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Self Introduction
• PhD in 2015 from Tsubono→Ando Group

- Most precise Lorentz invariance test
• 2014-2022 助教 at Ando Group

- Chaired KAGRA Main Interferometer group
   (2020-2024 JSTさきがけ研究者)

- Axion dark matter search
• 2022-2024 Research Scientist at Caltech

- R&D for LIGO upgrades
• 2024-present 准教授 at RESCEU
• Interested in experiments related to gravity
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Group Photo 2024



Plan of the Talk
• Goal of the talk today

- Recruit people to join my work

• Very brief introduction to GW detectors
• Searches for quantum fluctuations of spacetime
• Searches for ultralight dark matter
• Tests of quantum nature of gravity
• Data cleaning
• Upgrading calibration
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Fringe 
change

Laser Interferometric Detector
• Measures differential length change from 

gravitational waves

Photodiode

Laser source
Beam
splitter

Interference
6

Mirror



Global Network of GW Detectors

GEO-HF

Advanced Virgo

Advanced LIGO

KAGRA

LIGO-India (approved)

Advanced LIGO

• Network of ground-based Advanced interferometric
gravitational wave detectors

(c) Enrico Sacchetti
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LVK Observing Plans
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• Second half of O4 (called O4b) is running
• LIGO: 155-175 Mpc, Virgo: 55-60 Mpc
• KAGRA: Aiming to achieve 10 Mpc by Feb 2025 (end of O4b)

• Upgrades and next generation detectors planned after O5
https://observing.docs.ligo.org/plan/

https://observing.docs.ligo.org/plan/


Sensitivity Curves
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• Smaller the better in y-axis

NOTE: Not the latest. Taken when 5 detectors are locked simultaneously on June 1, 2023

LIGO Hanford

Virgo KAGRA GEO600



Quantum fluctuations of 
spacetime
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Quantum Fluctuations of Spacetime
• Spacetime vacuum fluctuations in quantum gravity 

with a scalar field
• Observable

• Parametrized by the power of noise
(Natural benchmark            )
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Planck length

Displacement 
noise peaks at 
odd x c/(4L)

D. Li+, PRD 107, 024002 (2023)

Arm length

K. M. Zurek, 
arXiv:2205.01799

not

https://doi.org/10.1103/PhysRevD.107.024002
https://arxiv.org/abs/2205.01799


Limit from O3 
• Roughly             and            (with IR cutoff) at 3σ

achieved with LIGO O3
• Limit from frequencies

below the peak

12D. Li+, PRD 107, 024002 (2023)

LHO O3 AxB cross-corr.

https://doi.org/10.1103/PhysRevD.107.024002


High Frequency Data From O4

13

• LIGO installed 512 KHz ADC from O4 (usually 64 KHz)
• Search at the peaks or at the dips of

sensitivity curve can be done
KHz = 1024 kHz

Rough calibration done
with  Masayuki Nakano 

and Joe Betzwieser

Usual sensitivity curve Sensitivity curve from new HF data

Quantum 
noise model 
(from GWINC)

α=1 α=1
(with IR cutoff)

Not real 
below UGF



kHz GW Searches Also Possible
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• Primordial black holes, BH superradiance, cosmic strings 
etc. 

A. Arvanitaki & A. A. Geraci, 
PRL 110, 071105 (2013)

N. Aggarwal+,
PRL 128, 111101 (2022)

For review, see
N. Aggarwal+, Living Reviews in Relativity
24, 4 (2021)

https://doi.org/10.1103/PhysRevLett.110.071105
https://doi.org/10.1103/PhysRevLett.128.111101
https://doi.org/10.1007/s41114-021-00032-5


Why You Should Join
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• Almost no one knows the data exists from O4
• The best data in O(10) kHz region, various science cases

- No known astrophysical GW sources above ~10 kHz
- Any discovery would indicate new physics

• The data is not saved, and not calibrated
- Still works to be done
- Frequency dependent response need to be considered to
develop GW search pipelines (Also useful for 3G    
detectors) [A. Błaut, PRD 85, 043005 (2012); R. Essick+, 
PRD 96, 084004 (2017)]

- Squeezing at high frequencies? Laser noise coupling?
• Further sensitivity improvement possible with quantum 

correlation [D. V. Martynov+, PRA 95, 043831 (2017); H. Yu+, PRD 
106, 063017 (2022)]

• Also can be done with KAGRA; just install fast ADC

https://doi.org/10.1103/PhysRevD.85.043005
https://doi.org/10.1103/PhysRevD.96.084004
https://doi.org/10.1103/PhysRevA.95.043831
https://doi.org/10.1103/PhysRevD.106.063017


Frequency Dependent Response

16A. Błaut, PRD 85, 043005 (2012) R. Essick+, PRD 96, 084004 (2017)

https://doi.org/10.1103/PhysRevD.85.043005
https://doi.org/10.1103/PhysRevD.96.084004


Quantum Correlation
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D. V. Martynov+, PRA 95, 043831 (2017)

https://doi.org/10.1103/PhysRevA.95.043831


Even Higher Frequencies?
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For review, see
N. Aggarwal+, Living Reviews in Relativity 24, 4 (2021)

Magnon (~GHz)
T. Ikeda+, PRD 105, 102004 (2022)
More recently from Kusaka Group

Axion detectors can also turn into
high frequency GW detectors
e.g. V. Domcke+, PRL 129, 041101 (2022)

Table-top IFO (~MHz)
T. Akutsu+, PRL 101, 101101 (2008)

https://doi.org/10.1007/s41114-021-00032-5
https://doi.org/10.1103/PhysRevD.105.102004
https://doi.org/10.1103/PhysRevLett.129.041101
https://doi.org/10.1103/PhysRevLett.101.101101


Ultralight Dark Matter
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• Gravitational waves, and wave-like (ultralight) dark matter

Fringe 
change

Interferometers are Sensitive to…

Photodiode

Laser source
Beam
splitter

Interference

Movable mirror

Gravitational 
waves
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Fringe 
change

Gauge Boson (Vector) Dark Matter

Photodiode

Laser source
Beam
splitter

Interference

Movable mirror
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Tiny forces
from gauge 
boson DM

P. W. Graham+,
PRD 93, 075029 (2016)
Y. Michimura+,
PRD 102, 102001 (2020)

LVK, PRD 105, 063030 (2022)
Erratum: PRD 109, 089902 (2024)

LVK, arXiv:2403.03004

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.93.075029
https://doi.org/10.1103/physrevd.102.102001
https://doi.org/10.1103/PhysRevD.105.063030
https://doi.org/10.1103/PhysRevD.105.063030
https://arxiv.org/abs/2403.03004


Fringe 
change

Scalar Boson Dark Matter

Photodiode

Laser source
Beam
splitter

Interference

Movable mirror
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Mirror 
thickness 

changes from 
scalar DM

H. Grote & Y. V. Stadnik, 
PRR 1, 033187 (2019)

S. M. Vermeulen+,
Nature 600, 424 (2021)

https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.1.033187
https://www.nature.com/articles/s41586-021-04031-y


Fringe 
change

Axion-like Dark Matter

Photodiode

Laser source
Beam
splitter

Interference

Movable mirror
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Photon
phase velocity
changes from 

axion DM
I. Obata+, 
PRL 121, 161301 (2018)
K. Nagano+,
PRL 123, 111301 (2019)

Polarization optics installed to KAGRA 
to search for birefringence effects from 
axion DM

https://doi.org/10.1103/PhysRevLett.121.161301
https://doi.org/10.1103/PhysRevLett.123.111301


Fringe 
change

Spin-2 Dark Matter

Photodiode

Laser source
Beam
splitter

Interference

Movable mirror
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Length 
changes from

Spin-2 DM
Y. Manita+,
PRD 107, 104007 (2023)
Y. Manita+,
arXiv:2310.10646

https://doi.org/10.1103/PhysRevD.107.104007
https://arxiv.org/abs/2310.10646


Why You Should Join
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• Unique vector dark matter search using sapphire mirrors of 
KAGRA

• Polarization optics were installed to KAGRA, and we will be 
collecting the first axion DM data from gravitational-wave 
detectors within FY2024

• New searches for spin-2 DM, searches with high frequency 
data etc.

• Further optimization of data analysis pipelines, veto analysis 
using multiple channels etc.

• Studies are also useful to identify spectral line noise sources
• Data analysis pipeline also used for table-top experiments 

[Y. Oshima+, PRD 108, 072005 (2023); H. Nakatsuka+, PRD 108, 
092010 (2023)]

https://doi.org/10.1103/PhysRevD.108.072005
https://doi.org/10.1103/PhysRevD.108.092010
https://doi.org/10.1103/PhysRevD.108.092010


DANCE 
@理学部1号館
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Limit from 
May 2021 run

Estimated reach in Nov 2022

ABRA
10-cm

SHAFT
CAST

SN1987A
NGC1275

Current 
estimated 
reach
(March 2023; with 
1-year run)



Quantum Nature of 
Gravity
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Interferometers to Test Quantum
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• Photon going to X arm or Y arm is in quantum superposition
• Mirrors pushed or not pushed by radiation pressure is in 

quantum superposition
(this is not experimentally
verified yet)

• How about gravitational
field of massive mirrors?

Photons

What happens if you 
try to see it with a 
torsion pendulum?



Semiclassical Gravity
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• In semiclassical gravity (Schrödinger-Newton model), 
quantum matter is coupled to a classical gravitational field 
through expectation values

• People have been proposing experiments to falsify this
• For example, through gravity-induced entanglement

• For review, see 
D. Carney+, CQG 36, 034001 (2019)

• Also, see
H. Miao+, PRA 101, 063804 (2020)
A. Datta & H. Miao, Quantum Science and Technology 6, 045014 (2021)

Both wavefunctions 
give the same 

classical gravity

https://doi.org/10.1088/1361-6382/aaf9ca
https://doi.org/10.1103/PhysRevA.101.063804
https://iopscience.iop.org/article/10.1088/2058-9565/ac1adf


BMV Proposal
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• Gravity-induced entanglement can be tested with adjacent 
matter interferometers

S. Bose+,
Phys. Rev. Lett. 119, 240401 (2017)

C. Marletto & V. Vedral,
Phys. Rev. Lett. 119, 240402 (2017)

https://doi.org/10.1103/PhysRevLett.119.240401
https://doi.org/10.1103/PhysRevLett.119.240402


Inverted Oscillator Proposal
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• Inverted oscillators create gravity-induced 
entanglement exponentially
- T. Fujita, Y. Kaku, A. Matsumura, YM, arXiv:2308.14552
- With optically levitated mirrors proposed in YM+, Optics Express 25, 

13799 (2017), we can repeat the measurements without free-fall

• But still need to satisfy
Trap

Large
Entanglement

Anti-trap

Small
Entanglement

Damping rate
(Decoherence) Distance

gravity

https://arxiv.org/abs/2308.14552
https://doi.org/10.1364/OE.25.013799
https://doi.org/10.1364/OE.25.013799


Test Near Measurement Event
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Hold or Release Left or Right

S1 held S1 released

Quantized
gravity

Semiclassical 
gravity

QG and Semiclassical gives different 
result even S1 is held
- Casimir effect will not limit us anymore
- S1 and S2 can be much closer

A. Kent, 
PRD 103, 064038 (2021)

https://doi.org/10.1103/PhysRevD.103.064038


Why You Should Join
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• No one have come up with a scheme which is 
honestly truly experimentally feasible

• Could be related to improving the sensitivity of 
gravitational wave detectors (everyone wants to 
avoid decoherence)



Data Cleaning
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Data is not Clean
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• But you can clean up by subtracting noises 
witnessed with different sensors (e.g. seismometer)

LIGO Hanford

Virgo KAGRA GEO600



Wiener Filtering and Deep Learning
• Both works nicely for LIGO (especially Hanford)

36

DeepClean: linear, non-linear, non-stationary
R. Ormiston+, PRR 2, 033066 (2020)

Beam jitter noise subtraction 
with Wiener Filtering
J. C. Driggers+,
PRD 99, 042001 (2019)

https://doi.org/10.1103/PhysRevResearch.2.033066
https://doi.org/10.1103/PhysRevD.99.042001


Independent Component Analysis
• Jun’ya Kume et al. applied to KAGRA data 

successfully
- KAGRA Collab., PTEP 2020, 053F01 (2020)
- KAGRA Collab., CQG 40, 085015 (2023)

• Non-linear ICA on going

37

https://doi.org/10.1093/ptep/ptaa056
https://doi.org/10.1088/1361-6382/acc0cb


Which Witness Data to Use?
• BruCo: Brute force coherence

https://github.com/gw-pem/bruco

• Automated noise budget? Non-linear?

38G. Vajente
LIGO-G1500230

https://github.com/gw-pem/bruco
https://dcc.ligo.org/LIGO-G1500230


• Microseism at Livingston 
is affected by weather in 
Greenland

• Microseism level at 
KAGRA can be predicted 
from ocean wave data 
forecast

Seismic Disturbances

39

S. Kedar+,
Proc. R. Soc. A. 464, 777 (2008)

Principal Component Analysis
S. Hoshino+, 
arXiv:2306.12437
JGW-G2315480

https://doi.org/10.1098/rspa.2007.0277
https://arxiv.org/abs/2306.12437
https://gwdoc.icrr.u-tokyo.ac.jp/cgi-bin/private/DocDB/ShowDocument?docid=15480


• LIGO: SEISMON + Picket Fense
- Switch suspension control modes based on seismic data 

around the detector (low noise mode or robust mode)

• Useful to improve duty factor

Protection from Seismic

40

E. Bonilla+, LIGO-G2300553
E Schwartz+, CQG 37, 235007 (2020)

https://dcc.ligo.org/LIGO-G2300553
https://iopscience.iop.org/article/10.1088/1361-6382/abbc8c/meta


Why You Should Join
• Big data! Machine learning!
• KAGRA is still limited a lot by noises that are subtractable
• If we can subtract and we can identify the mechanism, we 

can improve the detector to reduce the noise or the coupling
• You could save KAGRA from earthquakes

41



Upgrading Calibration

42



Brief History of Calibration
• Calibration is crucial for parameter estimation

- luminosity distance, polarization, localization, NS tidal deformability …

• Michelson Free-swing: ~10% (traditional)
- 1 fringe = λ/2

• Photon Calibrator(PCal): 2-5%, 2-5 deg (current)
• Newtonian Calibrator(NCal): 3-5%? (R&D at sites)

• Multicolor Calibrator(SoCal): 0.05-0.4%? (R&D at 40m)

• What’s next? 43



Photon Calibrator (Pcal)
• Shake mirror by radiation pressure from “known” 

amount of light (current standard)

• But light power 
measurement do not agree 
between countries 
(by a few %) 44Stefan Kück, Metrologia 47, 02003 (2010)

S. Karki+, RSI 87, 114503 (2016)

L. Sun+,
CQG 37, 225008 (2020)

https://iopscience.iop.org/article/10.1088/0026-1394/47/1A/02003
https://doi.org/10.1063/1.4967303
https://doi.org/10.1088/1361-6382/abb14e


Newtonian Calibrator (NCal or GCal)
• Shake mirror by “known” amount of gravity

45

LIGO: ~5% below ~30 Hz 
M. P. Ross+, arXiv:2107.00141

Virgo: ~3% below 120 Hz
D. Estevez+, CQG 38, 075012 (2021)

KAGRA: 0.17% (proposal to combine Pcal and GCal)
Y. Inoue+, PRD 98, 022005 (2018)

https://arxiv.org/abs/2107.00141
https://iopscience.iop.org/article/10.1088/1361-6382/abe2da
https://doi.org/10.1103/PhysRevD.98.022005


Multi-color Calibrator (McCal)
• Based on frequency metrology

(which is know to be precise)

46

Second Oscillator
Calibrator

Francisco Salces-Carcoba, 
LIGO-G2302068 Anchal Gupta, Caltech Thesis (2023)

Statistical uncertainty 
limited (at 40m prototype)

https://dcc.ligo.org/LIGO-G2302068
https://thesis.library.caltech.edu/15251/


Why You Should Join
• It will be more important if KAGRA joins (luminosity distance 

& inclination angle degeneracy will be resolved better)
• Even more in 3G
• Directly connected to GW

science, including H0, 
tests of GR, NS EoS …

• In-between theoretical
work and instrument work
- a lot of papers on the effect of
calibration uncertainty to science

• More ideas, better
understanding of
systematics

… but it is a lot of work 47

K. Hotokezaka+, 
Nature Astronomy 3, 940 (2019)

https://www.nature.com/articles/s41550-019-0820-1


LIGO O4 Calibration Subway Map

48LIGO-G1501518

https://dcc.ligo.org/LIGO-G1501518/public


Summary
• Let me know if you are interested in any of these 

topics!
• I live in Room 1615 in Science Building #4

(理学部4号館1615号室)
• You can visit KAGRA anytime (either with me or 

without me)
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