さきがけ「革新光」 2022年度第1回領域会議 @ オンライン

超精密偏光計測が可能にする 新しいダークマター探索

道村唯太 カリフォルニアエ科大学 LIGO研究所 yuta@caltech.edu 東京大学 ビッグバン宇宙国際研究センター michimura@phys.s.u-tokyo.ac.jp (※2022年4月に異動しました)

さきがけ研究の概要

- レーザー干渉計の偏光計測により、
 - 超軽量ダークマターを初探索
 - ダークマター有力候補であるアクシオンに着目
 - 独自の新手法 PRL **121**, 161301 (2018) 強磁場不要 ボウタイ共振器で偏光信号を効率的に増幅
 - 達成目標: 世界最高精度での探索

背景: ダークマターの謎

- 1930年代に銀河の回転速度の観測から存在指摘
- ・現代では全物質の約80%を占めることが明らかに
- 依然として正体は不明

背景: ダークマター探索

- 長年の間WIMPに探索が集中するも未発見
 近い将来、太陽・大気ニュートリノのバックグラウンドで検出限界に
- より網羅的な、新発想の探索が求められている

これまでのアクシオン探索

- 光子-アクシオン相互作用を利用する手法が主流
- 特に、強磁場を使って光子とアクシオンを変換さ せる実験が盛んに行われている

磁場による振動や
 さらなる強磁場化や大型化
 に課題

欧州原子核研究機構(CERN) CAST

Light Shining through Wall (ALPS etc.)

回転の周期からアクシオンの質量
 振幅から相互作用の大きさがわかる⁷

・ 光共振器で距離を増幅することはできるが、
 鏡の反射で偏光が反転してしまう

Laser

Laser

• ボウタイ共振器だと偏光回転を増幅できる

DANCEのセットアップ

bow-tie

- Dark matter Axion search with riNg Cavity Experiment
- さきがけで世界最高精度での探索を目指す

これまでの進捗状況

- 2021年5月 最初の試験運転(12日間)を実施
 データ解析を実施し、初の上限値
 初のEnd-to-end試験に成功
 p偏光とs偏光が同時共振しない問題が発覚
- 2021年11月 同時共振実現に成功 補助共振器を導入するアイディア 約3桁の感度向上に成功

有限の入射角があるため、鏡の反射時に s偏光とp偏光に位相差が生じる →共振周波数差になる

Y. Oshima+, <u>arXiv:2105.06252</u> H. Fujimoto+, <u>arXiv:2105.08347</u> Y. Oshima+, <u>JPCS 2156, 012042 (2021)</u> H. Fujimoto+, <u>JPCS 2156, 012182 (2021)</u>

補助共振器の導入による解決

- 補助共振器でのs偏光とp偏光の共振状態に差をつける ことで、補助共振器反射時に位相差をつける
- この位相差が、メイン共振器での位相差を補償

新しい装置

- 2Wレーザー光源の導入(これまでは0.5W)
- 補助共振器を導入

補助共振器

Photo by H. Fujimoto

同時共振の実現に成功

- 2021年11月に同時共振のデモ (ただしそこらへんにあるPBSを用いた)
- より最適化された鏡を発注

	2021年5月	現状 (2022年1月)	さきがけ目標
共振器の周回長	1 m	1 m (+0.5 m 補助共振器)	1 m
入射光強度	<mark>242(12) mW</mark> (光源: 0.5 W)	21.4(9) mW <mark>(光源: 2 W)</mark>	1 W
フィネス	<mark>2.85(5)×10</mark> ³	1204(12)	2×10 ⁵
(キャリア)	s偏光	s偏光、制御時	
フィネス	195(3)	91(2)	2×10 ⁵
(サイドバンド)	_p 偏光	p偏光、制御時	
s偏光とp偏光の	2.52(2) MHz	制御で~0 Hz	0 Hz
共振周波数差		(もともとは ~92 MHz)	14

補助共振器をつけたあとの感度

- 広帯域にわたって約3桁の感度向上に成功
- ただし、補助共振器での光学的ロスがショットノイズ 感度を悪化させている frequency (Hz) $_{10^{1}}$ $_{10^{2}}$ $_{10^{3}}$ $_{10^{4}}$ 10⁵ 10⁻² 10^{-1} 10⁰ 10⁶ 107 10⁸ axion-photon coupling $|g_{a\gamma}|$ (GeV⁻¹ 10-2 現状の雑音レベルで 10-3 1年間観測した場合の 10^{-4} 推定感度 10^{-5} 10^{-6} 10-7 現状のショットノイズ 10^{-8} 感度 10^{-9} ABRA-10cm SHAF1 10^{-10} CAST フィネス3×10³の場合 10^{-11} SN1987A のショットノイズ感度 **M87** 10^{-12} NGC1275 10-13 sensitivity (worst case) 10^{-14} shot noise (worst case) 10^{-15} 10^{-16} 10^{-15} 10^{-14} 10^{-13} 10^{-12} 10^{-11} 10^{-10} 10^{-9} 10-8 10^{-7} 10^{-17} 10^{-6} 15 axion mass m_a (eV) Calculation by H. Fujimoto

補助共振器での光学的ロス

- p偏光が信号取得ポートに出てくる量は補助共振器
 での光学的ロスやモードミスマッチに依存
- ほとんどの信号が補助共振器で失われてしまう

信号のロスを回避

- 補助共振器のp偏光のフィネスを下げ、補助共振器
 での光学的ロスが増幅されないようにする
- 入/出射鏡のp偏光の反射率を下げ、インピーダンス

- 反射率などをより最適化した鏡を用いて、さらなる感度向上を目指す
- さまざまな雑音低減に取り組む
 - レーザー光の強度安定化
 - 迷光の低減(補助共振器制御用の光の周波数シフト、入射のp偏光除去など)

 - 環境雑音のモニタと除去 などなど...
- 2つ目の装置を製作し、
 相関解析
- (カリフォルニア工科大学に異動したことにより、 研究中断中... まずは研究の早期再開を目指す)₁₈

まとめ

- レーザー干渉計により、全く新しいダークマター
 探索が可能になる
- ・ 光リング共振器を用いて光の偏光回転を探索する
 ことにより、アクシオンダークマターを探索
- 2021年5月に初の試験運転を実施し、データ解析を 含めた初のEnd-to-end試験に成功
- p偏光とs偏光が同時共振しない問題を補助共振器 により解決
- デモンストレーションが完了、
 今後は高感度化を進める