amp for certain wavelength)
Cavity controls	Complicated (additional beam necessary to control aux. cavity)	Simple	Simple (could require frequency actuator if not equipped to laser source)
Sweeping the observation band	Easy (can be done without unlocking)	Requires mechanical system	Could be tough (need for unlocking)
Coating error tolerance	Not much (not good if phase shift too small)	Depends much (cannot make it if no zero crossing)	Depends much (cannot make it if no zero crossing)

Optical Levitation

Optical Levitation of Mirror

- Support a mirror with radiation pressure alone
- Free from suspension thermal noise
- Large coupling compared with optical tweezers

Sandwich Configuration

- Mirror levitation has never been realized
- Simpler configuration than previous proposals YM, Y. Kuwahara+, Optics Express 25, 13799 (2017)
- Proved that stable levitation is possible and SQL can be reached mirror with 0.2 mg mirror

S. Singh+: PRL 105, 213602 (2010)

G. Guccione+: PRL 111, 183001 (2013)

Rh

Experiment to Verify the Stability

 Verified the stability with a torsion pendulum and a dummy mirror T. Kawasaki, ..., YM, Yaw motion PRA 102, 053520 (2020) Measured optical geometrical spring agreed with expectation e-5 Estimated 3.0 Æ Measured 2.5 Horizontal motion 2.0 1.5 1.0 0.5 0.038 10 2030 40

Spring constant (N/m)

Intracavity power (W)

Fabrication of Levitation Mirrors

mg and mm-scale curved mirror necessary

 e.g. For levitation demonstration
 φ 3 mm, 0.1 mm thick (~1.6 mg for fused silica)
 RoC = ~30 mm convex

R > 99.95 %

- Two approaches
 - 1. Coat thin fused silica mirror to bend the mirror
 - 2. Photonic crystal mirror to
 - create effective curvature

Supported by ANR-JST QFilter project

Photonic Crystal Mirror

- Effective curvature possible by modulating the filling factor M. S. Seghilani+, Optics Express 22, 5962 (2014)
- Currently trying Si photonic crystal mirror without modulation So far achieved 95(5) % reflectivity

Next Steps

- Thin fused silica mirror
 - Measure T=10ppm mirrors We already have them (RoC~500 mm by LMA)
 - Measure the RoC after cutting
 - Try thicker coating and thinner substrate to get more curve
- Photonic crystal mirror
 - Measure reflected phase (how?)
 - Make PhC mirror with modulation
 - Measure with different wavelengths
 - Make PhC with Si₃N₄ membrane We already have a raw sample (<u>Norcada NX5100DS</u>) Could be made at 京都大学ナノテクノロジーハブ搬

Space Interferometer Laboratory Voyaging towards Innovative Applications

「2019年度公募型小型計画・宇宙科学ミッションコンセプト提案」の結果について

2019年10月10日に公募を開始した「2019年度公募型小型計 画・宇宙科学ミッションコンセプト提案」は、2020年2月5日 の締切までに7件の応募がありました。宇宙科学研究所は提案 の評価を宇宙理学委員会と宇宙工学委員会に依頼し、2つの委 員会は合同で「公募型小型・評価審査小委員会」を設置しました。

宇宙科学プログラム室は、希望のあったワーキンググループ に対し、提案書作成に向けた調整、支援を行いました。小委員 会では、応募のあった全テーマについて2020年3月に一次ヒ アリングを行った後、4テーマについて2020年5月に二次ヒア リングを実施し、最終的に1テーマを選定しました。小委員会 の選定結果は2020年8月3日の臨時宇宙理工学合同委員会に報 告され、そこでの審議を経て承認されました。

次のフェーズに進むことのできる提案は、新時代の高精度 天体観測手法である宇宙干渉計の実現に必須となる、超高精 度フォーメーションフライト技術とドラッグフリー技術の軌 道上実証を行い、将来の重力波望遠鏡や赤外線干渉計等の ミッション実現に向けた技術を獲得することを目指すSILVIA (Space Interferometer Laboratory Voyaging towards Innovative Applications) 計画の1件であります。

SILVIA

今後、この提案に対してアイデア実現加速プロセス (Pre-PhaseA1b)を実施し、適切な時期にミッション定義フェーズ (Pre-Phase A2) に進むための審査(プリプロジェクト候補選定 審査)を実施していく予定です。その後本提案は、公募型小型 計画5号機あるいは6号機の候補の一つとして活動していくこ とになります。

公募型小型・評価審査小委員会および木村 真一委員長には、 大変な労力をかけて厳正なる審査をしていただきました。小委 員会委員および小委員会から評価を委託された外部委員の皆様 に深く感謝いたします。

(佐藤英一)

ISASニュース 2020年8月号

Initial Acquisition Sequence

Bridging Sensors Before PDH

- O(cm) range, O(um) resolution
- FSR counting?
- Kalman filter or something to estimate the TM speed?
- Quadrature interferometer?
- Heterodyne interferometer?
- Digital interferometry?
- Time-of-flight measurement of pulses?

b Remote sensing

Don't Forget...

- Birefringence studies for KAGRA
- Mitigation of parametric instabilities in KAGRA
- Machine learning and modern controls for suspension controls and interferometer alignment
- Observing run for Lorentz invariance test
- Lorentz invariance test in space
- · Rotating TOBA
- Coil-coil actuator
- Optical trapping of micro-particles and doughnuts
- Control of rotational mode of optically levitated mirror using LG beams

SUMMARY

• We are at a very exciting stage! Vector DM

- Very first data analysis with multiple detector outputs **DANCE**

- Very first data taking and data analysis
- New ideas for the optical configuration

Optical levitation

- New approaches for the fabrication with promising first results and cooperative partners

SILVIA

- Proceeded to the next step, many things to contribute

