

五千皇哲, 安東正樹 (東入), 伊藤琢博, 河野切, 船木一辛, 坂井真一郎, 和泉究, 長野晃士 (JAXA), 佐藤修一 (法政大), 武者満 (電通大), 佐藤訓志, 山田克彦 (阪大), 松尾太郎, 金田英宏, 川村静児 (名大), 阿久津智忠, 正田亜八香 (NAOJ), SILVIA 検討グループ

・2030年代以降に欧米・中国・日本で計画中

宇宙では地上と異なる観測が可能 ・重い連星の合体や、軽い連星のインスパイラル期

小型で宇宙重力波観測は可能か?

- 既存の計画は大型・中型計画
 時間がかかる。実証機が必要。
- JAXA 公募型小型計画規模を想定 打ち上げ費込みで150億円以下 イプシロンロケットによる打ち上げ 2年に1度の公募、採択から6-7年程度 →2020年代に打ち上げられる可能性
- LISAやTianQinよりも早く
 観測が開始できる可能性がある
- 特に0.1-10 Hz帯を狙えばLISAや
 LIGOとは質的に異なる観測が可能

"確実"な重力波観測に必要な感度

• LIGOが既に検出しているような重力波を検出する

カの雑音(加速度雑音)とショットノイズの合計で
 決まる (他の雑音を+分小さく抑えた場合)

感度を決める雑音の表式

・力の雑音 $h_{f} = \frac{n_{f}}{m\omega^{2}L}$ $f_{\pi\omega^{2}L}$ $f_{\pi\omega$

 h_{shot}

 $\overline{2\pi}$

基線長 $_{\nu- \forall- \mathring{B} \not{E}}$ → レーザー波長と強度を仮定すると*LF* に条件

 $\frac{\overline{hc\lambda}^{\nu}}{2P}\frac{\pi}{2\mathcal{F}^{\nu}}$

フィネス ※光の往復回数の指標

重力波観測の条件

カの雑音より、
 4×10⁻¹⁵ N/√Hz とすると

 $mL > 120 \,\mathrm{kg}\cdot\mathrm{km}$

- ショットノイズより、 レーザー波長515 nm、強度10 mWとすると
 LF > 180 km
- kg級のテストマス、km級の基線長が必須
 → 既に知られているような連星合体からの
 重力波の確実な観測は小型衛星では難しい

小型級で実現可能な感度

• 地上では実現できない低周波数帯での感度が可能

小型級で実現可能な観測レンジ

• 地上では未探索の重い連星合体を探索可能

小型級による背景重力波探索

• 1-10 Hz帯では最高性能での背景重力波探索が可能

まとめ

- ・地上重力波望遠鏡LIGOなどにより 重力波物理学・天文学が幕を開けた
- より低周波数帯の重力波観測のためには
 宇宙重力波望遠鏡の実現が重要
- 宇宙重力波望遠鏡でこれまで見つかっている ような重力波を検出するには
 kg級のテストマス、km級の基線長が必須
- テストマス100 g級、基線長100 m級の JAXA公募型小型クラスのミッションでも 2020年代に実現できれば、
 未探索領域の低周波重力波探索が可能 中間質量ブラックホール連星合体 1-10 Hz帯での背景重力波

補助スライド

Design Comparison

	LISA	TianQin	B-DECIGO
Arm length	2.5e6 km	1.7e5 km	100 km
Interferometry	Optical transponder	Optical transponder	Fabry-Pérot cavity
Laser frequency stabilization	Reference cavity, 1064 nm	Reference cavity, 1064 nm	lodine, 515 nm
Orbit	Heliocentric	Geocentric, facing J0806.3+1527	Geocentric (TBD)
Flight configuration	Constellation flight	Constellation flight	Formation flight
Test mass	1.96 kg	2.45 kg	30 kg
Force noise req.	8e-15 N/rtHz Achieved PRL 120, 061101 (2018)	7e-15 N/rtHz <u>CQG 33, 035010 (2016)</u>	1e-16 N/rtHz 14

干渉計方式 (Fabry-Perot)

- 入射光強度が小さくてすむ
- ・ 鏡と同程度の大きさのテレスコープは必要だが主
 干渉計内には入っていない
- 衛星とテストマス間の
 ローカルセンサの感度は
 主干渉計より低くても良い

干渉計方式 (Michelson)

- 入射光強度を(フィネス)²倍すればFabry-Perot共振
 器と同等の感度を実現することは可能
 Michelson 1 W ⇔ FP 10 mW & Finesse 10
- BSの保持方法の工夫が必要
- 双方向にすることができない (冗長性を持たせるには鏡の 数を増やす必要)
- テレスコープが主干渉計内
- 主干渉計と同程度の
 変位感度を持つ衛星と
 テストマス間の
 ローカルセンサが必要

干渉計方式 (Optical Transponder)

- 光の損失を許せば、距離を長くすることが可能 (Michelson干渉計の感度を低周波側にスライドする イメージ)
- Michelsonと同等の大きさの鏡 があれば1 W全ての光を 受け取って同等の感度 (ただしdark fringe制御必要)

主干渉計と同程度の
 変位感度を持つ衛星と
 テストマス間の
 ローカルセンサが必要

DECIGOとBBO

 DECIGOはFabry-Perot 鏡の質量 100 kg (直径1 m程度、直径60cmでも十分) 共振器長 1000 km 入射パワー10W、フィネス10 波長 515 nm (532 nm?) 力の

雑音への

要求値

1e-16 N/rtHz BBO/LISAはOptical transponder 鏡の質量 10 kg [2 kg for LISA] 基線長 50,000 km [2,500,000 km for LISA] テレスコープ直径 2.5 m [0.3 m for LISA] レーザーパワー 300 W (8 W received) [3 W for LISA] 波長 355 nm (拡がりを小さくするため) [1064 nm for LISA]

力の雑音 <8e-16 N/rtHz程度? [<8e-15 N/rtHz for LISA]

イプシロンロケットの打ち上げ性能

Epsilon Launch Vehicle ユーザーズマニュアル

図 3-13 打上げ能力(基本形態)

DPFの雑音見積もり

• DECIGOパスファインダー(DPF)ミッション提案書

表 B.1: DPF 重力波検出器の主な外乱・雑音の評価.力の大きさ・鏡の相対加速度は,静的な値を表す.干渉計に対する加速度雑音と変位雑音は,0.1 Hz での値を記載している.

2008年9月

外乱・執	 	力の大きさ [N]	鏡の相対加速度 [m/s ²]	干渉計加速度雑音 [m/s ² /Hz ^{1/2}]	干渉計変位雑音 [m/Hz ^{1/2}]
試験マス	、に直接働く外乱		. ,]		
重力	太陽	$6.0 imes10^{-3}$	$2.4 imes 10^{-14}$		
	月	$3.3 imes 10^{-5}$	$5.2 imes 10^{-14}$		
	衛星	$1.5 imes 10^{-9}$	$3.0 imes 10^{-9}$		
	地球	7.8	$1.0 imes 10^{-7}$	$1.0 imes 10^{-18}$	
電磁力	衛星磁場	$1.2 imes 10^{-14}$		1.5×10^{-16}	
	ローレンツ力	$3.5 imes 10^{-14}$		$6.9 imes10^{-18}$	
その他	残留気体分子			$8.6 imes 10^{-16}$	
	宇宙線の衝突	$1.1 imes 10^{-17}$		$1.8 imes 10^{-18}$	
	熱輻射			$1.5 imes 10^{-16}$	
衛星に働	かく外乱				
	太陽輻射圧	2×10^{-5}		$8.9 imes10^{-19}$	
	地球大気の摩擦	$7 imes 10^{-6}$			
	衛星スラスタ	1×10^{-4}		$6.3 imes10^{-17}$	
干渉計の	D雑音				
	散射雑音				$2.7 imes 10^{-18}$
	レーザー輻射圧	$5 imes 10^{-8}$		8.2×10^{-17}	
	鏡の熱雑音				$2.0 imes 10^{-17}$
	光源周波数雑音				$1.8 imes10^{-16}$
	合計 (2 乗和の平行	亍根)		$9.4 imes 10^{-16}$	$1.8 imes 10^{-16}$

20

Other Space Mission Proposals

- DECIGO <u>CQG 28, 094011 (2011)</u>
- ALIA <u>arXiv:1907.11305</u> (post LISA, 500,000 km)
- BBO <u>CQG 23 4887 (2006)</u> (post LISA, 50,000 km)
- TOBA PRL 105, 161101 (2010) (10m torsion bar)
- GEOGRAWI <u>arXiv:1111.2576</u> (73,000 km LISA) -> gLISA <u>arXiv:1608.04790</u>
- GADFLI <u>arXiv:1111.3708</u> (73,000 km LISA)
- LAGRANGE <u>arXiv:1111.5264</u> (660,000 km LISA)
- OMEGA white paper (2011) (1,000,000 km LISA)
- SAGE <u>arXiv:1811.04743</u> (Sagnac interferometer)
- AMIGO <u>arXiv:1709.05659</u>
- MAGIS <u>arXiv:1711.02225</u> (atom interferometer)
- Taiji <u>arXiv:1807.09495</u> (almost LISA)
- INO <u>arXiv:1809.10317</u> (optical lattice clocks)
- SAGE <u>arXiv:1907.03867</u> (atom interferometer or atomic clocks)
- TianGO arXiv:1908.06004 (100 km, 10 kg Michelson with squeezing)
- DO <u>arXiv:1908.11375</u> (1e8 m LISA, Voyage2050)

Comparison of Proposals

• Wei-Tou Ni, <u>IJMPD 25, 1630001 (2016)</u>

Mission concept	S/C configuration	Arm length	Orbit period	S/C #	$\begin{array}{c} {\rm Acceleration} \\ {\rm noise} \; [{\rm fm/s^2/Hz^{1/2}}] \end{array}$	Laser metrology noise [pm/Hz ^{1/2}]
	So	lar-Orbit GW M	lission Proposal	s		
LISA ⁹	Earthlike solar orbits with 20° lag	$5\mathrm{Gm}$	1 year	3	3	20
eLISA ²¹	Earthlike solar orbits with 10° lag	1 Gm	1 year	3	3	12(10)
ASTROD-GW ³⁶⁻⁴⁰	Near Sun-Earth L3, L4, L5 points	$260{ m Gm}$	1 year	3	3	1000
Big Bang Observer ⁴⁵	Earthlike solar orbits	0.05 Gm	1 year	12	0.03	1.4×10^{-5}
DECIGO ⁴⁴	Earthlike solar orbits	0.001 Gm	1 year	12	0.0004	2×10^{-6}
ALIA ⁴⁷	Earthlike solar orbits	$0.5\mathrm{Gm}$	1 year	3	0.3	0.6
TAIJI (ALIA-descope) ⁴⁸	Earthlike solar orbits	3 Gm	1 year	3	3	5-8
Super-ASTROD ⁴²	Near Sun-Jupiter L3, L4, L5 points (3 S/C), Jupiterlike solar orbit(s)(1-2 S/C)	1300 Gm	11 year	4 or 5	3	5000
	Ea	rth-Orbit GW M	lission Proposa	ls		
OMEGA ^{54,55}	0.6 Gm height orbit	$1\mathrm{Gm}$	53.2 days	6	3	5
gLISA/GEOGRAWI ⁴⁹⁻⁵¹	Geostationary orbit	0.073 Gm	24 h	3	3, 30	0.3, 10
GADFLI ⁵²	Geostationary orbit	0.073 Gm	24 h	3	0.3, 3, 30	1
TIANQIN ¹⁹	0.057 Gm height orbit	0.11 Gm	44 h	3	1	1
ASTROD-EM43	Near Earth-Moon L3, L4, L5 points	$0.66\mathrm{Gm}$	$27.3 \mathrm{days}$	3	1	1
LAGRANGE ⁵³	Earth-Moon L3, L4, L5 points	$0.66\mathrm{Gm}$	$27.3 \mathrm{days}$	3	3	5

Table 1. A compilation of GW mission proposals.

Sensitivity Comparison

LISA: <u>https://perf-lisa.in2p3.fr/</u> TianQin: <u>arXiv:1902.04423</u> (from Yi-Ming Hu) B-DECIGO: <u>PTEP 2016, 093E01 (2016)</u> KAGRA: <u>PRD 97, 122003 (2018)</u> aLIGO: LIGO-T1800044

ET: http://www.et-gw.eu/index.php/etdsdocument CE: CQG 34, 044001 (2017)

