さきがけ「革新光」 2022年度第2回領域会議 @ オンライン

2022年12月17日

超精密偏光計測が可能にする 新しいダークマター探索

道村唯太 カリフォルニアエ科大学 LIGO研究所 yuta@caltech.edu 東京大学 ビッグバン宇宙国際研究センター michimura@phys.s.u-tokyo.ac.jp (※2022年4月に異動しました)

さきがけ研究の概要

- ・レーザー干渉計の偏光計測により、
 - 超軽量ダークマターを初探索
 - ダークマター有力候補であるアクシオンに着目
 - 独自の新手法 <u>PRL 121, 161301 (2018)</u>
 - 強磁場不要 ボウタイ共振器で偏光信号を効率的に増幅
 - 達成目標: 世界最高精度での探索

回転の周期からアクシオンの質量
 振幅から相互作用の大きさがわかる 4

・ 光共振器で距離を増幅することはできるが、
 鏡の反射で偏光が反転してしまう

Laser

Laser

• ボウタイ共振器だと偏光回転を増幅できる

DANCEのセットアップ

bow-tie

Dark matter Axion search

with riNg Cavity Experiment がけで世田県首集座での拠あたロビィ

さきがけで世界最高精度での探索を目指す

これまでの進捗状況

2021年5月 最初の試験運転(12日間)を実施 データ解析を実施し、初の上限値 初のEnd-to-end試験に成功 p偏光とs偏光が同時共振しない問題が発覚 → 信号較正のための測定、全候補のvetoに成功

 2021年11月 同時共振実現に成功 補助共振器を導入するアイディア 約3桁の感度向上に成功
 → 光学的ロスを低減

有限の入射角があるため、鏡の反射時に s偏光とp偏光に位相差が生じる →共振周波数差になる

Y. Oshima+, <u>arXiv:2105.06252</u> H. Fujimoto+, <u>arXiv:2105.08347</u> Y. Oshima+, <u>JPCS 2156, 012042 (2021)</u> H. Fujimoto+, <u>JPCS 2156, 012182 (2021)</u>

補助共振器の導入による解決

- 補助共振器でのs偏光とp偏光の共振状態に差をつける ことで、補助共振器反射時に位相差をつける
- この位相差が、メイン共振器での位相差を補償

補助共振器での光学的ロス

- p偏光が信号取得ポートに出てくる量は補助共振器
 での光学的ロスやモードミスマッチに依存
- ほとんどの信号が補助共振器で失われてしまう

鏡の交換で信号のロスを回避

- 補助共振器のp偏光のフィネスを下げ、補助共振器
 での光学的ロスが増幅されないようにする
- 入/出射鏡のp偏光の反射率を下げ、インピーダンス

現状のパラメータ

補助共振器のロスを6.5%から
 4.6%に下げ、信号透過率を
 5倍改善

ただしフィネスは低減(上げることも可能)

	2021年5月	現状 (2022年11月)	さきがけ目標
共振器の周回長	1 m	1 m (+0.5 m 補助共振器)	1 m
入射光強度	<mark>242(12) mW</mark> (光源: 0.5 W)	21.4(9) mW (光源: 2 W)	1 W
フィネス	<mark>2.85(5)×10</mark> ³	549(3)	2×10 ⁵
(キャリア)	s偏光	s偏光、制御時	
フィネス	195(3)	36.8(2)	2×10 ⁵
(サイドバンド)	_p 偏光	p偏光、制御時	
s偏光とp偏光の	2.52(2) MHz	制御で~0 Hz	0 Hz
共振周波数差		(もともとは ~92 MHz)	12

- さまざまな雑音低減に取り組む
 - レーザー光の強度安定化
 - -迷光の低減(補助共振器制御用の光の周波数シフト、入射のp偏光除去など)
 - 共振器長制御の最適化(補助共振器PZTミラーの改善など)
 - -環境雑音のモニタと除去 などなど…
- 2つ目の装置を製作し、
 相関解析
- 波長可変レーザーを利用した同時共振の実現
- (カリフォルニア工科大学に異動したことにより、 いまだに研究中断中... まずは研究の早期再開を 目指す)

- 英国のバーミンガム大学が今秋から実験を開始
- 真空中、周回長10 m (我々は1 m)、
 490 kHz (2 neVのアクシオン質量に対応)の共振周波数差

Joscha Heinze, KASHIWA DARK MATTER SYMPOSIUM 2022

まとめ

- レーザー干渉計により、全く新しいダークマター 探索が可能になる
- ・ 光リング共振器を用いて光の偏光回転を探索する
 ことにより、アクシオンダークマターを探索
- 2021年5月に初の試験運転を実施し、データ解析を 含めた初のEnd-to-end試験に成功
- 信号の較正、全信号候補のvetoにも成功
- p偏光とs偏光が同時共振しない問題は補助共振器 により解決
- 信号のロス低減や、雑音低減に取り組んでいる

信号較正のための追加測定
 ・各鏡で生じる位相差によって較正係数が異なる

Plots by Y. Oshima

信号のVeto

• 約40 Hzの倍波でしきい値を超えるアクシオン信号

周波数 [Hz]	SNR	SNR閾値
81.6711	3197	109
81.6713	122	109
119.983	2070	136
120.001	2621	136
120.113	1120	136
120.118	7632	136
396.141	353	310

 ・地震計信号、PDH信号にも 同じ周波数にピークがあり、 アクシオン由来ではない と言える

Plots by Y. Oshima

