Dark matter Axion search with riNg Cavity Experiment

Yuta Michimura

Department of Physics, University of Tokyo PRESTO, JST

michimura@phys.s.u-tokyo.ac.jp

Slides are available at https://tinyurl.com/YM20211129

Self Introduction

- Yuta Michimura (道村唯太) Assistant Professor at Department of Physics, University of Tokyo
- Laser interferometric gravitational wave detectors
 KAGRA
 - DECIGO (SILVIA)
- Searches for new physics with laser interferometry
 - Lorentz invariance test
 - Gravity/quantum experiments with milligram-scale optomechanics
 - Dark matter searches etc...

Dark Matter Mystery

- Suggested in 1930s from galaxy rotation curves
- Accounts for ~80% of all the matter of the universe
- The nature remains mystery

drives an acceleration of the expansion of the universe

Dark Matter Models

- ~90 orders of magnitude
- Searches focused on WIMPs, but not detected yet
- Motivates new searches for other candidates

Ultralight DM with Interferometers

- Bosonic ultralight field (<~1 eV) are well-motivated from cosmology
- Behaves as classical waves

$$f = 242 \text{ Hz} \left(\frac{m_{\text{DM}}}{10^{-12} \text{ eV}} \right)$$

 Laser interferometers are sensitive to such oscillating changes

Recent Proposals and Searches

U(1)_B or U(1)_{B-L} gauge bosons(vector field)

- P. W. Graham+, PRD 93, 075029 (2016)
- A. Pierce+, PRL 121, 061102 (2018)
- H-K Guo+, Commun. Phys. 2, 155 (2019) LIGO O1 data analysis
- Y. Michimura, T. Fujita, S. Morisaki, H. Nakatsuka, I. Obata, PRD 102, 102001 (2020)
- D. Carmey+, New J. Phys. 23, 023041 (2021)
- J. Manley+, PRL 126, 061301 (2021)
- S. Morisaki, T. Fujita, Y. Michimura, H. Nakatsuka, I. Obata, PRD 103, L051702 (2021)
- LIGO-Virgo-KAGRA Collaboration, arXiv:2105.13085 LIGO/Virgo O3 data analysis

Scalar bosons

- Y. V. Stadnik & V. V. Flambaum, PRL 114, 161301 (2015)
- Y. V. Stadnik & V. V. Flambaum, PRA 93, 063630 (2016)
- A. A. Geraci+, PRL 123, 031304 (2019)
- H. Grote & Y. V. Stadnik, PRR 1, 033187 (2019)
- S. Morisaki & T. Suyama, PRD 100, 123512 (2019)
- C. Kennedy+, PRL 125, 201302 (2020)
- E. Savalle+, PRL 126, 051301 (2021)
- S. M. Vermeulen+, arXiv:2103.03783 GEO600 data analysis

Many recent proposals

First searches with real data from GW detectors already done for gauge bosons and scalar bosons.

Axion & axion-like particles (ALPs)

- W. DeRocco & A. Hook, PRD 98, 035021 (2018)
- I. Obata, T. Fujita, Y. Michimura, PRL 121, 161301 (2018) 🖊 This talk
- H. Liu+, PRD 100, 023548 (2019)
- K. Nagano, T. Fujita, Y. Michimura, I. Obata, PRL 123, 111301 (2019)
- D. Martynov & H. Miao, PRD 101, 095034 (2020)
- K. Nagano, H. Nakatsuka, S. Morisaki, T. Fujita, Y. Michimura, I. Obata, PRD 104, 062008 (2021)

Not exhaustive.

The ones which require magnetic fields are not listed.

Axion and Axion-Like Particles

- Pseudo-scalar particle originally introduced to solve strong CP problem (QCD axion)
- Various axion-like particles (ALPs) predicted by string theory and supergravity
- Many experiments to search for ALPs through axion-photon coupling

Especially by using magnetic fields

Polarization Modulation from Axions

• Axion-photon coupling $(\frac{g_{a\gamma}}{4}aF_{\mu\nu}\tilde{F}^{\mu\nu})$ gives different phase velocity between left-handed and righthanded circular polarizations

Enhancing the Signal with Cavities

• Polarization rotation is small for short optical path

Enhancing the Signal with Cavities

- Polarization rotation is small for short optical path
 Laser
- Optical cavities can enhance the path, but polarizations flips upon mirror reflections

Enhancing the Signal with Cavities

- Polarization rotation is small for short optical path
 Laser
- Optical cavities can enhance the path, but polarizations flips upon mirror reflections

• Bow-tie cavities can enhance the signal

Setup of DANCE

bow-tie

- Dark matter Axion search with riNg Cavity Experiment
- Aim for most sensitive search for axion DM

DANCE and DANCE Act-1

- Reach beyond CAST limit by several orders of magnitude with cutting-edge frequency (Hz) $10^{-2} \ 10^{-1} \ 10^{0} \ 10^{1} \ 10^{2}$ 10³ 10^{4} 10⁵ 10^{-9} technologies and ABRA-10cm 10^{-10} CAST 1-year run SHAFT 10^{-11} SN1987/
- CAST level reach even with moderate parameters
 - * Shot noise limited sensitivity assumed

	DANCE Act-1 target	DANCE
Round-trip length	1 m	10 m
Input laser power	1 W	100 W
Finesse (how many times light travels inside the cavity)	3×10 ³	1×10 ⁶

Status of DANCE Act-1

- Started in 2019
- After reassembly of the optics by several times and installation of digital servo system for long runs, first 12-day observation was achieved in May 2021
 - Issue: s-pol and p-pol do not resonate simultaneously Due to phase difference in mirror reflections
- Designed an auxiliary cavity, and achieved simultaneous resonance for the first time in November 2021

s-pol and p-pol obtain different phase on mirror reflections at non-zero incident angle → results in resonant frequency difference

Y. Oshima+, <u>arXiv:2105.06252</u> H. Fujimoto+, <u>arXiv:2105.08347</u>

Y. Oshima+, <u>arXiv:2110.10607</u> H. Fujimoto+, <u>arXiv:2110.12023</u>

First Observing Run in May 2021

- Same scale as Act-1
 target
- 12-day test run from May 8th to 30th

Y. Oshima+, arXiv:2110.10607

	May 2021	Act-1 Target
Round-trip length	1 m	1 m
Input power	242(12) mW (Source: 0.5 W)	1 W
Finesse (for carrier)	2.85(5)×10³ s-pol	3×10 ³
Finesse (for sidebands)	195(3) p-pol	3×10 ³
s/p-pol resonant freq. difference	2.52(2) MHz	0 Hz

Data Analysis Pipeline

- Nearly monochromatic signal $\omega_i = m_A \left(1 + \frac{v_i^2}{2} \right)$
- Stack the spectra in this frequency region to calculate SNR $\rho = \sum \frac{4|\tilde{d}(f_k)|^2}{T_{\rm obs}S_n(f_k)} \text{ Data}$

$$m_A \le 2\pi f_k \le m_A (1 + \kappa n)$$

- Detection threshold Obs. time determined assuming ρ follows χ^2 distribution (=assuming Gaussian noise)
- From ρ , calculate 95% upper limit on coupling constant

PSD

Applied the pipeline to mock data for verification

Stochastic Nature of DM Signal

- DM signal is from superposition of many waves with various momentum, phase and polarization
- The amplitude fluctuates at the time scale of

 $\tau = 2\pi/(m_A v_{\rm DM}^2)$

- At low frequencies, DM signal could be too small by chance and elude detection
- Method to calculate upper limit taking into account this stochasticity developed

H. Nakatsuka+, in preparation

Preliminary Analysis Results

- Used 10-hour data from 12-day run
- 82 candidates found from initial analysis
- Veto analysis
 - Q-factor veto (DM signal must have Q of 10⁶)
 - Consistency veto (Frequency should be the same for different set of 10-hour data)
 - → Currently, 8 candidates left (under investigation) They are all ~40 Hz harmonics Probably from some mechanical resonances

Preliminary Upper Limit

 Shot noise limit worse by 3 orders of magnitude due to resonant frequency difference between s/p-pol

Simultaneous Resonance

 Carrier pol and sideband pol needs to be enhanced simultaneously for improving the sensitivity

Auxiliary Cavity as Solution

- Make resonant condition for auxiliary cavity different
 between s/p-pol to make reflected phase different
- This compensates phase difference in the main cavity

Updated Setup

- New lab prepared
- New 2W laser source obtained (previously, 0.5W laser source)
- Installed an auxiliary cavity

Auxiliary cavity

Photo by H. Fujimoto

Simultaneous Resonance Achieved

- First demonstration in November 2021 (with a PBS we already had)
- Ordered better mirrors optimized for this setup

	May 2021	NOW (Nov 2021)	Act-1 Target
Round-trip length	1 m	1 m (+0.5 m aux. cavity)	1 m
Input power	242(12) mW (Source: 0.5 W)	~40 mW (Source: 2 W)	1 W
Finesse (for carrier)	2.85(5)×10 ³ s-pol	$\sim 2.2 \times 10^3$ s-pol, with cavity lock	3×10 ³
Finesse (for sidebands)	195(3) p-pol	~90 p-pol, with cavity lock	3×10 ³
s/p-pol resonant freq. difference	2.52(2) MHz	~0 Hz with lock (Originally ~92 MHz)	0 Hz 24

Sensitivity with Auxiliary Cavity

 Sensitivity improvement in broad mass ranges can be achieved with simultaneous resonance

Losses in Auxiliary Cavity

- Amount of p-pol is affected by optical losses at back reflections and mode mis-match
- Signal is largely lost due to this optical losses

Avoiding the Signal Loss

- Lower finesse for p-pol in aux. cavity so that losses in back reflections are not enhances
- Lower reflectivity for input/output mirrors for improving the impedance matching

Future Plans

- Realize simultaneous resonance with further optimized mirrors
- Reduce various noises to achieve shot noise limited sensitivity
 - laser intensity stabilization
 - optimization of cavity length control
 - environmental monitors (e.g., accelerometers) etc...
- Make two cavities for correlation analysis

- Bonus
 - Realize simultaneous resonance with variable wavelength lasers?

Dept. of Physics, UTokyo

Yuka Oshima Hiroki Fujimoto Haoyu Wang Yuta Michimura Masaki Ando **RESCEU, UTokyo** Jun'ya Kume Atsushi Nishizawa **ICRR**, UTokyo Hiromasa Nakatsuka WIAS, Waseda U. Tomohiro Fujita ISAS, JAXA Koji Nagano Max-Planck-Institut für Astrophysik Ippei Obata U. of Wisconsin-Milwaukee Soichiro Morisaki

··· and more to come!

Our Team

We also work on axion DM and vector DM searches with KAGRA

ダークマターの正体は何か? 広大なディスカバリースペースの網羅的研究 X³⁸¹⁴⁹¹ ^{※新空単領域研究} What is dark matter? - Comprehensive study of the huge discovery space in dark matter (2020-2024)

Axion DM Search with KAGRA

- Linear cavities can be sensitive when the round-trip time equals odd-multiples of axion oscillation period
- Polarization optics installed at 3-km arm cavity transmission of KAGRA

Summary

- New searches for ultralight dark matter can be done with laser interferometers
- Axion-like particles can be searched with DANCE to search for polarization modulation of light with optical ring cavity (without magnets!)
- Prototype experiment DANCE Act-1 is underway
- 12-day test run completed in May 2021
- Data analysis pipeline was developed, and first upper limit was set from the analysis of real data
- Further sensitivity improvement planned with s/p-pol simultaneous resonance etc.