Laser interferometric searches for ultralight dark matter

Yuta Michimura

Department of Physics, University of Tokyo michimura@phys.s.u-tokyo.ac.jp

Slides are available at https://tinyurl.com/YM20210305

Ando Group

- Gravitational wave detectors
 - Ground-based detector KAGRA
 - Space detector DECIGO
 - Torsion bar antenna TOBA
- Optomechanics
 - mg-scale torsion pendulum
 - Optical levitation of mg-scale disk
- Tests of Lorentz invariance
 - Isotropy of speed of light
- Dark matter search
 - Axion search DANCE
 - Dark matter searches with KAGRA

Ultralight Dark Matter

 Ultralight DM (<~1 eV) behaves as classical wave $f = 242 \text{ Hz} \left(\frac{m_{\text{DM}}}{10^{-12} \text{ eV}} \right)$ fields Dark Matter Mass (GeV) Excluded 1020 10¹⁰ xcludec 1040 10-10 1050 **10**-20 1060 Light **≦ Composite DM &** Heavy **Ultralight DM Primordial BHs etc.** DM DM Q-ball Higgs boson Planck mass QCD axion Solar mass (125 GeV) (1.2e19 GeV) (1.1e57 GeV) 2.4 Hz ~ 2.4 kHz XENON1T limits on ALP (1e-14 ~ 1e-11 eV) (1-210 keV) Laser Interferometry arXiv:2006.09721 3

Laser Interferometry for DM Search

 Laser interferometers and optical cavities are sensitive to tiny oscillations from gravitational waves and also dark matter

Our Strategy

 Use both table-top optical cavities and large-scale laser interferometric gravitational wave detectors

Axion and Axion-Like Particles

- Pseudo-scalar particle originally introduced to solve strong CP problem (QCD axion)
- Various axion-like particles (ALPs) predicted by string theory and supergravity
- Many experiments to search for ALPs through axion-photon coupling

Especially by using magnetic fields

Previous Searches Light Shining through Wall (ALPS etc.)

Polarization Modulation from Axions

- Axion-photon coupling $(\frac{g_{a\gamma}}{4}aF_{\mu\nu}\tilde{F}^{\mu\nu})$ gives different phase velocity between left-handed and righthanded circular polarizations
 - $c_{\rm L/R} = \sqrt{1 \pm \frac{g_{a\gamma}a_0m_a}{k}} \sin(m_a t + \delta_{\tau})$ coupling constant axion field
- Linear polarization will be modulated p-pol sidebands will be generated from s-pol
- Search can be done
 without magnetic field

Optical Cavity to Amplify the Signal

• Polarization rotation is small for short optical path

Optical Cavity to Amplify the Signal

Polarization rotation is small for short optical path

Laser

Optical Cavity to Amplify the Signal

Polarization rotation is small for short optical path

 Optical cavities can increase the optical path, but the polarization is flipped by mirror reflections

• Bow-tie cavity can amplify the rotation

Laser

DANCE Setup

Dark matter Axion search with riNg Cavity Experiment

bow-tie

 Look for amount of modulated p-pol generation in each frequency

Sensitivity of DANCE

Sensitivity better than CAST limit

* Shot noise limited 1 year observation

Sensitivity of DANCE

Sensitivity better than CAST limit

* Shot noise limited 1 year observation

Linear Cavities for Axion Search

When finite light traveling time is considered, linear cavities can also be used

- Can be sensitive when the round-trip time equals odd-multiples of axion oscillation period
- Long baseline linear cavities in gravitational wave detectors are suitable

Gauge Bosons

 Possible new physics beyond the standard model: New gauge symmetry and gauge boson

Proton

Neutron

Electron

Nucleus

gauge

В

field

- New gauge boson can be dark matter
- B-L (baryon minus lepton number)
 - Conserved in the standard model
 - Can be gauged without additional ingredients
 - Equals to the number of neutrons
 - Roughly 0.5 per neutron mass, but slightly different between materials Fused silica: 0.501 Sapphire: 0.510
- Gauge boson DM gives oscillating force

Oscillating Force from Gauge Field

Acceleration of mirrors

Force

Force

- Gauge boson mass and coupling can be measured by measuring the oscillating mirror displacement
- Almost no signal for symmetric L_x cavity if cavity length is short (phase difference is 10⁻⁵ rad @ 100 Hz for km cavity)

Search with GW Detectors

- GW Detectors are sensitive to differential arm length (DARM) change
- Most of the signal is cancelled out

Search with KAGRA KAGRA

 KAGRA uses cryogenic sapphire mirrors for arm cavities, and fused silica mirrors for others **Gauge field** (LIGO/Virgo uses fused silica for all mirrors) Force Force Laser **B-L** charge Fused silica: 0.501 DARM Sapphire: 0.510 $L_{\rm x}$ – photodiode

Search with KAGRA KAGRA

KAGRA Gauge Boson Sensitivity

- Auxiliary length channels have better sensitivity than DARM at low mass range
- Sensitivity better than equivalence principle tests

Recent Progresses: KAGRA

- First (gravitational-wave) observing run in Feb-Apr 2020
- Ultralight DM data analysis pipeline developed
- Found many peaks above threshold
 - Developing veto procedure to remove KAGRA Collab. arXiv:2005.05574 detector artifacts 10^{-9} 10^{-10}

 10^{-11}

KAGRA design

10¹

AGRA DARM in 2020

10²

frequency (Hz)

10³

 Statistical studies on stochastic fluctuation

Recent Progresses: DANCE

- Successfully demonstrated the operation in 2020
- Recent upgrades
 - Shielding for reducing external disturbances
 - Increasing the finesse and input laser power

	Nov. 2020	Now	Act-1 Target
Round-trip length	1 m	1 m	1 m
Input laser power	~40 mW	274(1) mW	1 W
Output laser power	~1.2 mW	158(1) mW	1 W
Finesse for carrier	525(19) p-pol	2.80(34)×10 ³ s-pol	3×10 ³
Finesse for sidebands	~300 s-pol	193(10) p-pol	3×10 ³
Resonant frequency	~28 MHz	3.92(16) MHz	0 Hz
polarizations	From non-zero phase shift difference in cavity mirror reflections		25

Recent Progresses: DANCE

- Improving the sensitivity gradually
- Stable lock lasted ~60 hours
- First test run
 expected this year unit of the second second

Estimated reach if we observe for 1 year with current noise level (Degraded sensitivity at low frequencies due to resonant frequency difference between polarizations)

Summary and Outlook

- Laser interferometers open up new possibilities for dark matter search
- We have recently started a table-top experiment and analysis of KAGRA data
 - DANCE for broad band axion
 - KAGRA +polarimetry for narrow band axion
 - KAGRA for gauge boson
- Expecting first results this year
- We are also interested in scalar DM search
- We look forward to further discussions and collaboration!

Additional Slides

Comparison with Other Groups

Purple dotted lines from P. Arias+ JCAP 06, 013 (2012)

Axion Search with GW Detectors

K. Nagano, T. Fujita, YM, I. Obata PRL 123, 111301 (2019)

30

Gauge Boson Search

S. Morisaki, T. Fujita, YM, H. Nakatsuka, I. Obata, arXiv:2011.03589

Coherence Time

- SNR grows with √Tobs if integration time is shorter than coherence time
- SNR grows with (Tobs)^{1/4} if integration time is longer

Freq-Mass-Coherence Time

Frequency	Mass	Coherent Time	Coherent Length
0.1 Hz	4.1e-16 eV	0.32 year	3e12 m
1 Hz	4.1e-15 eV	1e6 sec 12 days	3e11 m
10 Hz	4.1e-14 eV	1.2 days	3e10 m
100 Hz	4.1e-13 eV	2.8 hours	3e9 m
1000 Hz	4.1e-12 eV	17 minutes	3e8 m
10000 Hz	4.1e-11 eV	1.7 minutes	3e7 m