DANCE: Dark matter Axion search with riNg Cavity Experiment

Yuta Michimura RESCEU, University of Tokyo

michimura@resceu.s.u-tokyo.ac.jp

Dark Matter Mystery

- Suggested in 1930s from galaxy rotation curves
- Accounts for ~80% of all the matter of the universe
- The nature remains mystery

drives an acceleration of the expansion of the universe

Dark Matter Models

- ~90 orders of magnitude
- Searches focused on WIMPs, but not detected yet
- Motivates new searches for other candidates

Ultralight DM with Interferometers

- Bosonic ultralight field (<~1 eV) are well-motivated from cosmology
- Behaves as classical waves

$$f = 242 \text{ Hz} \left(\frac{m_{\text{DM}}}{10^{-12} \text{ eV}} \right)$$

 Laser interferometers are sensitive to such oscillating changes

Various Searches Possible

Axion Dark Matter

 Many experiments to search for ALPs through axion-photon coupling, especially by using magnetic fields (but ours don't)

Polarization Modulation from Axions

- Axion-photon coupling $(\frac{g_{a\gamma}}{4}aF_{\mu\nu}\tilde{F}^{\mu\nu})$ gives different phase velocity between left-handed and right-handed circular polarizations
 - $c_{\rm L/R} = \sqrt{1 \pm \frac{g_{a\gamma}a_0m_a}{k}} \sin(m_a t + \delta_{\tau})$ coupling constant axion field
- Linear polarization will be modulated p-pol sidebands will be generated from s-pol
- Search can be done without magnetic field

Optical Cavity to Amplify the Signal

- Polarization rotation is small for short optical path

 Laser
- Optical cavities can increase the optical path, but the polarization is flipped by mirror reflections

• Bow-tie cavity can amplify the rotation

Estimated Reach

* Shot noise limited, Better than CAST below 10⁻¹⁰ eV 1-year observation 10^{-6} $|g_{a\gamma}|$ (GeV⁻¹ **PVLAS 2016 ALPS-I 2010** 10^{-7} **OSQAR 2015** 10^{-8} **SHAFT 2021** umico 2008 ABRA 10-cm 2021 10^{-9} **KAGRA** trans 2024 10^{-10} coupling **ĀLPS-II** 10^{-11} **IAXO** 10-12 Ation NGC1275 2020 10-13 **KAGRA** axion-photon 10^{-14} **LIGO** DANCE 10⁻¹⁵ ABRACADABRA 10^{-16} ADMX 2010+2018 10^{-17} 10^{-18} $10^{-17} 10^{-16} 10^{-15} 10^{-14} 10^{-13} 10^{-12} 10^{-11} 10^{-10} 10^{-9} 10^{-8} 10^{-7} 10^{-6} 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^{0} 10^{-10} 10^$ axion mass m_a (eV)

Cosmic Birefringence and DANCE

- Same principle
- Two-axion model can explain both cosmic birefringence and dark matter in the mass range $g_{\mu\nu}$ [Generation of DANCE and $g_{\mu\nu}$]
- Dynamical Dark Energy can also be explained by axions

Status of DANCE

- First demonstration in 2021 10⁻¹
 Y. Oshima+, 10⁻²
 PRD 108, 072005 (2023)
- 4 orders of magnitude improvement over the past years

First Data Analysis Results

- Used 24-hour data from 12-day run in May 2021
- 551 candidates found from initial analysis

H. Nakatsuka+, PRD **108**, 092010 (2023)

- Veto analysis
 - Consistency veto (Frequency should be the same for different set of 24-hour data)
 - Q-factor veto (DM signal must have Q of 10⁶)
 - Remaining 7 candidates (all multiples of ~40 Hz) are also found in laser frequency control, and thus rejected
- Placed upper limits

Simultaneous Resonance

 Carrier pol and sideband pol needs to be enhanced simultaneously for improving the sensitivity

Cavity Birefringence Tuning

- Near 45 deg incidence on cavity mirrors create reflection phase difference, which leads to nonsimultaneous resonance
- Reflection phase can be tuned by tuning laser wavelength
 H. Takidera+, arXiv:2505.06770 Resonant peak (1063.5nm)

Axion DM Search with KAGRA

- Linear cavities can be sensitive when the round-trip time equals odd-multiples of axion oscillation period
- Polarization optics installed in KAGRA
- First data expected in 2025

Summary

- Laser interferometers open up new possibilities for dark matter search
- Axion-like particles can be searched with DANCE to search for polarization modulation of light with optical ring cavity (without magnets!)
- Prototype experiment DANCE Act-1 is underway
- First result from 24-hour data released
 Y. Oshima+, PRD 108, 072005 (2023)
- Further sensitivity improvement underway with wavelength tunable laser
 H. Takidera+, <u>arXiv:2505.06770</u>