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Plan of the Talk
• Basics of laser interferometry

• Search for ultralight vector dark matter
- LIGO-Virgo-KAGRA, PRD 110, 042001 (2024)

• Search for ultralight axion dark matter
- K. Nagano, T. Fujita, YM, I. Obata, PRL 123, 111301 (2019)

- Y. Oshima+, PRD 108, 072005 (2023)

• Testing quantum nature of gravity
- T. Fujita, Y. Kaku, A. Matsumura, YM, arXiv:2308.14552

• Search for quantum fluctuations of space-time
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https://doi.org/10.1103/PhysRevD.110.042001
https://doi.org/10.1103/PhysRevLett.123.111301
https://doi.org/10.1103/PhysRevD.108.072005
https://arxiv.org/abs/2308.14552


Laser Interferometry
• measures differential arm length change
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Fringe 
change

For Gravitational Waves
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Fringe 
change

For Particle Dark Matter
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DM particle 
colliding

A. Kawasaki, PRD 99, 023005 (2019)

kg-scale DM

S. Tsuchida+, PRD 101, 023005 (2020)

WIMP

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.99.023005
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.023005
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For Ultralight Dark Matter

Photodiode

Beam
splitter

Interference

Metric 
changes 

from 
spin-2 DM

Tiny forces
from 

vector DM

Speed of light 
changes from 

axion DM

Mirror thickness 
changes from 

scalar DM

Y. Manita+,

PRD 107, 104007 (2023)

LIGO-Virgo-KAGRA,

PRD 105, 063030 (2022)

LIGO/Virgo O3 analysis

LIGO-Virgo-KAGRA,

PRD 110, 042001 (2024)

KAGRA O3GK analysis

S. M. Vermeulen+, 

Nature 600, 424 (2021)

GEO600 analysis

K. Nagano, T. Fujita, YM, I. Obata,

PRL 123, 111301 (2019) Proposal

Y. Oshima+, PRD 108, 072005 (2023)

Table-top experiment DANCE analysis

Fringe 
change

Movable mirror

https://doi.org/10.1103/PhysRevD.107.104007
https://doi.org/10.1103/PhysRevD.105.063030
https://doi.org/10.1103/PhysRevD.110.042001
https://www.nature.com/articles/s41586-021-04031-y
https://doi.org/10.1103/PhysRevLett.123.111301
https://doi.org/10.1103/PhysRevD.108.072005
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Power 
changes

For Quantum Gravity

Photodiode

Beam
splitter

Interference

Quantization
of space-time

D. Li+, PRD 107, 024002 (2023)

K. M. Zurek, arXiv:2205.01799

Movable mirror

Gravity from 
quantum mass

https://doi.org/10.1103/PhysRevD.107.024002
https://arxiv.org/abs/2205.01799


Ultralight Dark Matter 

Searches
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Ultralight Dark Matter
• Bosonic ultralight field (<~1 eV) are well-motivated 

from cosmology

• Behaves as

classical waves

• Laser interferometers are sensitive to such 

oscillating changes (rather than

“pulse” signals from particles)

10

Caltech/MIT/LIGO Lab.



Vector Boson Dark Matter
• Possible new physics beyond the standard model:

New gauge symmetry and gauge boson

• New gauge boson can be dark matter

• B-L (baryon minus lepton number)
- Conserved in the standard model

- Motivations from neutrino mass,

matter-antimatter asymmetry

- Roughly 0.5 per neutron mass, 

but slightly different between materials

Fused silica: 0.501

Sapphire: 0.510

• Gauge boson DM 

gives oscillating force
11

vector 

field

Y. Cheng, J. Sheng, 

T. T. Yanagida,

arXiv:2402.14514

https://arxiv.org/abs/2402.14514


Oscillating Force from Gauge Field
• Acceleration of mirrors

• Gauge boson mass and

coupling can be measured

by measuring the oscillating

mirror displacement

• Almost no signal for symmetric

cavity if cavity length is short
(phase difference is 10-5 rad @ 100 Hz for km cavity)

• How about using interferometric GW detectors? 12

coupling
(normalized by e)

mirror mass

charge

different phase at 
different position

gauge boson mass

DM density

polarization

ForceForce

A. Pierce+, PRL 121, 061102 (2018)

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.061102


Previous Searches with LIGO/Virgo
• Gauge boson dark matter search with LIGO O1 

data and LIGO/Virgo O3 data have been done

• Better constraint than equivalence principle tests

• Even better

constraint could

be obtained from

KAGRA
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H-K Guo+, Communications Physics 2, 155 (2019)

LIGO, Virgo, KAGRA Collaboration, PRD 105, 063030 (2022)

https://www.nature.com/articles/s42005-019-0255-0
https://doi.org/10.1103/PhysRevD.105.063030


Search with GW Detectors
• GW Detectors are 

sensitive to differential

arm length (DARM)

change

• Most of the signal

is cancelled out

(LIGO/Virgo case)

photodiode

DARM

Vector field

ForceForce

Laser
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• KAGRA uses cryogenic

sapphire mirrors for

arm cavities, and

fused silica mirrors

for others

• KAGRA can do better

than LIGO/Virgo which

uses fused silica for all

the mirrors

photodiode

DARM

Vector field

ForceForce

Laser

Search with KAGRA

B-L charge 

Fused silica: 0.501

Sapphire: 0.510
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Search with KAGRA
• By measuring the 

lengths of auxiliary part

of the interferometer,

force difference

between sapphire 

and fused silica can be 

measured

Laser

photodiode

Vector field

DARM

Auxiliary 

lengths

ForceForce
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KAGRA Vector DM Sensitivity
• Auxiliary length channels have better design 

sensitivity than DARM (GW channel) at low mass range

• Sensitivity better than equivalence principle tests

17

DARM
(GW channel)

MICH

Auxiliary 

lengths
MICROSCOPE
mission

Eöt-Wash
torsion pendulum

YM, T. Fujita, S. Morisaki, 
H. Nakatsuka, I. Obata,
PRD 102, 102001 (2020)

S. Morisaki, T. Fujita, YM, 
H. Nakatsuka, I. Obata,
PRD 103, L051702 (2021)

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.102001
https://doi.org/10.1103/physrevd.103.l051702


KAGRA First Results from KAGRA
• Using data from KAGRA O3GK run in 2020

• Still ~5 orders of 

magnitude worse than 

equivalence principle 

tests

• Demonstrated the

feasibility of using

auxiliary channels

for astrophysics

• New data will be available 

from O4b (~June 2025) and beyond

18
LIGO-Virgo-KAGRA, PRD 110, 042001 (2024)

(Paper written by J. Kume with 1800 authors!)

https://doi.org/10.1103/PhysRevD.110.042001


Axion Dark Matter
• Many experiments to search for ALPs through 

axion-photon coupling, especially by using 

magnetic fields (but ours don’t)

19

AxionLimits

DANCE

https://cajohare.github.io/AxionLimits/docs/ap.html


Polarization Modulation from Axions
• Axion-photon coupling (                 ) gives different 

phase velocity between left-handed and right-

handed circular polarizations

• Linear polarization

will be modulated
p-pol sidebands will be

generated from s-pol

• Search can be done

without magnetic field

coupling constant axion field
axion mass

laser frequency

s-pol

p-pol

Rotate

mass

p-pol

coupling

c
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rr

ie
r

s
id

e
b
a
n
d
s
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Optical Cavity to Amplify the Signal
• Polarization rotation is small for short optical path

• Optical cavities can increase the optical path, but 

the polarization is flipped by mirror reflections

• Bow-tie cavity can amplify the rotation

→ DANCE

21

Laser

Laser

Laser

I. Obata, T. Fujita, YM

PRL 121, 161301 (2018)

https://doi.org/10.1103/PhysRevLett.121.161301


Linear Cavities for Axion Search
• Polarization flip at mirror reflection can be used to 

enhance the signal when the round-trip time equals

odd-multiples of axion oscillation period

• Long baseline linear cavities in gravitational wave 

detectors are suitable

22

Laser

When axion 
mass is small 

Reflection

Trans-
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Linear Cavities for Axion Search
• Polarization flip at mirror reflection can be used to 

enhance the signal when the round-trip time equals

odd-multiples of axion oscillation period

• Long baseline linear cavities in gravitational wave 

detectors are suitable
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Estimated Reach
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DANCE

CAST 2024

Sumico 2008

ALPS-I 2010

OSQAR 2015

PVLAS 2016

SN1987A 2015

M87 2017

ADMX 2010+2018

ABRA 10-cm 2021
SHAFT 2021

IAXO

ALPS-II

NGC1275 2020

LIGO
KAGRA

KAGRA trans

* Shot noise limited,
1-year observation

• Better than CAST below 10-10 eV



Relationship with Cosmic 

Birefringence
• Same principle

• Two-axion model can

explain both

cosmic birefringence

and dark matter in

the mass range

of DANCE and

GW detectors

25

Y. Minami/KEK

I. Obata,

JCAP 09, 062 (2022)

https://doi.org/10.1088/1475-7516/2022/09/062


Status of DANCE
• First result from May 2021 run

   Y. Oshima+, PRD 108, 072005 (2023)

• Major upgrade using wavelength

tunable laser ongoing
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Estimated 
reach with 
sensitivity in 
March 2023
(assuming 1-year 
observation)

November 2022 
reach

Limit from 
May 2021

ABRA-10cm

SHAFTCAST

NGC1275

SN1987A

https://doi.org/10.1103/PhysRevD.108.072005


Axion Search with GW Detectors
• Polarization optics

installed in

transmission 

in 2021
- First data taking

from June 2025

• Prototype

experiment using 

40m

interferometer

also ongoing to test

calibration methods
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p-pol
photodiode

Polarizer

klog #17692

Half-wave plateFaraday

isolator

https://klog.icrr.u-tokyo.ac.jp/osl/?r=17692


Quantum Nature of 

Gravity

28



Testing Quantum Nature of Gravity

29

• Photon going to X arm or Y arm is in quantum superposition

• Mirrors pushed or not pushed by radiation pressure is in 

quantum superposition

(this is not experimentally

verified yet; gravitational

decoherence?)

• How about gravitational

field of massive mirrors?

Photons

What happens if you 
try to see it with a 
torsion pendulum?



Semiclassical Gravity

30

• In semiclassical gravity (Schrödinger-Newton model), 

quantum matter is coupled to a classical gravitational field 

through expectation values

• People have been proposing experiments to falsify this

• For example, through gravity-induced entanglement

• For review, see 

D. Carney+, CQG 36, 034001 (2019)

• Also, see
H. Miao+, PRA 101, 063804 (2020)

A. Datta & H. Miao, Quantum Science and Technology 6, 045014 (2021)

Both wavefunctions 
give the same 

classical gravity

https://doi.org/10.1088/1361-6382/aaf9ca
https://doi.org/10.1103/PhysRevA.101.063804
https://iopscience.iop.org/article/10.1088/2058-9565/ac1adf


BMV Experiment Proposals
• Gravity-induced entanglement can be tested with 

adjacent matter interferometers

S. Bose+,

Phys. Rev. Lett. 119, 240401 (2017)

C. Marletto & V. Vedral,

Phys. Rev. Lett. 119, 240402 (2017)
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https://doi.org/10.1103/PhysRevLett.119.240401
https://doi.org/10.1103/PhysRevLett.119.240402


Decoherence and Free-Fall Time
• Decoherence estimates suggest 

T < 1 K and P < 10-16 Pa are required

• Also, free-fall time and height are in the orders of

~1 sec and ~10 m

• Sounds tough…

S. Rijavec+, New J. Phys. 23, 043040 (2021) 32

https://iopscience.iop.org/article/10.1088/1367-2630/abf3eb


What is the Best Oscillator?
• We computed the amount of entanglement for 

arbitrary quadratic potential

• Hamiltonian

T. Fujita, Y. Kaku, A. Matsumura, YM, arXiv:2308.14552

Sign of potential

+1 for harmonic

0 for free-falling

-1 for inverted

Strength of gravitational 

coupling

Distance between

masses

33

https://arxiv.org/abs/2308.14552


Inverted Oscillators are the Best
• Logarithmic negativity when 

Strength of gravitational 

coupling
Amount of 

decoherence

Inverted oscillators 

are the best

Nothing interesting 

for λ1 ≠ λ2

Exponential growth 

of entanglement
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Preparing Inverted Oscillators
• Sandwich configuration for trapping a mirror all 

optically

• Trap in horizontal motion demonstrated

• Can also be used to anti-trap

Center
of 
curvature

Rotation Vertical

Gravity

Optical 

spring

Cavity 

axis 

change

T. Kawasaki+, PRA 102, 053520 (2020)

YM, Y. Kuwahara+, Optics Express 25, 13799 (2017)
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https://journals.aps.org/pra/abstract/10.1103/PhysRevA.102.053520
https://doi.org/10.1364/OE.25.013799


Procedure to Switch the Trap
• First, trap strongly to prepare narrow wavefunctions  

Trap 36



Procedure to Switch the Trap
• First, trap strongly to prepare narrow wavefunctions  

• And then switch to anti-trap to broaden the 

wavefunction fast (this can be done by effectively 

switching the cavity geometry)

Trap Anti-trap

Entangle

37



Example Setup
• ~1 kHz anti-spring for 0.1 mg mirror can be created 

with intra-cavity power of ~30 kW

• Time to generate

• No free-fall necessary

• Can be repeated multiple times

to improve statistics
PL = 30 kW
aL = 2 mm

for free-fall

for inverted

300 times faster

38

m = 0.1 mg



Status of the Levitation Experiment
• Fabrication of 0.1-1 mg scale mirror with a 

curvature is a challenge, and we are collaborating 

with LMA and ANU for mirror fabrication and 

characterization

39

Coated 1-inch dia.
0.1 mm thick mirrors

Cut into 3 mm dia.

Characterization at UTokyo/ANU

Microscope



Quantum fluctuations 

of spacetime

40



Quantum Fluctuations of Spacetime
• According to pixellon model (quantum gravity with a  

scalar field), length fluctuates with

• Parametrized by the power of noise

(Natural benchmark            )
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Planck length

Displacement 
noise peaks at 
odd x c/(4L)

(~18.8 kHz for LIGO)

D. Li+,

PRD 107, 024002 (2023)

Arm length not

Verlinde & Zurek,

PLB 822, 136663 (2021)

K. M. Zurek, 

arXiv:2205.01799

https://doi.org/10.1103/PhysRevD.107.024002
http://dx.doi.org/10.1016/j.physletb.2021.136663
https://arxiv.org/abs/2205.01799


Search with LIGO Detector

42

• Search below signal peak done with 2019-2020 data

c

LIGO Sensitivity Curve

α=1

D. Li+,

PRD 107, 024002 (2023)

α=1
(with IR cutoff)

Quantum noise model

https://doi.org/10.1103/PhysRevD.107.024002


Search with High Frequency Data

43

• Data acquisition at 524 kHz installed for current 

observing run →  search possible
LIGO Sensitivity Curve High frequency data

(PRELIMINARY)

Quantum noise model

α=1 α=1
(with IR cutoff)



Quantum Correlation Enhancement
• Quantum correlation will enhance the sensitivity 

beyond shot noise limit

44

Laser

Photodiodes
×

Quantum correlation

Quantum 

noise is 

uncorrelated

Displacement signal is correlated 

between photodiodes

D. V. Martynov+,

PRA 95, 043831 (2017)

https://doi.org/10.1103/PhysRevA.95.043831


Summary
• You can do many things with laser interferometers

- Ultralight dark matter

- Quantum nature of gravity

- Quantum fluctuations of space-time

Acknowledgements
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