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• Can be searched in multiple ways with GW detectors
• See my last seminar talk for review on ultralight boson dark matter searches
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• Behaves as classical wave fields rather than particles

• Superposition of many waves

→ stochastic fluctuation of amplitude and phase

• Coherent time

• Vector boson field give oscillating force

• Scalar boson field changes optical thickness

As Dark Matter
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https://arxiv.org/abs/1905.13650


• Boson cloud around spinning black hole can be 

formed through superradiant scattering
- Boson field amplitude is amplified (upto ~10% of BH mass) 

- Penrose process (extracting energy and spin from Kerr black hole)

- could explain abundance of low spin BHs 

• Boson cloud will emit continuous GWs (frequency equal to 

2x that of boson field)

Black Hole Superradiance
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CW Stochastic

L. Tsukada+,

arXiv:2011.06995 

Phys. Rev. Lett. 123, 171101 (2019)

~0.07 yr ~6e4 yr

Purely gravitational search for bosons

https://arxiv.org/abs/2011.06995
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.171101


• H.-K. Guo+, Communications Physics 2, 155 (2019)
Searching for dark photon dark matter in LIGO O1 data

• S. Morisaki+, arXiv:2011.03589 (2020)
Improved sensitivity of interferometric gravitational wave detectors to ultralight vector dark 

matter from the finite light-traveling time

• S. Vermeulen+, LIGO-P2100053 (2021)
Upper limits for scalar field dark matter from GEO600

• V. Dergachev & M. A. Papa, Phys. Rev. Lett. 123, 101101 (2019)
Sensitivity Improvements in the Search for Periodic Gravitational Waves Using O1 LIGO 

Data

• C. Palomba+, Phys. Rev. Lett. 123, 171101 (2019)
Direct Constraints on the Ultralight Boson Mass from Searches of Continuous Gravitational 

Waves

• L. Sun, R. Brito, M. Isi, Phys. Rev. D 101, 063020 (2020)
Search for ultralight bosons in Cygnus X-1 with Advanced LIGO

• L. Tsukada+, Phys. Rev. D 99, 103015 (2019)
First search for a stochastic gravitational-wave background from ultralight bosons

• L. Tsukada+, arXiv:2011.06995 (2020)
Modeling and searching for a stochastic gravitational-wave background from ultralight 

vector bosons

Recent Searches
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https://www.nature.com/articles/s42005-019-0255-0
https://arxiv.org/abs/2011.03589
https://dcc.ligo.org/P2100053/
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.101101
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• Searching for dark photon dark matter in LIGO O1 data

• Data: aLIGO LHO and LLO O1 / 893 hours

- 1786 of 1800-sec data from GWSC

• Target: U(1)B vector boson dark matter

• Excluded from analysis:

- electronic lines

- within ~0.056 Hz of lines listed in PRD 97, 082002 (2018)

- 331.3-331.9 Hz (calibration lines)

• Method: DFT of 1800-sec data (0.00056 Hz bin, 10-2000 

Hz band), single-Fourier-bin cross-correlation detection 

static

• Result: 10 outliers (SNR > 5) found but neighboring bins 

within 0.2 Hz of the signal bin showed elevated noise (SNR 

> 4)

Guo+ (2019)
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Communications Physics 2, 155 (2019)Vector

O1 and O2 line identification paper

Extra veto margin to reduce susceptibility to spectral leakage

DM

Not optimal

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.97.082002
https://www.nature.com/articles/s42005-019-0255-0


• 95% C.L. upper limit

• Exceeds Eöt-Wash limits

• Even better in the future

Guo+ (2019)
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Communications Physics 2, 155 (2019)Vector DM

https://www.nature.com/articles/s42005-019-0255-0


• Improved sensitivity of interferometric gravitational wave 

detectors to ultralight vector dark matter from the finite light-

traveling time

• Data: Update of Guo+ (2019) (aLIGO O1 / 893 hours)

• Target: U(1)B and U(1)B-L vector boson dark matter

• Guo+ (2019) didn’t take into

account of the finite-light 

traveling time

• Significant when

Morisaki+ (2020)
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• Updated limit 

now also exceeds

MICROSCOPE limit

• Also calculated limit 

for B-L

Morisaki+ (2020)
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arXiv:2011.03589Vector

B

Guo+ (2019)

updated

MICROSCOPE

Eöt-Wash

B-L

Great sensitivity can 

be obtained with LISA

DM

https://arxiv.org/abs/2011.03589


• Upper limits for scalar field dark matter from GEO600

• Data: GEO600 in 2016 and 2019 / 194 hours

- 7 of 105 sec data

• Target: scalar boson that couples to electron mass and fine 

structure constant

- first search using GW detectors 

• Excluded from analysis: not discussed

• Method: logarithmic PSD (DFT of , 50-6000 Hz band), 
look-elsewhere effect considered, 10% calibration error included

• Result: 17935 peaks above 99% C.L.

- Rejected if center frequency shift more than 10-6

- Rejected if the amplitude changed more than 5σ

→ 14 candidates remained

- 13 candidates had more than x10 higher Q

- 1 candidate had much longer coherence time

S. Vermeulen+ (2021)
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LIGO-P2100053 (2021)Scalar DM

coherent time

(optimal DFT)

https://dcc.ligo.org/P2100053/


• 99% C.L. upper limit

• Exceeds Eöt-Wash for electron mass coupling at ~10-12 eV

S. Vermeulen+ (2021)
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LIGO-P2100053 (2021)Scalar DM

https://dcc.ligo.org/P2100053/


• Sensitivity Improvements in the Search for Periodic 

Gravitational Waves Using O1 LIGO Data

• Data: aLIGO O1 data / 4 hours(?) (probably from both LHO and LLO)

• Target: continuous GWs (also from vector boson clouds)

• Excluded from analysis: not discussed

• Method: full-brown all-sky semicoherent search using 

Falcon (fast loosely coherent; last-generation PowerFlux

search) in 20-200 Hz band

- sensitivity gain of 30% compared with previously 

established PowerFlux

• Result: 1111 outliers found

- within 0.01 Hz of harmonics of 0.5 Hz (instrumental)

- hardware-simulated signals (injections)

- the rest “are close to evident noise disturbances”

Dergachev & Papa (2019)
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Phys. Rev. Lett. 123, 101101 (2019)Vector CW

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.101101


• List of outliers (full list provided in supplementary)

Dergachev & Papa (2019)
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Phys. Rev. Lett. 123, 101101 (2019)Vector CW

Details of the cause 

not provided

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.101101


• Most constraining upper limits in GW amplitude in 100-200 

Hz band

• Discussed the detection range

for signals from vector boson 

clouds

Dergachev & Papa (2019)
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Phys. Rev. Lett. 123, 101101 (2019)Vector CW

What is α ?

Gravitational 

fine structure 

constant?

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.101101


• Direct Constraints on the Ultralight Boson Mass from 

Searches of Continuous Gravitational Waves

• Data: aLIGO O2 data / 268.37 days

• Target: continuous GWs from scalar boson clouds

- first time result from a real search

• Excluded from analysis: not discussed

• Method: upper limit from all-sky semicoherent search using 

frequency-Hough pipeline (Phys. Rev. D 100, 024004 

(2019)) was mapped to boson mass-BH mass plane (with 

some extended search parameter), 10-2048 Hz band

• Result: no outliers discussed in this paper

→ constraints on scalar boson mass

• O2 data is not sensitive enough for signals from ~5 Mpc 

even in most favorable cases

C. Palomba+ (2019)
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Phys. Rev. Lett. 123, 171101 (2019)CWScalar

https://doi.org/10.1103/PhysRevD.100.024004
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.171101


C. Palomba+ (2019)
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Phys. Rev. Lett. 123, 171101 (2019)CWScalar

Exclusion depends on

- BH spin

- distance

- time since the beginning 

of the emission tage

Exclusion region in

boson mass-BH 

mass plane

Optimistic case

- near (1 kpc)

- high spin

- young age

Complementary BH spin measurements by x-ray binaries, 

but more robust since isolated BHs are used and do not 

rely on EM observations

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.171101


Sun, Brito, Isi (2020)

17

Phys. Rev. D 101, 063020 (2020)CWScalar

Erratum: Phys. Rev. D 102, 089902 (2020)

• Search for ultralight bosons in Cygnus X-1 with Advanced 

LIGO

• Data: aLIGO LHO and LLO O2 data / 234 days

• Target: continuous GWs from scalar bosons in Cyg X-1

• Excluded from analysis: not discussed

• Method: directed semicoherent search based on hidden 

Markov model tracking scheme combined with a frequency-

domain matched filter, Bessel-weighted F-statistic, 250-750 

Hz band

• Result: 83 candidates found

- 64 overlap with known instrumental lines

- 13 increased significance when analyzing Hanford only

- 6 had increased significance when searching one half of 

data

→ unable to claim detection

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.063020
https://doi.org/10.1103/PhysRevD.102.089902


Sun, Brito, Isi (2020)
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CWScalar Phys. Rev. D 101, 063020 (2020)

• Cygnus X-1 (はくちょう座X-1)

- binary of BH and blue supergiant star

- relatively high BH mass (14.8 Msun)

- close to Earth (1.86 kpc)

- large uncertainty in age and spin

(compared with CBC remnants)

- some measurements indicate BH spin is too high

(>0.95) to support boson cloud

- impact of accretion from the companion

is not perfectly understood (assumed 

that the effect is small here)

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.063020


• 83 candidates that exceed

the threshold (1% false alarm

probability) are all vetoed

Sun, Brito, Isi (2020)
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Phys. Rev. D 101, 063020 (2020)CWScalar

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.063020


• Depend on the BH spin and age of Cygnus X-1

• If BH has an age of 5e6 year and if it was born with a nearly 

extremal initial spin (0.99),                                                  is 

disfavored (assuming boson does not self-interact significantly)

Sun, Brito, Isi (2020)
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Phys. Rev. D 101, 063020 (2020)CWScalar

Analytically 

estimated strain 

for tage of 5e6 year

When boson mass is high, 

decreases because the time 

scale of the GW signal  

decreases

Erratum: Phys. Rev. D 102, 089902 (2020)Analytically 

estimated strain for 

tage of 1e5 year

(potential younger 

age of  Cyg X-1)

gravitational fine 

structure constant

strain upper limit

optimistic

injections

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.063020
https://doi.org/10.1103/PhysRevD.102.089902


• When self-interaction in string axiverse scenario is taken 

into account,                                          is excluded for a 

decay constant  

Sun, Brito, Isi (2020)
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Phys. Rev. D 101, 063020 (2020)CWScalar

No bosenova

Excluded

Yoshino & Kodama, 

PTEP 2015, 061E01, (2015)

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.063020
https://doi.org/10.1093/ptep/ptv067


• First search for a stochastic gravitational-wave background 

from ultralight bosons

• Data: aLIGO LHO LLO O1 data

• Target: SGWB from scalar boson clouds around isolated 

BHs and BBH merger remnants 

• Excluded from analysis: not discussed

• Method: Bayesian analysis, cross-correlation

• Result: No statistically significant signal is detected

→ if BH formation rate is optimistic and spin distribution is 

optimistic (uniform in [0,1]),                                            is 

excluded at 95% credibility (no limit if less optimistic about 

spin distribution)

* BH spin distribution is extremely uncertain

Tsukada+, (2019)
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Phys. Rev. D 99, 103015 (2019)Scalar Stochastic

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.99.103015


Tsukada+, (2019)
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Phys. Rev. D 99, 103015 (2019)Scalar Stochastic

from BBH 

remnants

from isolated 

BH (assuming 

uniform spin 

distribution; 

optimistic)

Frequency of 

SGWB cannot be 

higher than

Low frequency 

component comes 

from redshift

Peaks at the peak 

of star formation 

rate (z=1~2)

BH’s 

Schwarzschild 

radius has to be 

comparable to 

boson’s Compton 

wavelength

(mb~10-13 eV for 

~10 Msun BHs

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.99.103015


• Is it possible to distinguish from CBC background?

Tsukada+, (2019)
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Phys. Rev. D 99, 103015 (2019)Scalar Stochastic

Possible inside magenta contour ln(Bayes factor) > 8

BH spin upper limit

(probably)

3 years with aLIGO

design sensitivity

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.99.103015


• Result from O1 data

- if spin upper limit is varied and lower limit is fixed to 0,

no constraint

- if spin lower limit is varied and upper limit is fixed to 1,

Tsukada+, (2019)
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Phys. Rev. D 99, 103015 (2019)Scalar Stochastic

No constraint

Excluded

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.99.103015


• Modeling and searching for a stochastic gravitational-wave 

background from ultralight vector bosons

• Data: aLIGO LHO LLO O1 and O2 data

• Target: SGWB from minimally-coupled (only gravitational, 

no self-interactions) vector boson clouds around isolated 

BHs and BBH merger remnants 

• Excluded from analysis: not discussed

• Method: Bayesian analysis, cross-correlation, 20-700 Hz

• Result: No evidence for such signal

→ if BH formation rate is optimistic and spin distribution is 

optimistic (uniform in [0,1]),                                            is 

excluded at 95% credibility (narrower but some limit if upper 

limit of BH spin is larger than ~0.2)

Tsukada+, (2020)
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arXiv:2011.06995StochasticVector

https://arxiv.org/abs/2011.06995


• Vector cloud compared with scalar could

- significantly stronger GW signal

GW power of dominant mode

Scalar: scales as

Vector: scales as

- significantly shorter 

superradiant instability and 

GW emission timescale

Tsukada+, (2020)
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arXiv:2011.06995StochasticVector

https://arxiv.org/abs/2011.06995


Tsukada+, (2019)
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arXiv:2011.06995Stochastic

from BBH 

remnants

from isolated BH (assuming uniform 

spin distribution; optimistic)

Grey dash-dotted lines show scalar 

case from both channels

- Dominated by isolated BH channel

- When mb > 10-12.5 eV, GW emission 

timescale is short and all the energy is 

emitted within BH lifetime

→ same spectra for scalar and vector

- When mb < 10-12.5 eV GW emission time 

scale is longer and not all the energy is 

emitted for scalar case (scalar has longer GW 

emission timescale)

Vector

https://arxiv.org/abs/2011.06995


• Result from O1+O2 data

- if spin upper limit is varied and lower limit is fixed to 0,

some constraint if upper limit is larger than 0.2

- if spin lower limit is varied and upper limit is fixed to 1,

Tsukada+, (2020)
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arXiv:2011.06995StochasticVector

Excluded

E
x
c
lu

d
e
d

https://arxiv.org/abs/2011.06995


• Extensive studies of line noises in aLIGO aid data analysis 

not only for continuous GWs but also for ultralight boson 

searches

• Having two identical detectors ease our life

• I feel like unknown lines excluded from the analysis could be 

from something

• Sounds like too many ifs for constraints from GWs from 

boson clouds, but very interesting

• Injection for validating the data analysis scheme is important

Summary
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Bonus Slides

Recent Axion Dark Matter Searches
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• Search for axion-like dark matter with ferromagnets

• SHAFT: Search for Halo Axions with Ferromagnetic Toroids

• Exceeds CAST limit using 43-hours of data at ~10-10 eV

SHAFT (2021)
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Nature Physics 17, 79 (2021)Axion DM

Located at Boston University

https://www.nature.com/articles/s41567-020-1006-6


• The search for low-mass axion dark matter with 

ABRACADABRA-10cm

• Equivalent to CAST limit using 430 hours of data at ~10-9 eV

ABRACADABRA-10 cm (2021)
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arXiv:2102.06722Axion DM

Located at MIT in Cambridge, MA

https://arxiv.org/abs/2102.06722


Revisiting DeRocco & Hook (2018)
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Phys. Rev. D 98, 035021 (2018)

Axion DM

https://doi.org/10.1103/PhysRevD.98.035021


Additional Slides



Ultralight Dark Matter
• Ultralight DM (<~1 eV) behaves as classical wave 

fields

• Laser interferometers are sensitive to tiny length 

changes from such oscillations
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Freq-Mass-Coherence Time
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Frequency Mass Coherent Time Coherent Length

0.1 Hz 4.1e-16 eV 0.32 year 3e12 m

1 Hz 4.1e-15 eV
1e6 sec

12 days
3e11 m

10 Hz 4.1e-14 eV 1.2 days 3e10 m

100 Hz 4.1e-13 eV 2.8 hours 3e9 m

1000 Hz 4.1e-12 eV 17 minutes 3e8 m

10000 Hz 4.1e-11 eV 1.7 minutes 3e7 m


