Laser interferometric searches for signatures of dark matter and quantum gravity

Yuta Michimura

道村 唯太 RESCEU, University of Tokyo <u>michimura@resceu.s.u-tokyo.ac.jp</u>

Plan of the Talk

- Basics of laser interferometry
- Search for ultralight vector dark matter - LIGO-Virgo-KAGRA, PRD 110, 042001 (2024)
- Search for ultralight axion dark matter
 - K. Nagano, T. Fujita, YM, I. Obata, PRL 123, 111301 (2019)
 - Y. Oshima+, PRD 108, 072005 (2023)
- Testing quantum nature of gravity
 - T. Fujita, Y. Kaku, A. Matsumura, YM, arXiv:2308.14552

Search for quantum fluctuations of space-time

Laser Interferometry

measures differential arm length change

Laser Interferometry

• measures differential arm length change

For Gravitational Waves

For Ultralight Dark Matter

Ultralight Dark Matter

- Bosonic ultralight field (<~1 eV) are well-motivated from cosmology
- Behaves as classical waves

$$f = 242 \text{ Hz} \left(\frac{m_{\text{DM}}}{10^{-12} \text{ eV}} \right)$$

Laser interferometers are sensitive to such oscillating changes (rather than "pulse" signals from particles)

Vector Boson Dark Matter

- Possible new physics beyond the standard model: New gauge symmetry and gauge boson
- New gauge boson can be dark matter
- B-L (baryon minus lepton number)
 - Conserved in the standard model
 - Motivations from neutrino mass, matter-antimatter asymmetry T. T. Yanagida,
 - Roughly 0.5 per neutron mass, <u>arXiv:2402.14514</u>
 but slightly different between materials
 Fused silica: 0.501
 Sapphire: 0.510
- Gauge boson DM gives oscillating force

Oscillating Force from Gauge Field

• Acceleration of mirrors

- Almost no signal for symmetric cavity if cavity length is short (phase difference is 10⁻⁵ rad @ 100 Hz for km cavity)
- How about using interferometric GW detectors?
 A. Pierce+, PRL 121, 061102 (2018)

Previous Searches with LIGO/Virgo

- Gauge boson dark matter search with LIGO O1 data and LIGO/Virgo O3 data have been done H-K Guo+, <u>Communications Physics 2, 155 (2019)</u> LIGO, Virgo, KAGRA Collaboration, <u>PRD 105, 063030 (2022)</u>
- Better constraint than equivalence principle tests
- Even better constraint could be obtained from KAGRA

Search with GW Detectors

- GW Detectors are sensitive to differential arm length (DARM) change
- Most of the signal is cancelled out (LIGO/Virgo case)

Search with KAGRA KAGRA

- KAGRA uses cryogenic sapphire mirrors for arm cavities, and fused silica mirrors for others
- KAGRA can do better than LIGO/Virgo which uses fused silica for all the mirrors_r

Search with KAGRA KAGRA

KAGRA Vector DM Sensitivity

- Auxiliary length channels have better design sensitivity than DARM (GW channel) at low mass range
- Sensitivity better than equivalence principle tests frequency_(Hz) YM, T. Fujita, S. Morisaki, 10¹ 10³ H. Nakatsuka, I. Obata, 10^{-20} PRD 102, 102001 (2020) 10^{-21} S. Morisaki, T. Fujita, YM, H. Nakatsuka, I. Obata, \mathcal{E}_B PRD 103, L051702 (2021) 10^{-22} coupling Eöt-Wash 10⁻²³ torsion pendulum DARM 10^{-24} (GW channel) 10^{-25} MICROSCOPE mission aths MICH 10^{-26} 10^{-12} 10^{-11} 10 gauge boson mass m_A (eV)

KAGRA First Results from KAGRA

- Using data from KAGRA O3GK run in 2020
- Still ~5 orders of magnitude worse than equivalence principle tests
- Demonstrated the feasibility of using auxiliary channels for astrophysics
- New data will be available from O4b (~June 2025) and beyond

LIGO-Virgo-KAGRA, <u>PRD 110</u>, 042001 (2024) (Paper written by J. Kume with 1800 authors!)

Axion Dark Matter

 Many experiments to search for ALPs through axion-photon coupling, especially by using magnetic fields (but ours don't)

Polarization Modulation from Axions

- Axion-photon coupling $(\frac{g_{a\gamma}}{4}aF_{\mu\nu}\tilde{F}^{\mu\nu})$ gives different phase velocity between left-handed and righthanded circular polarizations
 - $c_{\rm L/R} = \sqrt{1 \pm \frac{g_{a\gamma}a_0m_a}{k}} \sin(m_a t + \delta_{\tau})$ coupling constant axion field
- Linear polarization will be modulated p-pol sidebands will be generated from s-pol
- Search can be done without magnetic field

Optical Cavity to Amplify the Signal

- Polarization rotation is small for short optical path

 Laser
- Optical cavities can increase the optical path, but the polarization is flipped by mirror reflections

• Bow-tie cavity can amplify the rotation

Linear Cavities for Axion Search

- Polarization flip at mirror reflection can be used to enhance the signal when the round-trip time equals odd-multiples of axion oscillation period
- Long baseline linear cavities in gravitational wave detectors are suitable

Linear Cavities for Axion Search

- Polarization flip at mirror reflection can be used to enhance the signal when the round-trip time equals odd-multiples of axion oscillation period
- Long baseline linear cavities in gravitational wave detectors are suitable

Estimated Reach

Better than CAST below 10⁻¹⁰ eV * Shot noise limited, 1-year observation 10^{-6} $|g_{a\gamma}|$ (GeV⁻¹ **PVLAS 2016 ALPS-I 2010** 10^{-7} **OSQAR 2015** 10⁻⁸ **SHAFT 2021** umico 2008 ABRA 10-cm 2021 10^{-9} 2024 10-1 coupling **ĀLPS-II** 10-11 **IAXO** 10-12 Ation NGC1275 2020 10-13 axion-photon **KAGRA** 10^{-14} DANCE LIGO 10^{-15} ABRACADABRA 10^{-16} ADMX 2010+2018 10-17 10^{-18} $10^{-17} 10^{-16} 10^{-15} 10^{-14} 10^{-13} 10^{-12} 10^{-11} 10^{-10} 10^{-9} 10^{-8} 10^{-7} 10^{-6} 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^{0} 10^{-10} 10^$ axion mass m_a (eV) /4

Relationship with Cosmic Birefringence

- Same principle
- Two-axion model can explain both cosmic birefringence and dark matter in the mass range guyle of DANCE and 10⁻¹⁰ GW detectors

I. Obata, JCAP **09**, 062 (2022)

Status of DANCE

26

- First result from May 2021 run Y. Oshima+, PRD 108, 072005 (2023)
- Major upgrade using wavelength tunable laser ongoing

Axion Search with GW Detectors

- Polarization optics installed in KACRA transmission in 2021
 First data taking
 - from June 2025
- Prototype experiment using Caltech 40m interferometer also ongoing to test calibration methods

Testing Quantum Nature of Gravity

- Photon going to X arm or Y arm is in quantum superposition
- Mirrors pushed or not pushed by radiation pressure is in quantum superposition (this is not experimentally What happens if you try to see it with a verified yet; gravitational $|Y\rangle$ torsion pendulum? decoherence?) <u> /////</u> Photons $|not pushed\rangle + |pushed\rangle$ How about gravitational field of massive mirrors?

Semiclassical Gravity

 In semiclassical gravity (Schrödinger-Newton model), quantum matter is coupled to a classical gravitational field through expectation values

Both wavefunctions
 give the same – classical gravity

Differential mode

Common mode

People have been proposing experiments to falsify this

• For example, through gravity-induced entanglement

• Also, see

H. Miao+, <u>PRA 101, 063804 (2020)</u>

A. Datta & H. Miao, Quantum Science and Technology 6, 045014 (2021)

BMV Experiment Proposals

• Gravity-induced entanglement can be tested with adjacent matter interferometers

Decoherence and Free-Fall Time

- Decoherence estimates suggest
 T < 1 K and P < 10⁻¹⁶ Pa are required
- Also, free-fall time and height are in the orders of ~1 sec and ~10 m
- Sounds tough…

Table 3. Free-fall times *t* and heights $h = \frac{1}{2}gt^2$, with $g \simeq 9.8$ m s⁻², required to generate the amount *E* of entanglement at fixed values of temperature T and pressure *P* for the proposals of BM and Krisnanda.

Proposal	T (K)	P (Pa)	E	<i>T</i> (s)	$H(\mathbf{m})$
BM	1	10^{-16}	10^{-2}	0.15	0.1
	1	10^{-16}	10^{-1}	1.5	11
	1	10^{-15}	No generation	/	/
	10^{-2}	10^{-15}	No generation	/	/
Krisnanda	1	10^{-16}	10^{-2}	1.1	6.2
	1	10^{-16}	10^{-1}	2.9	42
	1	10^{-15}	No generation	/	/
	10^{-2}	10^{-15}	10^{-2}	1.2	7.6

S. Rijavec+, New J. Phys. 23, 043040 (2021)

What is the Best Oscillator?

- We computed the amount of entanglement for arbitrary quadratic potential
- Hamiltonian

T. Fujita, Y. Kaku, A. Matsumura, YM, <u>arXiv:2308.14552</u> 33

Inverted Oscillators are the Best

• Logarithmic negativity when $\lambda \equiv \lambda_1 = \lambda_2$

Preparing Inverted Oscillators

- Sandwich configuration for trapping a mirror all optically YM, Y. Kuwahara+, Optics Express 25, 13799 (2017)
- Trap in horizontal motion demonstrated
 T. Kawasaki+, PRA 102, 053520 (2020)
- Can also be used to anti-trap

Procedure to Switch the Trap

• First, trap strongly to prepare narrow wavefunctions

Procedure to Switch the Trap

- First, trap strongly to prepare narrow wavefunctions
- And then switch to anti-trap to broaden the wavefunction fast (this can be done by effectively switching the cavity geometry)

Example Setup

- ~1 kHz anti-spring for 0.1 mg mirror can be created with intra-cavity power of ~30 kW
- Time to generate $E_N = 10^{-2}$ AOM $\tau_{\rm ent} = 4.2 \omega_{\rm kHz}^{-1/3} \, {
 m sec} \quad {
 m for free-fall}$ laser 300 times faster UM1 HWP^I $\tau_{\rm ent} = 1.3 \times 10^{-2} \omega_{\rm kHz}^{-1/3} \, {\rm sec}$ PBS a_{U2} for inverted UM₂ $m = 0.1 \, \text{mg}$ No free-fall necessary Levitation mirror a

 $P_1 = 30$

 $a_1 = 2 m$

laser

Can be repeated multiple times
 to improve statistics

Status of the Levitation Experiment

Fabrication of 0.1-1 mg scale mirror with a curvature is a challenge, and we are collaborating with LMA and ANU for mirror fabrication and characterization

Coated 1-inch dia. 0.1 mm thick mirrors

Characterization at UTokyo/ANU 39

Quantum fluctuations of spacetime

Quantum Fluctuations of Spacetime

According to pixellon model (quantum gravity with a scalar field), length fluctuates with Verlinde & Zurek,

$$L^2 \sim \alpha l_{\rm p} L/(4\pi)$$

Planck length

not $\delta L \sim l_{\rm p}$

K. M. Zurek,

arXiv:2205.01799

PLB 822, 136663 (2021)

- Parametrized by the power of noise α (Natural benchmark $\alpha \sim 1$)

Arm length

Search with LIGO Detector

• Search below signal peak done with 2019-2020 data

Search with High Frequency Data

- Data acquisition at 524 kHz installed for current observing run $\rightarrow \alpha \sim 10^{-2} {\rm search}$ possible

Quantum Correlation Enhancement

Quantum correlation will enhance the sensitivity
 beyond shot noise limit

Summary

- You can do many things with laser interferometers
 - Ultralight dark matter
 - Quantum nature of gravity
 - Quantum fluctuations of space-time

Acknowledgements

SAKIGAK

